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A b s t r a c t Objective: Spatio and/or temporal surveillance systems are designed to monitor the ongoing
appearance of disease cases in space and time, and to detect potential disturbances in either dimension. Patient
addresses are sometimes reported at some level of geographic aggregation, for example by ZIP code or census
tract. While this aggregation has the advantage of protecting patient privacy, it also risks compromising statistical
efficiency. This paper investigated the variation in power to detect a change in the spatial distribution in the
presence of spatial aggregation.

Methods: The authors generated 400,000 spatial datasets with varying location and spread of simulated spatial
disturbances, both on a purely synthetic uniform population, and on a heterogeneous population, representing
hospital admissions to three community hospitals in Cape Cod, Massachusetts. The authors evaluated the power
of the M-statistic to detect spatial disturbances, comparing the use of exact spatial locations versus twelve different
levels of aggregation, where the M-statistic is a comparison of two distributions of interpoint distances between
locations.

Results: When the spread of simulated spatial disturbances was contained to a small portion of the study region
or affects a large proportion of the population at risk, power was highest when exact locations were reported. If
the spatial disturbance was a more modest signal, the best power was attained at an aggregated level.

Conclusions: The precision at which patients’ locations are reported has the potential to affect the power of
detection significantly.
� J Am Med Inform Assoc. 2009;16:847–854. DOI 10.1197/jamia.M2788.
Introduction
In classical (temporal) disease surveillance, one looks for
disturbance in the number of cases, while in a spatiotempo-
ral system, not only the number of cases is observed but
their location is also recorded. Considering the spatial
component of the data can enhance the detection of an
outbreak dramatically,1,2 and thus it is important to deter-
mine how best to collect and analyze these data.

Because data such as residential address or place of work
can help identify an individual, privacy concerns dictate that
some filtering should occur. One approach to such filtering
might be an intentional coarsening of the spatial resolution
at which the data are reported. Geographic information
might be reported in an aggregate form, for example the
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number of cases per some administrative unit such as
county, ZIP code, or census tract. In this article, we investi-
gate how this coarsening of the data affects the performance
of a global spatial test, the M-statistic, to detect geographi-
cally localized outbreaks, using both a uniform baseline
population as well as a heterogeneous population based on
Emergency Department (ED) visits to three community
hospitals in Cape Cod, Massachusetts.

Background
After reviewing the current literature, we explore some
important considerations involved in the study of the effect
of spatial resolution on detection of spatial disturbances.

The Effect of Spatial Data Resolution on Detection
One of the most influential maps in the history of medicine
is John Snow’s depiction of the mortality due to cholera in
Soho in the autumn of 1854. Snow created this map to
bolster his case against the miasmatists and to support his
theory that the cholera is a waterborne disease.3 To obtain
the data for the map, Snow wrote: “I requested permission
on the 5th of September, to take a list, at the General Register
Office, of the deaths from cholera registered during the week
ending the 2nd of September in the subdistricts of Golden
Square and Berwick Street, St. James’s, and St. Anne’s, Soho,
which was kindly granted”4. Would these data be kindly
granted today or would a single number be provided for
every Postal Code, or other aggregating device? What infor-

mation would the aggregated data conceal?

http://www.healthmetrics.org
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Several authors have already written on the trade-off be-
tween accuracy of data and protection of privacy. Cox5

described several existing methods, including random per-
turbation and aggregation, which prevent tabular data from
revealing unintentional information. Minot et al.6 showed
that estimates of poverty rates are biased when based on
census data that is released at an aggregated level, yet they
also found that the bias can be reduced if one can obtain
information about the variance of per capita expenditure at
the household level. Informatics-based approaches have also
appeared as a new direction. For example, Boulos et al.7

suggested new software agents that would analyze sensitive
data without requiring a human intervention, and report
only the results to the user while concealing the data from
which they were drawn. Armstrong et al.8 proposed mask-
ing techniques applied to matrices of individual attributes.
They considered the effect of random perturbation on the
power of the Cuzick-Edwards test of spatial clustering9 in a
heterogeneous population and reported that higher levels of
perturbation make detection less probable.

