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A b s t r a c t Advances in high-throughput and mass-storage technologies have led to an information
explosion in both biology and medicine, presenting novel challenges for analysis and modeling. With regards to
multivariate analysis techniques such as clustering, classification, and regression, large datasets present unique
and often misunderstood challenges. The authors’ goal is to provide a discussion of the salient problems
encountered in the analysis of large datasets as they relate to modeling and inference to inform a principled and
generalizable analysis and highlight the interdisciplinary nature of these challenges. The authors present a detailed
study of germane issues including high dimensionality, multiple testing, scientific significance, dependence,
information measurement, and information management with a focus on appropriate methodologies available to
address these concerns. A firm understanding of the challenges and statistical technology involved ultimately
contributes to better science. The authors further suggest that the community consider facilitating discussion
through interdisciplinary panels, invited papers and curriculum enhancement to establish guidelines for analysis
and reporting.
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Introduction
Advances in high-throughput and mass-storage technolo-
gies have led to an information explosion in both biology
and medicine, improving and changing the face of health
care, as well as presenting unique and complex challenges
for analysis, modeling and inference. In the clinical arena,
the twin objectives of identifying targets to minimize con-
sumption of resources and improving quality of care drive
the collection of large amounts of data. Similarly, in biology,
describing the connection between genome, transcriptome,
proteome, and phenome is fundamentally a problem of
modeling biological information processes, involving both
experimental and sequence information for an enormous
number of factors. With regard to multivariate inferential
techniques such as clustering, classification, and regression,
many of these large datasets present unique and often
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misunderstood challenges. Salient issues discussed here are
high dimensionality, multiple testing, dependence, scientific
significance, information measurement, and information
management.

Kettenring (2008)1 reviewed several hundred papers in some
detail as part of a comprehensive investigation into the
practice of cluster analysis. Notably, he found that life
sciences publications dominated this survey. But more im-
portantly, he concluded that cluster analysis is among the
most needed and widely used of the multivariate statistical
methodologies and that it is perhaps the one with the most
malpractice. He posited that, too often, a researcher’s choice
of analysis method is dictated and constrained by available
software systems because of a lack of knowledge and/or
understanding of the available tools and methodologies.
These observations can be extended to analysis of large
datasets in general. Literature on proper inference analysis
and reporting in large datasets is limited, but anecdotally,
many researchers concur that issues such as high dimen-
sionality, multiple testing and dependence and their respec-
tive solutions, while known to varying degrees within the
community, are often misused, misinterpreted, and misun-
derstood. In other words, there is a large gap between
typical practice and best practice in the analysis of large
datasets.

A principled analysis of any dataset, small or large, neces-
sitates a firm understanding of the issues and statistical
technology involved. Understanding the relevant factors in
the analysis of large datasets is an important step in improv-
ing study design, structured analysis of data, and general-

izability of results. Focus from the community for the
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development of guidelines for both analysis and the appro-
priate reporting of analyses performed will aid in this
endeavor and ultimately contribute to better science. Here,
we provide a discussion of specific problems encountered in
the analysis of large datasets as they relate to modeling and
inference. In an attempt to improve general understanding,
we clearly define these issues, describe them, and present a
brief summary of relevant research. This work does not
cover general principles of data analysis, but rather those
challenges specific to large datasets that affect inference.
Some of the issues discussed are general, independent of the
size of the data, but exacerbated in large datasets, and some
are generated by the size of the data. Although we highlight
methodological issues shared across informatics disciplines,
we address these issues independently of their domain of
application.

We recognize that the topics presented here are not exhaus-
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Background and Motivations
The term “large dataset” was used academically as early as
1975, when the first conference on large datasets was held
(http://portal.acm.org/toc.cfm?id�1282480) discussing da-
tabase design and management. Some of the characteristics
of large datasets, such as high dimensionality (see definition
on page 762) and large sample size and their associated
issues, were discussed in the statistics literature as early as
1958,2,3 but the first formal definition of a large dataset was
only reported in 1990 in the context of effectiveness research.
Large datasets were defined as having the following char-
acteristics: the size of the data is big (106 or greater); it is
almost an unbiased representation of the real world, its
information content may be unsatisfactory for what a par-
ticular researcher has in mind, and it has the ability to be
linked with other datasets.4 In 1995, the National Research
Council Committee on Applied and Theoretical Statistics
(CATS) gave an informal definition5: “a massive dataset is
one for which the size, heterogeneity and general complex-
ity cause serious pain for the analyst(s).” Both definitions are
linked to potential methodological changes introduced by
the nature of large datasets. The sentiment “pain” refers to a
number of difficulties, including those formalized in Table 1.
Huber (1994, 1999),6,7 motivated by the aforementioned
changes in analytic methods, introduced this classification of
size: 102—tiny, 104—small, 106—medium, 108—large, 1010—
huge, 1012—monster. The size of the data impacts the
storage mode which can vary from a piece of paper (tiny) to
storage silos (monster) and the analytic methods used for
information extraction. In many cases, changes in storage
size have necessitated new methods for data analysis.

