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Bayesian Information Fusion Networks for Biosurveillance
Applications
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A b s t r a c t This study introduces new information fusion algorithms to enhance disease surveillance
systems with Bayesian decision support capabilities. A detection system was built and tested using chief
complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes
from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health
departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets
between events in the multiple data streams were established. The Bayesian Network was built to fuse data from
multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased
specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by
NCR health departments. Further research should be done to investigate correlations between data sources for
efficient fusion of the collected data.
� J Am Med Inform Assoc. 2009;16:855–863. DOI 10.1197/jamia.M2647.
Introduction
Timely and accurate detection of both naturally occurring
and bioterrorism-related disease outbreaks is crucial for
executing an efficient public health response to limit mor-
tality and morbidity in the population. Preventing the
spread of natural disease also reduces the economic effects
of treatment costs and lost productivity. Although tradi-
tional methods of surveillance relying on confirmed labora-
tory tests are specific, they may not be obtained early
enough to halt rapidly spreading disease outbreaks.

To address the need for timely response, developers have
implemented several electronic syndromic surveillance ap-
plications to collect and analyze near-real-time data from
different health indicator sources. These applications at-
tempt to provide public health situational awareness to
decision makers in their regions.1–8 Many of these applica-
tions were rapidly developed to support surveillance for
acts of bioterrorism during special, large public events.9,10

These applications support the detection of statistical
anomalies in health indicators such as Emergency Depart-
ment (ED) chief complaints, over-the-counter (OTC) drug
sales, and military medical facility visits. Beginning in
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1999, The Johns Hopkins University Applied Physics Lab-
oratory (JHU/APL) developed the Electronic Surveillance
System for Early Notification of Community-based Epidem-
ics (ESSENCE),8,11 a system that the Department of Defense
deploys worldwide and that has multiple civilian installa-
tions within the United States. Improved performance has
been a goal of ESSENCE since its introduction, and it is
currently one of the most widely used disease surveillance
systems. Many syndromic surveillance systems have created
tools that quickly identify potentially large disease events,12–18

but to do so specificity is often traded for sensitivity.19–24

Despite the capability that these projects have provided, there
is still a critical need to develop data fusion techniques that will
assimilate multiple sources of information to provide situa-
tional awareness and automatically differentiate epidemiolog-
ically significant events from statistical anomalies unrelated to
actual disease. Some studies have been conducted to combine
multiple data streams,25–27 but they have focused on the
outbreak detection problem rather than on providing function-
ality to support decision making. There are many successful
examples of clinical decision support systems,28–30 but few
examples of population-based decision support systems. These
successes in clinical medicine systems along with the current
study suggest that the development of similar systems for
disease surveillance will significantly enhance public health
practitioners’ ability to monitor disease trends.

Currently, available syndromic surveillance systems rely on
a trained user to interpret system alerts and determine
which are likely to be associated with a true disease event.
Understanding the epidemiological significance of the de-
tected anomalies requires a cognitive analysis of multidi-
mensional data components where the availability and
quality of some of the components may be uncertain. The
sequence of events; time lags between events; the size,

nature, and frequency of the event(s); and the demographic
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characteristics, signs, and symptoms exhibited by, and the
geographic location of the affected people are all important
elements of the decision-making process. Once a temporal
data anomaly, or alert, is detected, it must be evaluated to
determine whether it is likely to be associated with a real
disease event. This process can be time-consuming, espe-
cially if the probability of false alerts is high. Algorithms that
are both sensitive and specific and include the criteria users
employ to rule out anomalies are needed to streamline the
user’s review process.

These considerations illustrate a need for intelligent decision
support capabilities. This paper introduces new data fusion
algorithms and decision support concepts that can satisfy
this need. The described system emulates an epidemiolo-
gist’s cognitive analysis of the mathematical anomalies to
seek patterns suggestive of disease scenarios. Core algo-
rithms of the system are based on temporal data anomaly
detection and Bayesian Networks (BNs).31–33 The system
performs cascaded multilevel data processing and refines its
detections at each level. As a result, it shows high sensitivity
and significant improvement in specificity.