Similar results appeared in Cassa et al.10 where the authors
considered the power of Kuldorff’s spatial scan statistic to
detect spatial clusters injected into a data stream of ED visits
from a Boston-area hospital. They first randomly displaced
exact locations, and then aggregated both exact and per-
turbed locations by census tract before performing the
analysis under each scenario. Results showed a gradual
decrease in power of detection as the average distance
between the original and modified locations increases, sug-
gesting that the performance is not dramatically affected.
Waller11 studied the power of three different focused tests of
clustering on the uniform distribution in the unit square at
four levels of aggregation. Using two different types of
clusters (“hot spot” and “clinal” clusters) showed that
power decreased as the aggregation became coarser. Waller
also reported power results for simulated clinal clusters
added to the upstate New York leukemia data, suggesting
that an appropriate aggregation level for optimal power
might depend on whether the cluster is centered in an urban
or a rural county.

Kulldorff et al.12 introduced the space-time scan statistic
(SaTScan) with the New York City emergency department
syndromic surveillance system, where they showed that
power of detection is reduced when hospital locations are
used rather patients’ residential ZIP code. Similarly, Olson et
al.13 used the spatial scan statistic on simulated clusters
superimposed upon Boston hospital emergency data. They
found that the performance in detection improves if spatial
data are kept as exact point locations rather than aggregated
by ZIP codes or census tracts, except possibly when a cluster
falls entirely into one administrative unit. We have also
studied the effect of aggregation on the performance of this
statistic.14 Our work considered a uniform baseline distri-
bution in the unit disk and twelve subsequent levels of
aggregation. We also found a steady loss of power to detect
spatial disturbances as the spatial resolution coarsens.

Methods for Detecting Spatial Disturbances
Spatial methods in prospective surveillance aim to monitor
the spatial distribution of incoming cases, and to detect any
change in that distribution that might occur. There are

several broad reviews of spatial methods in surveillance.15–17
Rather than duplicate the literature, we focus on aspects that
are especially relevant to the present study. One can classify
methods to detect spatial disturbances into two categories:
those that test whether a change occurs globally, i.e., over
the entire study region; or those that test whether a change
occurs locally, i.e., in a geographically or otherwise limited
area of the region.

Scanning methods such as Kulldorff’s spatial or space-time
scan statistic12,18 perform local tests, typically by scanning
the study region with a locally defined window. These
methods provide a location of any detected change, which is
an important advantage for timely response to a potential
outbreak. However their implementation usually requires
the analyst to define a shape for the scanning tool, which
makes some spatial disturbances easier to detect than others;
much work has addressed this issue.19–23 Scanning methods
may also have limited capacity to detect multiple clusters,
since the likelihood models that such scan statistics typically
use ignore the spatial arrangement of disease outside the
scanning window.18 Thus, the very strengths of the local
testing approach may in certain situations prove to be a
disadvantage.

Conversely, global testing methods typically do not identify
local areas for further investigation, but they also do not
make any assumption on the specifics of disturbances to
detect. Any global disturbance, evaluated against the typical
variations expected by chance alone, is a potential sign of
unusual disease activity. Such systems might serve as a
preliminary warning tool, to raise the attention and sensi-
tivity of other available surveillance tools to a more height-
ened level than before a disturbance was detected. The
M-statistic can serve as such a global testing method.24

Furthermore, it allows for protection of part of the spatial
information since, rather than using the recorded locations
of patients, this statistic requires as data the interpoint
distribution of distances.

Framework for Evaluation of Detection
Performance
Before a spatial statistical method can be integrated into a
surveillance system, one must consider its performance
under different scenarios. In particular it should accurately
discern whether any changes in the spatial distribution have
occurred or not. Assessing these qualities requires the use of
synthetic datasets that reflect real case scenarios as much as
possible. In the context of spatial data, this involves gener-
ating a baseline population representing normal behavior,
and superimposing spatial disturbances atop the baseline. If
necessary, complex baseline populations can be achieved
either with mixtures of standard probability distributions
(e.g., uniform, normal, Poisson), or drawn from existing real
datasets. Adding spatial disturbances allows us to define a
null and an alternative hypothesis to measure the power of
detection of the considered method.

