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Abstract
Maximum likelihood estimation in many classical statistical problems is beset by multimodality.
This article explores several variations of deterministic annealing that tend to avoid inferior modes
and find the dominant mode. In Bayesian settings, annealing can be tailored to find the dominant
mode of the log posterior. Our annealing algorithms involve essentially trivial changes to existing
optimization algorithms built on block relaxation or the EM or MM principle. Our examples
include estimation with the multivariate t distribution, Gaussian mixture models, latent class
analysis, factor analysis, multidimensional scaling and a one-way random effects model. In the
numerical examples explored, the proposed annealing strategies significantly improve the chances
for locating the global maximum.
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1. Introduction
Multimodality is one of the curses of statistics. The conventional remedies rely on the choice
of the initial point in iterative optimization. It is a good idea to choose the initial point to be
a suboptimal estimate such as a method of moments estimate. Unfortunately, this tactic does
not always work, and statisticians turn in desperation to multiple random starting points. The
inevitable result is an inflation of computing times with no guarantee of success.

In combinatorial optimization, simulated annealing often works wonders (Metropolis et al.,
1953; Kirkpatrick et al., 1983; Press et al., 1992). This fruitful idea from statistical physics
also applies in continuous optimization, but it still entails an enormous number of
evaluations of the objective function. In a little noticed paper, Ueda & Nakano (1998) adapt
simulated annealing to deterministic estimation in admixture models. In modifying the
standard expectation maximization (EM) algorithm for admixture estimation, they retain the
annealing part of simulated annealing and drop the simulation part. Annealing operates by
flattening the likelihood surface and gradually warping the substitute surface towards the
original surface. By the time all of the modes reappear, the iterates have entered the basin of
attraction of the dominant mode.
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In this article, we explore several variations of deterministic annealing. All of these involve
surface flattening and warping. A tuning parameter controls the process of warping a
relatively flat surface with a single or handful of modes into the ultimate bumpy surface of
the objective function. Our constructions are admittedly ad hoc and tailored to specific
problems. Consequently, readers expecting a coherent theory are apt to be disappointed. In
our defense, these problems have resisted solution for a long time, and it is unrealistic to
craft an overarching theory until we better understand the nature of the enemy. Readers with
a mathematical bent will immediately recognize our debt to homotopy theory in topology
and central path following in convex optimization.

We specifically advocate four different tactics: (i) degrees of freedom inflation, (ii) noise
addition, (iii) admixture annealing, and (iv) dimension crunching. Each of these techniques
compares favourably with multiple random starts in a concrete example. In some cases, the
intermediate functions constructed in annealing no longer bear a statistical interpretation.
This flexibility should be viewed as a positive rather than a negative. We focus on EM
algorithms (Dempster et al., 1977; McLachlan & Krishnan, 2008), the closely related MM
algorithms (de Leeuw, 1994; Heiser, 1995; Becker et al., 1997; Lange et al., 2000; Hunter &
Lange, 2004; Wu & Lange, 2008) and block relaxation algorithms (de Leeuw, 1994)
because they are easy to program and consistently drive the objective function uphill or
downhill. In our examples, the standard algorithms require only minor tweaking to
accommodate annealing. The MM algorithm has some advantages over the EM algorithm in
the annealing context as MM algorithms do not require surrogate functions to be likelihoods
or log-likelihoods.

Our examples rely on a positive tuning parameter ν attaining an ultimate value ν∞ defining
the objective function. The initial ν0 starts either very high or low. When ν∞ is finite, after
every s iterations we replace the current value νn of ν by νn+1 = rνn + (1 – r)ν∞ for r ∈ (0, 1).
This construction implies that νn converges geometrically to ν∞ at rate r. When ν∞ is
infinite, we take ν0 positive, r > 1 and replace νn by νn+1 = rνn. The value of the update
index s varies with the application.

Our examples include: (i) estimation with the t distribution, (ii) Gaussian mixture models,
(iii) latent class analysis, (iv) factor analysis, (v) multidimensional scaling, and (vi) a one-
way random effects model. Example (vi) demonstrates the relevance of annealing to
maximum a posteriori estimation. These well-known problem areas are all plagued by the
curse of multimodality. Eliminating inferior modes is therefore of great interest. Our first
vignette on the t distribution is designed to help the reader visualize the warping effect of
annealing. Before turning to specific examples, we briefly review the MM algorithm.

2. MM algorithm
The MM algorithm (de Leeuw, 1994; Heiser, 1995; Becker et al., 1997; Lange et al., 2000;
Hunter & Lange, 2004; Wu & Lange, 2009), like the EM algorithm, is a principle for
creating algorithms rather than a single algorithm. There are two versions of the MM
principle. In maximization the acronym MM stands for iterative minorization-maximization;
in minimization it stands for majorization-minimization. Here we deal only with the
maximization version. Let f(θ) be the objective function we seek to maximize. An MM
algorithm involves minorizing f(θ) by a surrogate function g(θ|θn) anchored at the current
iterate θn of a search. Minorization is defined by the two properties

(1)
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(2)

In other words, the surface  lies below the surface  and is tangent to it at
the point θ = θn. Construction of the minorizing function g(θ|θn) constitutes the first M of
the MM algorithm.