Methods
Study Design
Anonymized, aggregated clinical encounter record data
collected by the ESSENCE system were used to create a BN
designed to detect the onset of influenza epidemics in a
population. Influenza prevalence data collected by the
Maryland and Virginia Departments of Health influenza
surveillance programs were used to identify influenza-like
illness (ILI) and non-ILI periods in the National Capital
Region (NCR).

To estimate the validity of the new system, the frequency
and timing of detection “alerts” generated by the BN were
compared with those generated by the standard univariate
ESSENCE detection algorithms during ILI and non-ILI time
periods.

Population and Data Sources
Data used in the study were collected in the NCR, which
includes Washington, D.C. and the seven surrounding coun-
ties in Maryland and Virginia. As expected in a passive data
collection system, reporting levels in ESSENCE data vary
somewhat by jurisdiction and data source. Some counties
supply records from all hospitals in their region, and some
from only select hospitals. Similarly, reporting from physi-
cian offices is more complete in some jurisdictions. The
detection system was built and tested with data from Prince
William, Fairfax, and Loudoun counties in Northern Vir-
ginia and Montgomery County in Maryland because data
from these counties were the most complete in the region.
These four jurisdictions are also representative of the NCR.
They include 53% of the geographic area, 53% of the total
3.98 million residents in the NCR, and together have a
median population density very similar to that of the whole
NCR (0.67 vs. 0.66 people/km2, respectively). It is important
to note that the proposed method will work for the regions
with less complete datasets. One of the strengths of the BN
is the capability to function with limited data. While the
network is designed to work with a maximum number of
data inputs, it can also function and provide results when

limited data are available. When some of the inputs for the
leaf nodes of the BN are missing, the BN estimates the value
for the corresponding nodes based on the known values of
the other nodes. BN output is a probabilistic value. When
fewer data are available, probability of the true state for the
output value will be lower. This is comparable to the human
decision making process in situations with uncertainty; the
more data available, the more certain we are that the event
is happening.

The study used the following data sources: chief complaints
from ED visits, International Classification of Diseases Re-
vision 9 (ICD-9) codes from records of outpatient visits to
civilian and military facilities, and influenza surveillance
data from Maryland and Virginia state health departments.
Precise catchment areas for the data sources cannot be
determined for privacy reasons, but all eligible EDs and
military facilities in the NCR provided data to ESSENCE
during the study period. While civilian office visit data were
available only from selected doctors’ offices, the ILI time
series produced from this source mimicked those created
from the ESSENCE ED data and from ILI reports from the
Maryland and Virginia Departments of Health, suggesting
the sources were good candidates for inclusion in the BN.

We evaluated system performance in Montgomery County
between June 2003 and May 2006, and in Prince William,
Fairfax and Loudoun counties between June 2005 and May
2006.

Evaluation of Data Sources and Epidemiological
Methods
Anomalous data trends were identified by an experienced
ESSENCE user. This process was observed by the BN
developer to identify tasks important to the evaluation
process that could be included in the BN design. Informa-
tion gathered during observation was discussed extensively
with users and subject matter experts. An investigation was
completed that compared relationships among the different
data streams. Anomalies identified in one data stream were
sought in other data streams by comparing time series
trends and the timing of events. As a result, the distribution
of time offsets between events in the data streams was
established. The study also examined the degree of depen-
dence between data streams.

The regional, state, and national influenza activity reports
were evaluated to estimate the time periods when epidemi-
ologically significant events most likely occurred in each
county. Reports included several ILI cases that were re-
ported by Sentinel Physicians in Northern Virginia region
and reported by the Virginia Department of Health, cases of
the Maryland laboratory-confirmed influenza activity re-
ported by the Maryland Department of Health, and CDC
national influenza surveillance data. The time series behav-
iors among available data sources during these estimated
event periods were evaluated for detection consensus and
relative timeliness. These time frames were compared with
the detection system’s output. The findings were discussed
with the subject matter experts to verify their relevance to
the epidemiologist’s objective.

Analytic Methods
The core algorithm can be described as a multistep informa-
tion process (Figure 1). As a first step, we reviewed all

available hospital patient record data and selected ILI syn-
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drome-specific combinations of words from chief complaint
strings. Examples of word combinations included fever and
cough or fever and sore throat. The ESSENCE database was
queried using these selected words and phrases. For each
selected combination, we formed the time series of daily counts
of records whose chief complaint string contained that combi-
nation. We applied ESSENCE alerting algorithms8,17 to each of
these series. These algorithms are univariate time series detec-
tors based on adaptive regression models and control charts.
This step created the sets of daily anomalies found for each
combination. Table 1 (available as an online data supplement at
http://www.jamia.org) lists the queries selected for the influ-
enza detection model.