We now describe general frameworks for simulating spatial
disturbances and aggregating data. Since the two phenom-
ena occur independently of each other, we treat them in
separate sections.

How Can We Generate Spatial Disturbances?
Many of the referenced work in the first part of the back-

ground section uses simulated spatial disturbances that can
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be described within the framework we now introduce.7,9–11,13,14

We focus on spatial disturbances within a fixed time period,
leaving spatiotemporal patterns for future work.

Our goal is to provide sufficient mathematical structure to
the description of spatial disturbances so that we can de-
scribe a broad range of disease outbreak types with a
relatively small number of parameters. This allows us to
systematically investigate and compare spatial methods on
different outbreak types, using common language and no-
tation. It also helps us to make a connection between
simulated data and previously reported historical outbreaks.
For example, when modeling possible effects of an outbreak
on the population, we might design simulation studies with
parameter ranges that more accurately reflect the outbreak
characteristics of a particular historical outbreak of concern.
Thus, we have aimed for a common framework that accom-
modates several approaches to describing and simulating
outbreaks.

Our framework consists of four main attributes to describe
spatial disturbances, chosen in the following order. In the
description below, we will denote the study region by R.

Reference Population. This is the spatial distribution of the
population at risk, written with population density function
g0. We sometimes refer to this distribution informally as the
“null population”. When monitoring the current spatial
distribution of cases within a prospective surveillance sys-
tem, we refer back to the null population for our compari-
sons. When simulating data, we can generate the null
population from a combination of known distributions (e.g.,
uniform, normal) or real spatial data.

Number. The number s of spatial disturbances throughout
the region R. Typically we consider a “single hot spot”
disturbance with a small geographic region with localized
excess, corresponding to s � 1. However spatial patterns in
disease data often demonstrate more complex patterns with
multiple hot and/or cold spots, so we consider the number
of disturbances as a separate parameter.

Locations. The locations are the subregions Al of R, l �
�1, . . . , s� where a spatial disturbance occurs. When s � 1 and
there is a single disturbance, the subregion A defines the
geographic boundaries of that disturbance. Locations can be fu-
rther described by a focus point, a shape, and an extent. The
focus point xl represents the ‘center’ of The subregion. The
shape refers to the geometry of the subregion (e.g., square,
circle, line along a river or a highway). The extent is the
geographic area covered by the subregion. This value might
be determined spatially (fixed geographic extent) or cover a
fixed proportion of the null population (fixed population
extent).

Intensity. The intensity is a function depicting the increase in
risk of disease in the particular region Al. This function gAl
has support Al (it is zero on any point in the region R outside
of the geographic boundaries Al). For example, suppose
there is a single disturbance described by subregion A. We
might define the function gA as constant throughout Al (“hot
spot cluster”), declining according to the distance from the
focus point (“clinal cluster”), or varying in some possibly
more complex way.

All these attributes are unknown to the analyst if they were to

handle real data, except perhaps the reference population.
When simulating data, all of these characteristics need to be
specified. The intended application will often dictate some of
the attributes in a particular way. For example, the extent of a
simulated outbreak might be related to the mechanism of
disease transmission within the population: does the disease
remain contained within a small geographic region, and/or
does it affect a certain proportion of the reference population?
If the cases are arising due to a local environmental exposure,
the geographic extent of the exposure remains fixed regardless
of its surrounding population density. If the disease is infec-
tious, the focus xl might represent a first individual spreading
the disease to others. His/her level of infectiousness and
number of contacts determine the proportion of the surround-
ing population getting infected. If this proportion is fixed
regardless of the focus point, it can be represented by a fixed
population extent.

The various attributes we have described combine to define
a “spatially disturbed” sample, i.e., a new spatial distribu-
tion which we aim to compare with the reference popula-
tion. We consider this spatially disturbed sample as a
mixture of distributions, defined for x � R as:

g(x) � q0 g0(x) � �
l�1

s

(1 � q1)gAl
(x)

where q0,. . ., qs � 0 and q0 � q1 � . . . � qs � 1 to
guarantee that g is a probability density function. The
parameters q0, . . . ,qs control the strength of the disturbance
to detect. For example, given a fixed extent, large q0 and
small ql, l � �1, . . . , s� confer weak signals.