The possible definitions of a large dataset embody different
perspectives, reflecting the philosophies of the different
scientific fields that deal with these large datasets. The
examples given here highlight issues such as size, integra-
tion, data heterogeneity, analysis complexity, and computa-
tional complexity for which appropriate analytic methods
have been and are being developed. Furthermore, depend-
ing on the type of analysis and computations that will be
performed, salient measures of data and computational
complexity for a given dataset can be defined and used to
guide decisions associated with the selection of appropriate
algorithms for processing and extracting information.8

In biomedicine, the number of databases has grown explo-
sively over the last 10–20 years. In particular, medical
practices and hospitals have implemented electronic sys-
tems to collect information on patients treated. In the
molecular biology arena, the number of key databases of
value to the biological community has grown exponentially
from 300 to over 1,000 databases since 2000.9

These databases themselves are growing at explosive rates.
Figure 1 shows the cumulative distribution function (CDF)
of the growth rate (as a percentage of total current entries)
for several important databases in molecular biology and
medicine: the Protein Data Bank (PDB), the Entrez Protein
database, NCBI’s PubMed, and clinical data maintained at
Columbia University Medical Center. These examples high-
light not only the explosive growth in this field but also the
magnitude of complexity in terms of curation, integration,

and analysis, making the understanding of large datasets
and related methodological issues an important concern for
informaticians today.

Interdisciplinary Methodological Goals
Our guiding principle is that data are of interest if they can
be used to answer important questions. Many analytic goals
are common across informatics disciplines, and these goals
frame the issues faced when analyzing large datasets. To
facilitate discussion, we consider prediction, modeling, and
inference as the main methodological goals of a given study.
Among the common methods used to achieve these goals
are classification, clustering, and regression, which we
briefly overview here.10

Classification, or supervised learning, aims to construct a
rule to assign objects to one of a prespecified set of classes
based solely on a vector of measurements taken on these
objects. The construction of the rule is based on a training set
of objects for which the true class is known. Classification
can be thought of as predictive modeling, in which the
output vector is categorical. Important techniques include
logistic regression methods, naive Bayes methods, decision
trees, neural networks, Bayesian networks, support vector
machines, and hidden Markov models. Pattern recognition
applications are often used to aid in image analysis. For
example, features of objects in X-rays, such as intensity,
perimeter, and area can be used for tumor identification.11

Classification is also important for clinical decision support
systems where symptoms, gene expression, and/or other
factors are used as inputs for determination of diagnosis and
therapy management.12,13 More recently, classification tech-
niques have been used for the development of biomarkers
showing response to therapy and in building models based

F i g u r e 1. Cumulative distribution functions (CDFs) for
several important informatics resources. CDFs, showing
growth rates of: the Entrez Protein database, compiled from
a variety of sources including SwissProt, PIR, PRF and PDB;
the Protein Data Bank (PDB), a repository for 3-D structural
data of proteins and nucleic acids; PubMed, a service from
the U.S. National Library of Medicine that provides citations
to biomedical literature; and the Columbia University Med-
ical Center (CUMC) clinical database, measured in number
of rows.
on gene expression for disease diagnosis/prognosis.

http://portal.acm.org/toc.cfm?id=1282480
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The purpose of clustering is to find natural groupings in the
data through the use of distance metrics. There are many
ways to do this, but the most common approach is hierar-
chical clustering, an unsupervised learning method. Other
methods include K-means clustering, principle components
based clustering, and self-organizing maps. Developing or
reverse engineering networks also falls under the umbrella
of clustering. Clustering is often used in latent semantic
indexing to find similar documents or terms.14 Other applica-
tions in biomedicine include measuring interpatient distances
for improving diagnosis and determining appropriate treat-
ment schedules,15 in phylogeny, and in microarray data anal-
ysis for grouping functionally related genes.