Step 2 supplies the daily set of anomalies for each query as
an input for the Information Fusion Network (IFN). Each
bottom level, data-driven node of the IFN is associated with
one of these queries. It uses corresponding algorithm results
to evaluate the assertion that an anomaly exists within the
most recent 7 days for the chief-complaint combination
underlying that query.

The third step is an IFN process. The IFN is a BN designed
to allow multisource information fusion in a manner emu-
lating the domain expert’s decision-making process. A BN is
a probabilistic model typically visualized as a directed
acyclic graph. It has nodes representing variables and di-
rected edges representing probabilistic dependencies, and it
offers a compact representation of the relationships among
all variables in the graph. Expert knowledge is embedded
into the BN at two levels. First, the gross structure of the
network captures an expert’s view of the interdependencies
of the causal factors in the network. The factors are elements
of data sources. Second, the conditional probability table
attached to each node quantifies the probabilistic relation-
ships between connected variables. The values for probabi-
listic relationships in this table are calculated based on both
the opinions of subject matter experts and anomaly correla-
tion among data sources. The subject matter experts are
involved only at the initial formation of the BN structure;
subsequent adjustments are done from data.

The following observation and development procedure was
used to guide formation of the BN structure and associated
conditional probability tables in an attempt to select relevant

F i g u r e 1. Multilevel information processing diagram.
database queries that are unbiased and supported by the
data. Experienced ESSENCE users, masters or doctoral level
epidemiologists, review the daily system alerts. Their aim is
to eliminate alerts that do not detect events that are a public
health threat. To do that, they characterize the alert by the
type and severity of illness described, and the geographic
proximity of cases and their demographic characteristics,
such as age and sex. They also consider whether and how
often such an alert is expected considering the season,
weather, and time of year, and whether similar alerts have
been seen recently and, if so, the number and the temporal
sequence of those alerts, along with other issues specific to
the suspected disease, locale and population. An analyst
observed this process and identified commonly used queries
and data selection criteria. The resulting queries, for exam-
ple ICD-9 code 487 for infants aged 0–4, were run using data
from known outbreak periods and from outbreak-free time
frames. We calculated the ratio of algorithm alerts found
between the outbreak and outbreak-free periods. This anal-
ysis also took into account noisiness and timeliness relative
to the beginning of flu season as defined by health depart-
ment laboratory reports.

The resulting findings were used to create both the BN
structure and the conditional probability tables. For exam-
ple, adult visit counts peaked mainly during flu season,
while infant visit counts peaked at other times. Thus, there is
conditional dependency between influenza and age distri-
bution factor, and the BN structure reflects this dependency.
Increases in the data counts were detected using temporal
anomaly detection regression algorithms currently deployed
by the ESSENCE system.8,17 Our initial analysis was per-
formed on the data collected in Montgomery County. Dur-
ing flu season, both infant (0–4 age group) and adult (18–64
age group) counts showed timely increases in the number of
sick visits. However, in the preinfluenza period (Jun 1, 2005
to Dec 15, 2005), the count of ill infants was anomalously
high 6 times, while the number of ill adults was anoma-
lously high 3 times. This difference may be explained by the
noninfluenza respiratory outbreaks that usually occur ear-
lier in the season and severely affect infants more than
adults, for example, respiratory syncytial virus (RSV). As a
result, because our goal in this experiment was to differen-
tiate flu from other respiratory outbreaks, for the BN that
specifically targets influenza, the conditional probability
tables for infant nodes contributed less and the probability
values reflected the degree of influence observed. Our
finding was cross-validated in the different regions. In
Prince William County for the same preflu time frame (Jun
1, 2005 to Dec 15, 2005), the anomalous number of adults
was detected 2 times and for infants 7 times. In Fairfax
County, the anomalous number of adults was detected 3
times and for infants 7 times. Similar analysis was per-
formed for all other BN input nodes. The results from one
year to another and from one geographic region to another
were slightly different. For each node, the generic mean of
the range of outputs was calculated and presented to epide-
miologists familiar with the ESSENCE system to verify that
these values were realistic based on their experience. These
generic values are the basis for defining the relative strength
of conditional dependency between the nodes. This process

is labor-intensive but necessary to create conditional proba-

http://www.jamia.org
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bility tables that are both data dependent and epidemiolog-
ically realistic.