Real examples such as the Sverdlovsk,25 Woburn26 and
Milwaukee27,28 outbreaks can be described according to this
framework. In the Sverdlovsk anthrax outbreak, the single
focal point was a nearby military facility and the geographic
spread was shaped as a plume defined by the prevailing
northerly wind. This event can be characterized with s � 1
and an intensity function gA defined nonconstantly over the
plumed-shaped region, i.e., according to the wind pattern.

The investigation of the Woburn outbreak of childhood
leukemia showed that the high rates of cases were signifi-
cantly associated with exposure to the water supply serviced
by two of the municipal wells. Both focus points were
located in contiguous regions of the eastern part of Woburn
and the exposure of households to both contaminated sup-
plies was expressed as a single variable. The exposure
variable varied depending on the location of households,
hence this scenario can be represented by s � 1 and a
nonconstant intensity gA.

Finally, Milwaukee experienced a massive outbreak of Cryp-
tosporidiosis where the primary mechanism of exposure was
delivery of contaminated drinking water via the public
water supply. In particular the population receiving residen-
tial drinking water from the southern treatment plant rather
than the northern plant was the most affected. This incident
can be represented as two focus points (s � 2), each covering
half of the study region (Asouth, Anorth). Assuming the
contaminated water is reaching all households, the corre-
sponding intensities gAsouth

, gAnorth
are both constant. The

higher risk from the southern plant is expressed with a
higher value for the corresponding q compared with
south
qnorth.
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In all three examples, an appropriate reference population g0

also needs to be specified. This parameter should be repre-
sentative of the population at risk, like a recent census before
the outbreak in Milwaukee for this last case.

What Aggregation Schemes Can We Consider?
Spatial information of cases is in aggregated form when
cases within a particular region are assigned to the same
location. This can happen in more than one way, as we now
describe. In surveillance settings, spatial data are typically
available in the form of household address, work/school
address, billing address, or simply the location of the health
facility where a medical visit was recorded. Regardless of
the accuracy of the spatial information, multiple cases might
have the same location, and thus appear aggregated, simply
because they live/work in the same building or visit the
same health facility. In such instances, we would need
nonspatial covariates to distinguish individuals further. In
this paper we assume that this does not occur, and thus the
available spatial data allows us to differentiate any two
individuals. Although a strong assumption, we prefer to
focus on “man-made” aggregation, i.e., the kind that results
from collecting or analyzing the data in an intentionally
aggregated form despite the fact that there exists more
accurate information.

When spatial data are intentionally aggregated, it is typi-
cally done at an administrative level, for example in the
United States at the level of zip codes or census tracts.
Aggregating data along administrative boundaries is conve-
nient and easy to execute, but these boundaries are unre-
lated to the spatial spread of any disease, and might also not
match the geographic organization of health facilities. As an
alternative to aggregation along real administrative units,
we consider superimposing the study region with several
regular rectangular grids of varying spacing. For a given
grid spacing, we reassign locations falling in a particular
grid square to its center. The average side length of a grid
square defines an aggregation level and thus the spatial
resolution of the data after alteration.

This aggregation scheme, first described in references 14 and
29,14,29 offers several advantages for our intended study of
the effects of aggregation. As just noted, the level of aggre-
gation and spatial resolution is easily indexed with a single
value, the side length of a grid square. This facilitates
systematic study and quantitative analysis of the effect of
aggregation. We can calculate power and false detection
over a range of indexed levels to understand better the
features of the considered detection method. Finally, the
level of aggregation is a continuous parameter which can
range widely. Familiar geographic scales such as ZIP codes
and census tracts are represented at one end of this contin-
uum, as well as intermediate levels that might result in
satisfactory detection power.