In the second M of the algorithm, we maximize the surrogate g(θ|θn) rather than f(θ). If θn+1

denotes the maximum point of g(θ|θn), then this action forces the ascent property f(θn+1) ≥
f(θn). The straightforward proof

reflects definitions (1) and (2) and the choice of θn+1. The ascent property is the source of
the MM algorithm's numerical stability. Strictly speaking, it depends only on increasing g(θ|
θn), not on maximizing g(θ|θn). The art in devising an MM algorithm revolves around
intelligent choices of minorizing functions and skill with inequalities.

3. Multivariate t distribution
The multivariate t distribution is often employed as a robust substitute for the normal
distribution in data fitting (Lange et al., 1989). For location vector , a positive definite
scale matrix  and degrees of freedom α>0, the multivariate t distribution has
density

Maximum likelihood estimation of the parameters μ and Ω for fixed α is challenging
because the likelihood function can exhibit multiple modes. Values of α below 1 are
particularly troublesome. The standard EM algorithm (Lange et al., 1989) updates are

where the superscripts n and n+1 indicate iteration number, m is the sample size, and

 is the sum of the case weights

An alternative faster algorithm (Kent et al., 1994; Meng & van Dyk, 1997) updates Ω by
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We will use this faster EM algorithm in the subsequent numerical examples. When
estimating μ with both Ω and α fixed, one simply omits the Ω updates.

There are two strategies for flattening the likelihood surface. The first involves degree of
freedom inflation. As α tends to ∞, the score function for the location parameter μ tends to
the normal score with a single root equal to the sample mean. EM annealing substitutes ν for
α, starts with a large value of ν, and works its way down to ν∞ = α. As the iterations
proceed, the EM iterates migrate away from the sample mean towards the dominant mode.

The second annealing strategy adds noise. Given m independent observations x1,..., xm, the
log-likelihood is

where c is an irrelevant constant. In annealing, we maximize the modified log-likelihood

Taking the positive tuning constant ν<1 flattens the likelihood surface, while taking ν>1
sharpens it. Under annealing, the standard EM algorithm updates Ω by

(3)

Following the derivation of the alternative EM algorithm in Wu & Lange (2008), one can
demonstrate with effort that the alternative EM algorithm updates Ω by

where ν* = να/[α+(1 − ν)p]. Observe that ν* is an increasing function of ν with limit 1 as ν
tends to 1. Annealing is achieved by gradually increasing ν from a small positive value to
the target value 1.

Another way for adding noise is to work on the modified log-likelihood function

The MM principle now dictates making the trivial change
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in the case weights in updating μ and Ω. Again annealing is achieved by gradually
increasing ν from a small positive value to the target value 1.

For ease of comparison, pseudocode for the original EM and the three annealing EM
algorithms (aEM1-3) are given as algorithms 1–4 in the Appendix. The Matlab code for this
and all following examples is available from the authors.

We now illustrate annealing by a classical textbook example for the univariate t (Arslan et
al., 1993; McLachlan & Krishnan, 2008). The data consist of the four observations −20, 1, 2
and 3. The scale Ω = 1 and degrees of freedom α = 0.05 are fixed. The bottom right panel of
Fig. 1 shows that the log-likelihood function has modes at −19.9932, 1.0862, 1.9975 and
2.9056 for the given scale and degrees of freedom. The global mode  reflects the
successful downweighting of the outlier −20 by the t model. The remaining panels of Fig. 1
illustrate the warping of the log-likelihood surface for different values of ν.

Table 1 records the progress of the fast EM algorithm and the aEM1 algorithm starting from
the bad guess μ0 = −25. For the aEM1 algorithm, we take r = 0.5 and s = 1 and start the
tuning parameter at ν0 = 100. The EM algorithm gets quickly sucked into the inferior mode
−19.9932, whereas the aEM1 algorithm rapidly converges to the global mode. Doubtful
readers may object that the poor performance of EM is an artefact of a bad initial value, but
starting from the sample mean −3.5 leads to the inferior mode 1.0862. Starting from the
sample median 1.5 does lead to the dominant mode in this example. Table 1 does not cover
the performance of algorithms aEM2 and aEM3. Algorithm aEM2 collapses to the ordinary
EM algorithm in fixing Ω, and algorithms aEM3 and aEM1 perform almost identically.

Multimodality is not limited to extremely small values of α. For the three data points {0, 5,
9}, the likelihood of the Cauchy distribution (α = 1 and Ω = 1) has three modes (example 1.9
of Robert & Casella, 2004). The aEM algorithms easily leap across either inferior mode and
converge to the middle global mode. For the sake of brevity we omit details.