The function of the IFN is to determine the probability of
occurrence of an epidemiologically significant event by
estimating the likelihood of the detected temporal data
anomalies. The network’s structure reflects the epidemiolo-
gist’s decision-making process. It is structured to calculate
the probability of outbreak within different age categories as
represented in different data sources. Figure 2 illustrates the
structure of the IFN for influenza detection.

Table 2 (available as an online data supplement at http://
www.jamia.org) illustrates how queries from Table 1 are
mapped to Influenza Detection BN nodes. Each node has a
true value if the corresponding mapped query returned
temporal anomaly detection within the past 7 days.

Probability tables for the intermediate nodes are based on
the joint probability distribution of child node tables. For
example, ED_child node probabilities are calculated using
tables for nodes spike_in_child and child_discharge_factor.
Node child_discharge_factor is true when the number of
children admitted to the hospital within the past 7 days is
greater than expected one. The output of the BN is the
probability of a true influenza outbreak, which is repre-
sented by the Influenza node (Figure 2). The probability of
the influenza outbreak I, given that the age distribution in
the ill population is consistent with the age distribution

F i g u r e 2. Influenza detection BN structure.
expected during influenza, a condition represented as A, is
P�I�A� � P�A�I�P�I� ⁄ P�A�

where

P�A� � P�A�I� P�I� � P�A�¬I� P �¬I�
The probability of the influenza outbreak given that the
civilian and military populations are affected by influenza
(condition denoted S) is

P�I�S� � P�S�I� P �I�⁄P�S�:

where

P�S� � P�S�I� P�I� � P�S�¬I� P �¬I�
The probability of the influenza outbreak given an anoma-
lous increase in self-care activities (condition SC), such as
increase in OTC medication sales, is:

P�I�SC� � P�SC�I� P�I�⁄P�SC�:

where

P�SC� � P�SC�I� P�I� � P�SC�¬I� P �¬I�
The probability of influenza given A, S, and SC is then

P(I�A, S, SC) � P(I, A, S, SC) ⁄ P(A, S, SC)
� P(A�I) P(S�I) P(SC�I) P (I) ⁄ [P(SC�A, S) P(S�A) P (A)].

The intermediate nodes can also provide outputs, for exam-
ple, the population-specific probability of outbreak as indi-
cated by military (military_factor node) or civilian (civilian_

factor node) data sources.

http://www.jamia.org
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Our BN structure is constructed by a data-driven but user-
centric principle, where correlations between different
nodes are supported by available data and confirmed as
relevant by the subject domain expert. For example, the data
might show that age distribution in an ill population is a
significant factor, and the epidemiologist looks at it to verify
the presence of an outbreak. These findings are relevant to
the objective of the responsible health agency, so the BN is
structured to incorporate sick visit counts from each of the
data sources by different age groups, and the probability of
the outbreak within each age group will be calculated.
Another important factor is outbreak within a population
represented by a particular data source. For example, if the
outbreak occurs in a Military Academy, most of the patients
will go to the military facility; in that case, we will see the
spike of visits within one source rather than across multiple
sources. Therefore, the BN calculates probability of anomaly
within military and civilian sources with consideration of
the ill population’s age distribution in each source. Patient
disposition—whether the patient is admitted, discharged,
transferred, or deceased—is also available in the ED visit
records, and disposition anomalies were added to the BN
structure. What percent of people visiting hospital emer-
gency rooms are admitted to the hospital? The final value for
the probability of influenza is calculated based on the joint
probability of all of these factors (Figure 2).

The final step is an intelligent data visualization process,
where the reasons for an alert are presented to the user and
drill-down capabilities are implemented to allow the user to
see actual records that might be causing a high outbreak
probability.