Research Question
Most of the published work mentioned in the first part of the
background section focuses on local methods. Global clus-
tering methods are a distinct family of spatial methods with
their own strengths and weaknesses (see second part of
background section). We propose to investigate the effect of
aggregation on the power of detection of a global spatial test,

the M-statistic. We extend our previous work14,29 in two
ways. First we have developed a general framework de-
scribed in the background to simulate spatial disturbances,
which includes a much larger variety of scenarios and
allows a more systematic study of our methods. Second we
simulate data using both a homogeneous and heterogeneous
baseline. While the former allows us to study the effect of
aggregation on power without interference from the com-
plex features of real data, the latter is more representative of
authentic surveillance data.

Methods
We now give a detailed description of the M-statistic and
our simulations.

The M-Statistic
The M-statistic is a global spatial test introduced by Bonetti
and Pagano.30 It compares the interpoint distribution of
distances between cases to an expected distribution. The
M-statistic can accommodate spatial data either with exact
locations or aggregated at a collection of discrete locations.
Also, it does not use the recorded location of cases, rather
some transformation of the spatial information from which
the original data cannot be recovered. Studies have shown
the M-statistic is a flexible and extensible spatial statistic; for
example other work has described its use to compare two
spatial distributions;31 with genetic data to identify patterns
of mutations associated with HIV-ARV resistance;32 exten-
sions to multiple addresses;33,34 and in combination with
temporal methods to perform prospective spatiotemporal
surveillance.2

Given a set of n independent locations X1,. . ., Xn in the
plane, there are n(n-1)/2 pairwise or interpoint distances dij,
with cumulative distribution function (cdf) F(d). The empiric
cumulative distribution function (ecdf) of their distribution
can be written as:

Fn(d) �
1

n2�
i�1

n

�
j�1

n

I(dist(Xi, Xj) � d),

where dist is the Euclidean distance in the plane. Using the
theory of U-statistics, they30 prove that the distribution of
Fn(d) computed at a finite set of values, d1,. . ., dk, converges
to a multivariate normal distribution as n ¡ �.

Now suppose exact locations are actually reported as in an
aggregated fashion. More specifically suppose the study
region is broken up into m distinct areas represented by
fixed locations l1,. . .,lm, and define Xi

� � lj if Xi falls into area
j. Then, Xi

�,. . ., Xn
� independently arise from any of l1,. . ., lm

with probabilities p1,. . ., pm, where pj is the probability that a
sampled case’s location is in area j. We can now write the
cdf as:

Fn(d) � F(d�p) �
1

n2�
i�1

m

�
j�1

m

pipjI(dist(Xi, Xj) � d).

Conditioning on n, the total number of observed cases in the
study region, let Ni, i � 1,. . ., m be the random variable
representing the number of individuals arising at locations
l1,. . ., lm, with values ni observed at each location. Then,
these Ni follow a multinomial distribution with probabilities
p � �p1,. . ., pm�. The numbers of observed cases ni, at each
location i � 1,. . ., m provide consistent estimators for

probabilities p̂i � ni ⁄n, and define the ecdf Fn�d� � Fn�d�p̂�.
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The asymptotic result for the continuous case described
above also holds in this discrete setting.

The M-statistic is a goodness-of-fit statistic calculating devi-
ations between the observed ecdf Fn and the a priori
specified cdf F, using a Mahalanobis-type distance. In the
context of global spatial clustering, F represents the spatial
distribution of incoming cases under conditions of “nor-
malcy” (the null distribution). The approach is to discretize
the distribution of interpoint distances such that F can be
represented by a k � 1 vector of cumulative probabilities
where the kth entry is 1. This discretization is given by a set
of finite values d � �d1,. . ., dk� such that PF�dist�X1, X2� �
dj� � j ⁄ k for j � 1,. . ., k. The authors30 formulate their
statistic as:

M � (Fn(d) � F(d))T �F
� (Fn(d) � F(d)) (4)

where �F
� is the generalized inverse of rank k-1 of the

variance covariance matrix of Fn(.). One can also use the
successive differences of the cdf, �Fn�d1�, Fn�d2� � Fn
�d1�,. . ., 1 � Fn�dk�1��, to define a similar statistic. Asymp-
totically, M follows a 	2 distribution with degrees of free-
dom equal to rank��F

� �F �.