Regression is a statistical analysis tool that quantifies the
relationship between a dependent variable and one or more
independent variables to depict trends in the data. There are
well-known and widely used tools for regression modeling,
including linear regression, logistic regression, radial basis
function regression, and neural networks, among others.16

Biomedical applications include decision support, longitu-
dinal analysis of patient data, longitudinal analysis of gene
expression, population comparison, and modeling of biolog-
ical systems.

Interdisciplinary Methodological Issues
The above delineation of analytic tasks is meant to illustrate
that, despite the overwhelming variety of phenomena that
data can represent, there are some standard forms that data
often take, some standard questions we can ask of data, and
some standard issues we face.14 This section offers a discus-
sion of salient issues for inference in large datasets. We
clearly define these topics and highlight the context in which
the issue can be seen in biomedical data analysis. While we
show the relevance of the issues across informatics disci-
plines, we describe them independently of their domain of
application, drawing attention to analytic concerns and
presenting a brief summary of relevant research. The issues
presented here encompass active areas of research and, as
such, a significant set of literature has already been pub-
lished. Thus, the summaries given here are general. New
methods are continually being developed and new chal-
lenges will present themselves. Whenever appropriate, we
indicate where additional research is needed.

High Dimensionality
High dimensional data are data where each point/sample/
element is described by many attributes. For example, a
patient can be described by tens of thousands of genes, SNPs
or clinical parameters such as x-rays, temperature or culture
results. Other examples include data contained in spontaneous
reporting systems (SRS), used for pharmacovigilance purposes
and Medicare data, which map various medications or vac-
cines (rows) to possible adverse events (columns). R. Bellman
coined the term, “the curse of dimensionality”, in the 1950s
to describe the difficulty of optimization in high dimensional
sets. High dimensional data are sparse; they show multicol-
linearity and exhibit model complexity, making model fit-
ting computationally intensive and lending themselves to
pitfalls such as model overfitting. For example, classification
and clustering algorithms that generally work well in low
dimensional situations perform poorly in high dimensions,

because of the effect of dimensionality on the distance or
similarity measure used by the algorithm. In particular, it is
shown in17 that for certain data distributions the relative
difference of the distances of the closest and farthest data
points of an independently selected point goes to 0 as the
dimension increases. This occurs when all attributes are
independent and identically distributed, and it is often said
that “in high dimensional spaces, distances between points
become relatively uniform”. In this case, the notion of the
“nearest neighbor” point is meaningless.

The modeling difficulties introduced by high dimensionality
are not insurmountable. We can define a dataset by (1) its
size (number of independent entities, such as subjects in a
clinical trial) and (2) its dimensionality (number of elements
used to describe each subject, such as different clinical
parameters measured). We denote the size of a set by n and
its dimensionality by p. For example, in the case of microar-
ray data, a cancer sample would count towards n, while the
expression measurements for each gene would count to-
wards p, the dimensionality. Then, the following represen-
tation of large datasets is useful as it indicates appropriate
methodologies for analysis:

1. Large n, small p—Methodologically, this case conforms
to the classical statistical paradigm, in which a sufficient
number of independent data points provide measure-
ments on a few dimensions. For very large samples,
issues such as “statistical” versus “scientific” significance
can arise.

2. Small n, large p—This is the paradigm met, for example,
in microarray datasets. This case does not conform to the
classical statistical paradigm in which n is much larger than
p. Techniques employed to compensate for a large p gen-
erally fall under the area of feature selection/dimensionality
reduction, or are methods specifically developed for this
case. Methods include principle components analysis
(PCA), compression methods and significance testing to
select relevant features.18–22

3. Large n, large p—An example of data that conform to this
paradigm is given by the Medicare and Medicaid databases.
Depending on the type of research question, the toolkit of
the analyst should include both classical statistical methods
as well as more modern dimension reduction, classification
and clustering methods such as K-nearest neighbors, ran-
dom forests, CART (classification and regression trees),
PCA and many more.

While the above classification is a simplification of what
occurs in practice in terms of the type of data collected
(image, free text, etc.), it is useful in terms of discussing the
underlying principles of data analysis and the appropriate
selection of methods. For example, in the “large n, small p”
case, depending on the question of interest, appropriate
classical statistical methods can be used. These methods
provide for the generalizability of the results and aid infer-
ence. In the “small n, large p” case, a different set of tools is
required. Spurred by the advent of high-throughput tech-
nology and data warehousing, these tools are an active area
of research in a variety of fields (i.e., statistics, computer
science, etc.). One such tool which allows for both inference
and generalizability is dimension reduction, or feature se-
lection. Feature selection is the process of selecting a subset

of relevant features from high dimensional data in order to
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build a robust learning model. By removing irrelevant and
redundant features, feature selection aids, for example,
clustering and classifier performance by: 1) avoiding over-
fitting and overcoming the curse of dimensionality, 2) en-
abling the creation of faster models, and 3) providing insight
into the underlying processes that generated the data.23,24

There are three types of feature selection methods: filter
methods, wrapper methods and embedded methods.21,23

Other dimensionality reduction techniques include projec-
tion pursuit regression25 and compression methods.