Results
To measure specificity of the IFN model, we identified a
known 4.5 month long flu-free time period from Jun 1, 2005
to Oct 15, 2005, and evaluated the model’s performance
within the one county in Maryland and the three counties in
Virginia. The BN output of the parent node should be
reviewed as a relative measure and not an absolute proba-
bility that the statement underlying the node is true. There-
fore, operational thresholds are required. A parent node
output probability threshold of 0.35 was chosen because it
was the lowest multiple of 0.05 that gave perfect sensitivity
for the identified events. Use of the lowest multiple of 0.05

F i g u r e 3. Laboratory-con-
firmed cases of influenza in the
State of Maryland.
ensures that sensitivity will remain as high as possible.
This threshold also gave 100% specificity during the flu-free
period. The influenza probability never exceeded 0.05 in
data from Montgomery County in Maryland and Loudoun
and Prince William counties in Virginia. Although the
influenza probability from Fairfax County, Virginia ex-
ceeded 0.05 two times during the flu-free period, 0.32 on Jun
1 to Jun 5, and 0.11 on Jul 3 to Jul 4—both times it was below
the 0.35 threshold.

To measure sensitivity of the IFN model, influenza out-
breaks were identified from the publicly available health
reports from the Maryland and Virgínia Health Depart-
ments. Based on Maryland’s confirmed flu laboratory tests
(Figure 3) and Virginia’s Sentinel Physicians’ reports (Figure
4), six influenza outbreaks were identified, counting sepa-
rate county-based events. Three outbreaks were in Mont-
gomery County for influenza seasons 2003–04, 2004–05, and
2005–06; and one for the 2005–06 season in each of the
Virginia counties–Prince William, Loudoun, and Fairfax. All
six outbreaks were detected by the model at the threshold of
0.35. For detection at the beginning of the influenza seasons,
the sensitivity was 100%. Given the small number of events,
we cannot claim perfect sensitivity in general, but this
evidence is very promising. The model detected all six
outbreaks at least as soon as the onset dates in the health
department reports.

Figure 3 shows the Maryland laboratory-confirmed influ-
enza chart for the 2003–04, 2004–05, and 2005–06 seasons.
Figure 5 shows the model’s output indicating probabilities
of influenza in Montgomery County between June 2003 and
May 2006.

For the 2003–04 season, influenza cases first appear during
Week 45–46; the system calculates the outbreak probability
as 46% on Nov 12, 2003 (Week 45) and above 80% at the end
of Nov (Week 47–48).

For the 2004–05 season, influenza cases first appear during
Week 49–50 with an increase in cases on Week 52–1, then the
peak at the end of Jan and a second wave in the beginning
of Feb. The system calculates the outbreak probability as
56% on Dec 12, 2004 (Week 50) and above 80% at the
beginning of January 2006 (Week 1), then another increase of
probability at the end of Jan. The system continues to
estimate a high probability of outbreak until the end of Feb.

The 2005–06 influenza season came in the spring, later than

its customary onset in the early winter. The first few cases
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appeared on Week 52 then again on Week 2 with the slight
increase starting on Week 4–5. The peaks were on Weeks 8
and 11. The system first detects probability of an outbreak
on Week 1, then on Week 3 and Week 5, and the last
detection is on Week 10 (starting Mar 12).

For the Northern Virginia counties, data were available from
civilian and military outpatient office visits for 3 years; how-
ever, ED data were consistently available since 2005. Therefore,
we calculated probabilities based on available data for 3 years
but presented results only for the 2005–06 influenza season,
when data were available from all data sources.

The Virginia Health Department Influenza surveillance re-
port shows that the reported cases of influenza in the
Northern Virginia region (Figure 4, gray line with black
outline) increased in the beginning of Jan, slightly increased
in mid-Jan, and consistently increased from the middle of
Feb until the middle of Mar. The northern region includes
Fairfax, Prince William, Arlington, Alexandria, and Loud-
oun Counties. For Fairfax County, our system shows an
increase in the probability of influenza in the end of Oct, last
week of Dec, second week of Jan, second week of Feb, and

F i g u r e 5. Output from system indicating probabilities o

2006.
starting in the end of Feb until the third week of Mar (Figure
6, available as an online data supplement at http://www.
jamia.org). Although there is no increase in reported cases at
the end of Oct in Northern Virginia, there is a significant
increase of the reported cases in the Northwest region
(Figure 4, dotted line). For Prince William County, two
groups of alerts for the 2005–06 influenza season were
indicated; the first starts on Dec 28, and the second starts on
Feb 21 (Figure 7, available as an online data supplement at
http://www.jamia.org).