To estimate�F , we use a resampling-based procedure. We
first draw s random samples from F, and then estimate �F
with

1

s�l�1

s

(ol � e)(ol � e)T (5)

where ol is the vector of observed cell counts defined by d �
�d1,. . .,dk� from the sth sample. Once we estimate the �F
matrix, we can then estimate the sampling distribution of the
M-statistic under the null hypothesis again via resampling
from the reference population F. The statistic is imple-
mented with the simulations described below using k � 50
bins. Power of the M-statistic is defined as the proportion of
simulations with test statistic greater than the 0.05 threshold
established from the null.

Simulations

Data
We consider two different sampling frames: the uniform
distribution in the unit disk and a more heterogeneous

F i g u r e 1. Ninety points distributed according to refer-
ence population (LEFT: uniform in unit disk, RIGHT: Cape
Cod), and ten additional “outbreak” points from the square
left of center.
distribution drawn from three community hospitals serving
Cape Cod, Massachusetts. These data consist of spatial
locations of patients arriving for emergency care (geocoded
billing address where coordinates were sufficiently altered
to protect anonymity) between 1994 and 1999. For ease of
comparison with the uniform disk, the coordinates were
transformed to range between �1 and 1.

To simulate spatial disturbances, we follow the framework
proposed in the background section. The reference popula-
tion is either the uniform or heterogeneous populations just
described. We create a single square spatial disturbance (s �
1). The focus point x is a case location randomly selected
from the reference population, and the geographic extent of
the disturbance remains fixed and indexed by the side
length of the square where the disturbances occurs, an index
which we will call “diameter”. We consider ten values for
the diameter, ranging from 0.05 to 0.5. The intensity function
remains constant throughout A:gA�x� � g0�x�⁄�

A
g0�y�dy for

x � A and 0 otherwise. Finally, q is fixed to one of four
values: 0.80, 0.85, 0.90 and 0.95. Each of the resulting 2 � 10 �
4 � 80 spatial disturbance schemes contains 10,000 simu-
lated datasets, within which the focus is the only parameter
that varies.

Figure 1 presents an illustration of one simulated dataset
using each reference population for q � 0.90. Each simula-
tion contains 100 points: 90 cases are drawn from the
reference population and 10 are sampled from a small
square in the region to represent an increased risk of limited
geographic range.

Aggregation Scheme
As presented in the background, the study region defined by
the reference population is superimposed by a rectangular
grid (Figure 2). Spatial locations falling in a particular grid
square are reassigned to the center of that grid square. The
term grid square here refers to a single square from the
superimposed grid. A small bivariate jitter is added to the ce-
nter of each grid square to avoid too regular an aggregation
and give a more diverse range of interpoint distances. We
consider a sequence of twelve levels of aggregation, varying
the coarseness of the grid at each level. We use the side
length of a grid square as an index of spatial aggregation; the
number of grid square per side ranges from fifteen to four
(corresponding side length ranges from 0.133 to 0.5). For
each side length value, Table 1 gives the number of grid
squares where data drawn from the reference populations

F i g u r e 2. One level of aggregation for the unit disk and
the Cape Cod populations, where the exact locations are
reassigned to a single point in the corresponding grid

square.
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gets observed. For example, the illustration in Figure 2
corresponds to a side length of 0.18. Also, one can make a
connection with administrative units for the Cape Cod
population. This region contains 64 ZIP codes and 17 towns,
which can be represented by side lengths 0.145 and 0.40
respectively.

Results
Results are presented in the eight panels of Figure 3 (avail-
able as on online data supplement at http://www.jamia.
org). The power results for the uniform and Cape Cod
populations are displayed in the top and bottom rows
respectively, where each column corresponds to a value for
the mixture proportion q. On each panel, the power of the
M-statistic (vertical axis) is reported as a function of the side
length of a grid square (horizontal axis). The limits of the
vertical axis are varied to accommodate for the different
ranges in power. A side length equal to zero means the
locations are not aggregated, i.e., exact (point) locations.
Each colored curve corresponds to one of the ten diameters.