Less well-known are the blessings associated with high-
dimensional data. For example, many “identical” dimen-
sions allow us to “average” for more consistent results,10,20

allowing the performance of dimension asymptotics that can
be used to obtain distributions of functions of interest.
Another blessing often encountered within high dimen-
sional structures is the concentration of measure. It involves
the tendency of functions to concentrate around their mean,
and has been studied by several authors.10,26 This principle
relates to applications in combinatorial optimization, statis-
tical learning, data analysis and data mining. For example, it
has been used effectively to derive efficient sampling algo-
rithms for inference in probabilistic graphical models. Many
times high dimensional data are generated because the
underlying processes measured are continuous in space
and/or time. This “approach to continuum” is reflected by
approximate finite dimensionality and hence an increasing
simplicity of analysis.

Multiple Testing
Multiple testing is the process of subjecting the same dataset
to many different statistical tests in the hopes of establishing
significance of a hypothesis under study. A typical microar-
ray study, designed to determine discriminant genes be-
tween 2 or more groups, requires � 20–30,000 simultaneous
tests to examine each gene. Here, the type I error rate (false
positive risk) is fixed at some reasonable value but the null
hypothesis is tested for many attributes. Thus, in a case of
n � 10,000 genes and � � 0.05, there are 500 potential type
I errors. As the number of tests increases so does the
likelihood of observing a significant result due to chance,
illustrating the multiple testing problem.

In contrast to single hypothesis testing which is run with the
hope that a test is powerful enough to reject a null hypoth-
esis, large-scale testing is often used to identify a subset of
“interesting” cases that deserve further investigation. There-
fore, standard methods such as the family-wise error rate
(FWER) and even the more commonly used Benjamini-
Hochberg false discovery rate (FDR) are often too stringent.
The FDR is the expected proportion of erroneous rejections
among all null hypothesis rejections and it is equivalent to
the FWER when all hypotheses are true, but it is smaller
otherwise, which makes the practical difference between
them neither trivial nor small.27 A variant of the expected
proportion of falsely identified significant items, known as
the local false discovery rate, is proposed in Efron 200428 for
use in large-scale hypothesis testing. When concurrent tests
on a given dataset are ordered by significance (p-value),
multiple testing procedures simply limit the number of tests
that are identified as significant. This can be helpful when
considering scientific significance over statistical signifi-

cance. While new FDR methods are being developed, pop-
ular methods include Benjamini-Hochberg,27 empiric Bayes
approaches28–30 and others.31,32 The selection of an FDR
method should be based on knowledge about the underly-
ing data structure such as distribution and dependence
structure.

Statistical Significance versus
Scientific Significance
When the number of points, for example the number of
subjects in a study, is really large, it is possible, for a given
hypothesis under study, to observe statistical significance
even though the hypothesis may not be scientifically plau-
sible. For example, when studying associations in a large
dataset using simple methods such as �2 statistics, it is
possible to obtain statistically significant results that do not
have scientific meaning. In a preliminary analysis, Cao, et
al33 found the pair (hypertension, suicide) to be statistically
significant via standard methods. This is clearly not clini-
cally plausible and prompted Cao et al to develop a method
for the calibration of the critical value of the �2 statistic to
help the identification of an appropriate critical point be-
yond which significance can be declared. An alternative is to
transform the testing problem into an estimation problem,
by constructing, for example, appropriate confidence inter-
vals. Another option is the use of biological enrichment,
which enriches statistical results with domain information.
For example, Gene Ontology (GO) enrichment is used to
validate lists of statistically significant genes found by
differential analysis with biological information encoded in
the GO. It assesses the functional similarity of genes in the
provided list with respect to the biological processes they
comprise.