We also compared results with alerts and warnings gen-
erated by the ESSENCE detectors. Figure 8 illustrates a
comparison generated by new BN model probabilities of
influenza (black, left axis) and the p-values for ESSENCE
alerts and warnings (gray, right axis) for ILI (fever and either
sore throat or cough). The new model shows significantly
higher specificity and also time frames when increasing
probabilities of influenza are consistent with the increase of
the reported influenza by Sentinel Physicians (Figure 4).

An obstacle to quantifying the value-added of the BN is that
the actual specificity of the traditional algorithms cannot be

F i g u r e 4. Influenza-like ill-
nesses (ILI) reported by Sentinel
Physicians in Virginia by region,
during 2005-06 influenza season
(from Virginia Health Depart-
ment Influenza Surveillance An-
nual Report).

enza in Montgomery County between June 2003 and May
f influ

http://www.jamia.org
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precisely measured. Because the traditional approach is not
disease specific but syndrome specific, one cannot prove in
general that a background alert is a false alert. Table 3 does
compare the number of alerting events obtained with algo-
rithms alone and with the BN, though we would not claim
precise specificity measures from this table. The corrobora-
tion implicitly required by the BN probabilistic structure
removes many of the pure algorithmic alerts—a human
monitor should not need to go through this rule-out process,
certainly not with alerts from many data streams. The BN
structure and conditional probability tables can emulate the
weighting process that the human would employ. For
interpretation of this table, note that the BN combines
algorithm outputs from the most recent 7 days to estimate
the outbreak probability for any given day. The BN does not
alert for each algorithm anomaly but responds to anomaly
patterns. For example, if anomalies are seen only for infant
data, then the BN most likely will not show a high outbreak
probability. If an anomaly is detected in adult data the next
day, the outbreak probability will increase.

Discussion
This study is one of a few to incorporate epidemiologist
decision-making logic in a decision support system. In our
experience, public health subject matter experts can effec-
tively evaluate a syndromic surveillance system’s detections
and recognize patterns suggesting real public health events
from statistical anomalies in the data stream. The design

F i g u r e 8. Probabilities (blue) and ESSENCE Warnings a

Table 3 y ESSENCE Alerts Compared with BN
Probabilities

Time Period

Uninterrupted
ESSENCE

Alerts
p-Value
� 0.01

Uninterrupted
ESSENCE

Alerts
p-Value
� 0.05

Uninterrupted
Intervals BN
Probability

� 35%

5/1/05–9/30/05
Spring and summer

3 10 1

10/1/05–12/1/05
Start of cold season

2 5 1

12/2/05–/12006
Influenza season

6 8 5

4/2/06–5/1/06
Post-influenza

0 0 0
5/1/05–5/1/06 11 23 7
includes the epidemiologist’s decision-making logic applied
to the dynamic environments where events and their result-
ing data effects do not occur simultaneously but rather in a
disease- or syndrome-specific sequence. The benefit of our
approach is that it reduces the burden on the user by
providing integration of many algorithmic results focused
toward specific public health threat hypotheses—the hy-
pothesis of an influenza outbreak in this experiment. This
integration has been done only heuristically in common
practice. Automated emulation of this process makes the
system more intuitive for the user and obviates the decision
of whether to investigate individual alerts. Moreover, the
graphical BN structure makes the logic transparent so the
user may understand the automated logic underlying top-
level threat probabilities.

Using age distribution as an outbreak indicator is an impor-
tant component of the design. The BN is designed so the
intermediate nodes show the outbreak probability in differ-
ent age groups and data sources; this feature allows the
system to be sensitive to relatively small outbreaks that are
specific to age groups or subpopulations, such as the mili-
tary. When statistical analyses are performed on visits
counts including all ages, increases in a relatively small age
category, such as “Children”, may not appear significant.
The data fusion approach is sensitive to anomalies within
each of the age groups. Furthermore, a data fusion-based
system has increased specificity because it estimates the
probability of the events across multiple data streams.
Another benefit of the transparency of the intermediate
nodes is the potential to provide evidence of the spread of
disease among subpopulations while an outbreak is in
progress. For example, the nodes described in Figure 2
represent outbreak probabilities based on information from
military and civilian data sources and from age-specific
categories within them.