Figure 3 illustrates two features common to both reference
populations. First for fixed q and side length, the power
decreases as the diameter increases, except for a few scenar-
ios with q � 0.95. Second, for fixed diameter and side length,
power of detection decreases as q increases. Both confirm
that the signal is harder to detect for large values of q or
large diameter.

Uniform Population
The results for the uniform population can be further
categorized into four patterns when q is fixed: for the smaller
diameters, power decreases as the aggregation level in-
creases (pattern a); for slightly higher diameter values,
power first decreases, then increases to sometimes a higher
value than with exact locations, before decreasing again
(pattern b); for a medium size diameter, power first in-
creases than decreases (pattern c); finally for the larger
diameters, power increases with the side length (pattern d).
The range of diameters for which each pattern is observed
varies with q (Table 2).

We see that pattern a appears more often when the signal to
detect is strong, both in terms of small q and small diameter.
As the signal becomes weaker, results change to patterns b,
c and then d. In all of these “increasing then decreasing”
patterns (b, c, d), the side length value at which the
maximum power is attained usually increases with the

Table 1 y Number of Grid Squares per Aggregation L
Side Length 0.13 0.14 0.15 0.17 0.18

Uniform 199 172 149 132 109
Cape Cod 71 68 59 48 40

Table 2 y Range of Diameter for Each q and Curve
Pattern (Uniform Population)

q � 0.80 q � 0.85 q � 0.90 q � 0.95

Pattern a [0.05.0.40] [0.05.0.30] [0.05.0.15] 0.05
Pattern b [0.45.0.50] [0.35.0.45] 0.2
Pattern c 0.5 [0.25.0.40] [0.10.0.30]

Pattern d [0.45.0.50] [0.35.0.50]
diameter (Figure 4, left panel), and in particular tends to
occur when the diameter is somewhat larger than the side
length.

Regardless of the specifics of the spatial disturbance consid-
ered, the patterns just described are smoothed interpreta-
tions of the irregularities observed when the side length
ranges between 0.13 and 0.33. These irregularities might be
explained by the perturbation added to the center of the grid
square.

Cape Cod Population
With the Cape Cod population, power tends to be lower
than for the homogeneous population. In all four bottom
panels of Figure 3 we usually see an increase in power
between side length values 0.33 and 0.40, except for three
spatial disturbance schemes where there are no noticeable
difference between the two aggregation levels (q � 0.80 and
diameter � 0.35, 0.50 and q � 0.85 and diameter � 0.50).
These results possibly reflect the heterogeneity of the pop-
ulation. Aside from this common pattern, the results for the
Cape Cod population can be categorized into patterns
similar to a, b, c, d when q is fixed: a decreasing trend
between power and side length (pattern e); an increasing
then decreasing trend (pattern f); an increasing then slightly
decreasing trend with all power values less than 0.20 (pat-
tern g); power values less than 0.10 regardless of the
aggregation level (pattern h). Values of the diameter for each
pattern are summarized in Table 3.

We see that pattern e is mostly observed with the smallest
diameter while other scenarios have highest power at an
aggregated level. As with the homogeneous population, for
the “increasing then decreasing” patterns f and g, the side
length value at which the maximum power is attained tends
to increase with the diameter, and mostly occurs when the
diameter is larger than the side length (Figure 4, right panel).

Discussion
In this work we have investigated the effect of spatial
aggregation on the power of a method to detect global
clustering in the presence of various spatial disturbances.
The level at which aggregation occurs is a measure of the
accuracy of the spatial resolution. At one extreme lies
unaggregated spatial information about each case, as with
geocoded addresses; at the other extreme we have no
information about location, just that the patient exists. To
measure the effect on power, we have developed our
simulations within frameworks that can be connected to real
examples of outbreaks with geographic component and real
aggregation schemes. In particular we vary widely some of
the parameters and use two different baseline populations.

Our results confirm previous studies, in that the degree of
aggregation at which location gets reported is important.
However they do not confirm the intuitive idea that coarser
spatial resolution results in a loss of power. In fact the
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relationship is more complex and also depends on the
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geographic scale of the spatial disturbance. With both base-
line populations, we showed that power is highest using
exact locations for strong signals, while aggregation at the
right level may improve the ability to detect weak signals.
The best performing level of aggregation depends on the
geographic extent of the spatial disturbance, but typically
occurs when the extent is greater than or equal to the
dimension of an aggregation grid square.