Dependence
Very large datasets are unlikely to arise in an independent,
identically distributed manner. For example, although large
clinical databases contain information on different patients,
and these subjects are independent, they also contain measure-
ments on the same patient over time and these measurements
are dependent. Examples include daily glucose measurements
or white blood cell count data taken over a specified period on
individuals undergoing long-term dialysis for chronic renal
failure. Measurements close in time tend to be correlated with
one another. To obtain valid inferences for time-dependent
data, a variety of methods have been developed in time
series, longitudinal and functional data analysis areas of
biostatistics.

Even information on different patients may exhibit correla-
tion. For example, patients treated by the same clinical team
are more likely to have similar outcomes. Because of this
lack of independence, standard statistical methods used for
sample estimation and analysis will underestimate values
such as the required sample size. This is typically a factor in
computer-based clinical decision support system studies.
Chuang, et al34 surveyed 24 such studies and found that
none took into account this type of patient clustering in
sample size calculations and only 14 (58%) took this factor
into account at all. One solution is to multiply standard
sample size estimates by a design effect term based on an
intracluster correlation measurement. Another option is to

use sample size formulas appropriate for correlated data.35
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High dimensional sets, especially, are subject to the existence of
nontrivial, highly correlated data points or subspaces.36 In the
case of gene expression data, it is a reasonable assumption that
genes or proteins that act together will exhibit strong correla-
tion. For example, transcription factors can regulate key genes
in multiple signal transduction pathways, creating a set of
correlated factors. However, global correlation is also an
important factor. Recent literature has indicated that under-
lying dependence structures in microarray data, as mea-
sured by pairwise gene expression correlation, show an
average of correlation over 0.84,37 suggesting that depen-
dence between genes is a factor that we must consider in
biological data analysis.

Specifically, dependent samples and/or dimensions will not
reduce the variability of the data and thus will not improve
analysis. This affects statistical modeling and the perfor-
mance of the methods that assume independence, so meth-
ods that account for dependence need to be used. The study
of dependence is an important and active area of research.
Multivariate analysis methods to improve analysis of high-
throughput and correlated genetic data have been proposed
but are not widely known or used.38,39 Similarly, multiple
testing procedures, such as Benjamini-Hochberg, are rooted
in the assumption that the variables are independent, and
FDR methods that do not account for this could produce
unreliable results. Methods that deal with this problem
continue to appear in the literature.40–42 Adjustments to
existing FDR methods that can accommodate specific types
of dependence structures have been proposed.41,43–46 How-
ever, even these adjustments tend to be conservative. Again,
method selection should be based on knowledge about the
underlying dependence structure of the data.

Another consideration is the effect of data transformations
on the dependence structure of the data. A typical goal in
microarray studies is to use correlation information to
reconstruct or reverse-engineer molecular pathways and
networks. However, data transformations such as normal-
ization methods have the potential to destroy or even create
spurious correlation information, rendering flawed inferred
networks. The practice of data transformation is not limited
to the microarray analysis arena; the scaling of variables for
clustering is a well-known headache. The most commonly
used idea among practitioners is to standardize or autoscale
individual variables. However, this is only effective in
equalizing values if the variables themselves are indepen-
dent.1,47 In fact, the effect of transformation has not been
well-studied and has only become a subject of research in
the last 5 years.48,49

Information Measurement
“Information” is a concept that spans many scientific fields
including communication theory, biology, economics, law,
and statistics. In its semantic context, the term information is
used in an intuitive sense, but in its technical context,
information is a well-defined function that quantifies the
extent of uncertainty differentials. Large datasets provide a
tremendous volume of data, but not necessarily a tremen-
dous volume of information—the size of a dataset is not a
guarantee that the data will contain information about the

question of interest.
Large datasets are usually complex in structure and chal-
lenging in extracting meaningful information from them.
One way of extracting information is through measures of
computational and algorithmic complexity; another is
through quantifying variability in these sets. Information
measures can be used to guide decisions associated with the
selection of appropriate algorithms for processing and ex-
tracting information, such that, for example, given a dataset
with known characteristics, one can select an optimal clas-
sifier. However, it should be kept in mind that the choice of
a particular algorithm biases the analysis towards solutions
that play to the algorithm’s strengths. The very practical
problem of selecting a classification or clustering algorithm
is not well addressed in the literature.47

There are two types of information measures met in the
literature, those that use probabilities and are thus stochastic
information measures, and deterministic information mea-
sures. Examples of stochastic information measures include
Fisher’s information, Shannon’s information, Kullback–
Leibler information, and mutual information. Deterministic
measures include various information functions and the
algorithmic information content (AIC) measure. Table 2
discusses each of these in more detail.50–54 These informa-
tion measures can be used to determine relationships be-
tween variables, similar to correlation metrics, and are thus
useful in any kind of association study, or to quantify
variability of features.