We also found that time frames for increase in the probabil-
ity of influenza in neighboring counties look very similar.
Figures 6 and 7 illustrate the probabilities of the outbreak in
Fairfax and Prince William counties. The agreement of the
multiple-peak increases in probabilities within the same
time frames in both regions suggests that the system can
detect both the beginning of each season, as well as correctly
differentiate multiple waves within the same season.

More research needs to be done to investigate correlations

rts (red) for Fairfax County, Virginia.
between data sources for efficient fusion of the collected
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data. A number of surveillance systems collect information
from various data sources. Some of these sources, such as
ED chief complaint data, have been intensively analyzed for
outbreak investigation. Other data sources are less com-
monly used and need to be analyzed for their appropriate
usage for population health monitoring. Furthermore, re-
search is needed to quantify temporal correlations of the
effects of health events among different data sources.

Additional research and development is needed to build the
network of decision support models for different categories
of users. For our prototype system, we developed local and
state level decision support models. Additional regional and
national models need to be developed. An automated dis-
tributed decision support system can be a good vehicle for
information exchange between different health departments
and will not require the sharing of actual data.

The study presented here was conducted with data only
from the Washington, D.C. metropolitan area. Although the
data covered several counties, one should consider this
study as a single-region experiment. This restriction is a
limitation of the study; data from multiple locations should
be evaluated to confirm these findings and to evaluate
system performance in a variety of urban, suburban, and
rural surveillance regions. Additional experiments in more
congested areas, such as New York City, and low-density
rural areas will enable the design of models in varied
regional environments.

Several points about operational thresholds should be clar-
ified: methods such as testing with historical data and likely
outbreak intervals, bootstrapping, and cross-validation,
preferably with the guidance of local epidemiologist users,
should be used to determine operational thresholds. It
would be misleading to specify a statistical formula for the
number of days of historical data required for a desired
power to detect. Such formulas from the literature are based
on fixed data distributions, and surveillance data streams
satisfying these distributions are rare. In some situations,
data streams may be modeled well enough that the algo-
rithm results input to a BN may have a normal distribution,
but such results are generally not portable across neighbor-
ing subregions, as seen in the multiple region analyses in
Craigmile.34 Furthermore, a steady-state data environment
is the exception, not the rule. Therefore, a certain amount of
data analysis is necessary at the local level for robust BN
detection performance. Based on this study, we suggest that
for a BN system intended to replicate this study, at least 1
year of quality training data at the time resolution of the BN
be required for all data streams included. By “quality data”
we mean that the data steams are available with fairly
continual provider participation with no dropouts or other
problems lasting more than a couple of weeks. Based on the
experience of the current and previous studies, the BN
paradigm can offer substantial practical decision support
guidance in an evolving, nonstationary data environment.
However, any operational system should be evaluated for
recalibration, possibly annually.

Finally, competing hypotheses can be readily incorporated
in BN structures as multiple parent nodes. The availability
of truth data for other illnesses such as RSV or adenovirus

would have allowed evaluation of multiple hypothesis
nodes. Such nodes can be easily added to the current
structure, but truth data would be needed for credible
evaluation. When dealing with multivariate, highly corre-
lated hypotheses, unbiased simulation is very difficult, and
with the best of intentions, it is easy to obtain deceptive
results.

Conclusions
The results show that the hybrid statistical probabilistic data
fusion model for influenza detection exhibits both high
specificity and sensitivity. The discussion surrounding Fig-
ures 3–6 demonstrates that detections are timely compared
with both laboratory-confirmed influenza and reported sen-
tinel Physicians’ cases. Table 3 demonstrates that the IFN
can improve specificity of the ESSENCE system for event
detection and can differentiate epidemiologically significant
events from mathematical data anomalies and possibly
detect different waves of influenza. Given the subjective,
expert-dependent portion of the development process de-
scribed above, more implementation and validation experi-
ences are needed to standardize this fusion capability and
make it robust across various data environments and health
threat types.
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