This phenomenon was already observed in the simulations
results from Waller,11 where the power to detect an increase
in relative risk improved as the signal got stronger, but only
if the level of aggregation resulted in grid squares of the
same geographic size or smaller than that of the cluster. We
conclude that this interaction between the two geographic
scales might not pertain to particular detection methods. As
a side note, our previous simulation results did not show
such an interaction.14 However we had only considered
three types of spatial disturbance, and under these three
scenarios, the M-statistic generally shows a decrease in
power (q � 0.90 and diameter � 0.05, 0.10, 0.20). This further
points to the need for considering a wide range of parame-
ters when simulating spatial disturbances.

A few limitations should be mentioned. Our framework to
simulate spatial disturbances allows a diversity of scenarios,
but we do not vary all possible parameters. However, our
results already shed extensive light on particular aspects on
the problem of interest. The situation is even more complex
when considering spatiotemporal disturbances, and we
have not explored the effect of space-time aggregation
which is a natural extension to this work. Furthermore, most
studies using spatial information assume that each individ-
ual has only a single location, while in reality human beings
are mobile. Several extensions of distance-based methods
have been proposed,33,34 but the effects of aggregation in
these more complex settings will need to be studied.

F i g u r e 4. Schemes where maximum power
occurs in patterns b, c, d for unit-disk population
(LEFT) and patterns f, g for Cape Cod population
(RIGHT). Dashed line means side length of grid
square equals diameter of spatial disturbance.

Table 3 y Range of Diameter for Each q and Curve
Pattern (Cape Cod Population)

q � 0.80 q � 0.85 q � 0.90 q � 0.95

Pattern e [0.05.0.10] 0.05 0.05 0.05
Pattern f [0.15.0.50] [0.10.0.50] [0.10.0.30]
Pattern g [0.35.0.50] 0.1

Pattern h [0.15.0.50]
Finally, this study limits itself to synthetically generated
“outbreaks”. The use of synthetic data allows us to define a
null and an alternative, and thus to measure the power of
detection, which is a well defined and understood metric to
evaluate a statistical test. By contrast, artificial data gives a
limited representation of reality. While investigating the
performance of our method on real data would give further
insight on its capability in a complex setting, datasets co-
ntaining a large number of real spatial disturbances are not
always readily available, partly because there is not always
consensus to define a spatial disturbance. The use of real
data can also be a more convincing way to evaluate other
approaches aimed at relating the occurrence of outbreaks to
geographic areas. Epidemiological methods, such as case-
control studies, allow us to assess whether a particular
exposure in specific locations is associated with a high
number of cases.35,36 The advantage of these studies is that
they bypass the detection of the spatial disturbance by
directly pointing to the actual exposure responsible for the
outbreak. Yet they take place after the first alert of an excess
in the number of cases, while our method is intended to be
applied earlier, for example by accompanying a temporal
surveillance system generating such alerts.2

Conclusions
We have shown that reporting patients’ spatial information
at an aggregated level affects the power of detecting clusters
differently, depending on the strength of the signal. Regard-
less of the underlying population, strong signals are better
detected when exact locations are reported, while weaker
signals are better detected at an aggregated level of similar
geographic extent. Because the strength of a putative signal
is not known when operating a surveillance system pro-
spectively, one might consider simultaneously several levels
of precision, rather than choosing a single one. This
would probably still require having exact locations at hand
for analysis, and adjusting for multiple testing. Thus, to
maximize the chances of detecting an outbreak, we should
seek alternatives that ensure patients’ privacy, and at the
same time provide as much spatial information as possible.
Novel uses of informatics may provide some of these
alternatives,7,37 and thus avoid an unnecessary trade-off of
statistical efficiency for the sake of individual privacy.

Furthermore, the audiences from which the information
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should be concealed and those to whom it can be disclosed
may guide the development of different approaches.38
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