The choice of information and complexity measure (stochas-
tic or deterministic) must be closely aligned with the task
performed. For instance, Sohn8 derived a set of relevant data
characteristics and used regression analysis to develop a
statistical metamodel that compares the classification perfor-
mances of several algorithms. Relevant data complexity
measures that can be used for assessing computational
complexity are discussed further in Sotoca, et al.55

Information Management
Information management is necessary to ensure that rele-
vant and accurate information critical for analysis is iden-
tified. To that end, we note data quality management,
integration, access control/privacy, and performance as
information management issues relevant to the analysis of
large datasets.

Data quality problems include missing data points, outliers,
data glitches, unreported changes in scale, format, or mea-
surement, and many others. Too many missing or erroneous
values can give an inaccurate view of the data and corrupt
further data analysis. Because repeat experimentation is
often expensive, a variety of methods have been developed
to account for such data. Some of these issues can be
addressed by using appropriate statistical methods,56,57

while others require the implementation of specialized tech-
niques for their identification, correction, and manage-
ment.58,59

Data integration is required to provide seamless access to
diverse and voluminous data sources while maintaining and
improving the integrity of data to elucidate normal and
disease physiology; it is a valuable step in improving data
analysis.60,61 While the general area of integration presents

many challenges, here we focus on analysis issues resulting
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from such integration. For example, because many microar-
ray datasets are small and high-dimensional, dataset inte-
gration is often desirable as a leverage to increase sample
size. However, this is complicated by systemic issues such as
differences in technology, protocols, and experimental con-
ditions across datasets. Systemic variability can overwhelm
biological variability, creating a batch effect which con-
founds analysis. Literature is divided on the severity of
systemic variability,62 but experiment integration is an ac-
tive area of research63 with methods falling into two main
categories: statistical meta-analysis64–67 and heterogeneous
data integration systems.68–71

Conclusions
As shown by the exponential growth of key databases in this
arena, large datasets are a growing part of regular practice in
biomedicine. In the healthcare setting, thoughtful analysis
can optimize the quality and cost of care. Similarly, genomic
medicine provides sequence, transcriptomic, proteomic, and
other information that can be further analyzed to tie devel-
opments in biology to the practice of medicine. To better
understand the datasets we deal with, we have character-
ized analytic goals and presented a detailed discussion of
germane issues for large datasets with a focus on appropri-
ate methodologies available to address these concerns and
areas of continued research. This lends itself to better study
design, a structured analysis of data, as well as improved
generalizability and inference. A firm understanding of the
challenges and statistical technology involved ultimately
contributes to better science.

Here, we further suggest that this motivates a focused effort
by the community to address these issues in the forms of

Table 2 y A List of Important Information Metrics
Metric Brief Descrip

Fisher information Fisher50,51 can be credited with
of statistical information, pos
distribution of an event is al
value(s) of parameters. This
determining the dispersion o

Shannon information Shannon’s (1948)52 definition o
variation in a distribution. T
product of the amount of inf
an event (which is inversely
probability of its occurrence)
the occurrence of the event.

Kullback–Leibler information Kullback (1951, 1959)53,54 prese
information for discriminatin
distributions f,g that model 2

Mutual information mutual information is defined
uncertainty reduction in an e
A is known. It can take the f
information, measuring the d
independence by comparing
with the product of the marg

AIC algorithmic information conten
the most concise program th
best practices guidelines, interdisciplinary panels, invited
papers, curriculum enhancement and improved reporting
practices. The large gap between “typical” and “best” prac-
tices for the analysis of large datasets can be narrowed.
Available resources should match best practices, and/or
researchers should have the tools to access or develop more
appropriate platforms. Transparent reporting indicating
how fundamental issues are addressed will increase trust in
the reproducibility of the results. Thus, it is perhaps appro-
priate to consider the creation of guidelines not only for
analysis, but also for the reporting of the analyses used.
Guidance on this topic can be provided through expert
panel formation and relevant publications such as Lang and
Secic (2007).72 However, we note that existing literature on
the topic of reporting in medicine does not cover the specific
issues found in the analysis of large datasets.

We believe that it is fundamentally important for research-
ers to have a basic understanding of the unique issues
encountered in large dataset analysis to aid generalizability,
inference, and reporting of generated results. These pro-
posed forums serve the purpose of facilitating discussion on
challenging issues and the feasibility for establishing firm
guidelines in the art of analysis.
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