In analysing the random data from a bivariate t distribution displayed in Table 2, we assume
α = 0.1 is known and both μ and Ω are unknown. The histograms of the final log-likelihoods
found by the fast EM algorithm and the aEM algorithms from the same 100 random starting
points are shown in Fig. 2. A total of 45 runs of the EM algorithm converge to the inferior
mode at −130.28, whereas all runs of the aEM algorithms converge to the global mode
−129.8. Despite this encouraging performance, annealing is not foolproof. There exist more
extreme examples where the aEM algorithms consistently converge to an inferior mode
close to the centre of the sample points. This problem merits further research.

4. Finite mixture models
In admixture models, the likelihood of m independent observations x1,..., xm takes the form
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where π = (π1,..., πd) is the vector of admixture parameters and fj(x|θj) is the density of the
jth admixture component. This model is widely used in soft clustering; see Bouguila (2008)
for recent applications to clustering of images, handwritten digits and online documents. As
we mentioned previously, Ueda & Nakano (1998) redesign the standard EM algorithm to
incorporate deterministic annealing. The MM principle provides new insight into the
derivation and application of annealing in this setting. In our opinion, admixture annealing
deserves more attention from the statistics community. To illustrate our point, we discuss
applications to latent class models popular in the social sciences.

In the admixture model we can flatten the likelihood surface in two different ways. These
give rise to the objective functions

appropriate for annealing. Here ν varies over the interval [0, 1]. The choice ν = 0 produces a
completely flat surface, and the choice ν = 1 recovers the original surface. This suggests that
we gradually increase the tuning parameter ν from a small value such as 0.05 all the way to
1. At each level of ν we execute s steps of the EM algorithm or its MM substitute.

In the admixture setting, the MM principle exploits the concavity of the function ln(t).
Applying Jensen's inequality to ln L1(π, θ, ν) yields the minorization

where the weights are

(4)

and cn is an irrelevant constant. Minorization separates the π parameters from the θj
parameters and allows one to solve for the updates

The usual manoeuvres yield the MM updates for the θk parameters in standard models.
These updates are identical to the standard EM updates except for the differences in weights.

Minorization of ln L2(π, θ, ν) follows in exactly the same manner except that the weights
become
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(5)

One of the virtues of this MM derivation is that it eliminates the need for normalization of
probability densities.

To compare the MM and aMM algorithms, consider a Gaussian mixture model with two
components, fixed proportions π1 = 0.7 and π2 = 0.3 and fixed standard deviations σ1 = 0.5
and σ2 = 1. The means (μ1, μ2) are the parameters to be estimated. Figure 3 shows the
progress of the MM and aMM algorithms based on 500 random Gaussian deviates with μ1 =
0 and μ2 = 3. From the poor starting point (μ1, μ2) = (5, −2), the MM algorithm leads to the
inferior local mode (3.2889, 0.0524) whereas the two aMM algorithms successfully
converge to the global mode (0.0282, 3.0038). Here we start with ν0 = 0.1 and after each s =
5 iterations multiply ν by r = 2 until it reaches 1, i.e., every 5 iterations we replace the
current value νn of ν by νn+1 = min{2νn,1}. The evidence here suggests that the two forms of
aMM perform about equally well.

Latent class analysis (LCA) is a discrete analogue of cluster analysis. It seeks to define
clusters and assign subjects to them. For instance, a political party might cluster voters by
answers to questions on a survey. The data could reveal conservative and liberal clusters or
wealthy and poor clusters. The hidden nature of the latent classes suggest application of the
EM algorithm. Unfortunately, maximum likelihood estimation with LCA is again beset by
the problem of local modes.

For purposes of illustration, consider the simple latent class model of Goodman (1974) in
which there are d latent classes and each subject is tested on b Bernoulli items. Conditional
on the subject's latent class, the b tests are independent. The subject's binary response vector
y = (y1,..., yb) therefore has probability

where the πj are admixture proportions, and the θjk are success probabilities. If cy counts the
number of subjects with response vector y, then the log-likelihood is

Introducing the weights

one can easily derive the MM updates
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For annealing, we can define the revised weights (4) and (5) using the densities

The MM updates remain the same except for substitution of the revised weights for the
ordinary weights.

For a numerical example, we now turn to a classical data set on pathology rating (section
13.1.2 in Agresti, 2002). Seven pathologists classified each of 118 slides for the presence or
absence of carcinoma of the uterine cervix. Assuming d = 4 latent classes, we ran both MM
and aMM (version 1) starting from the same 100 random starting points; we declared
convergence when the relative change of the log-likelihood was less than 10−9. Figure 4
displays the histograms of the converged log-likelihoods for the two algorithms. In 99 out of
100 runs, the aMM converges to what appears to be the global mode. Fewer than one-third
of the MM runs converge to this mode. The maximum likelihood estimates of the πj and θjk
at the global mode are listed in Table 3. These results suggest that: (i) the first latent class
captures those cases with good agreement that carcinoma exists; (ii) the second latent class
captures those cases with good agreement that carcinoma does not exist; (iii) the third latent
class captures cases with strong disagreement, with pathologists A, B, C, D and E
suggesting carcinoma and pathologists D and F suggesting otherwise; and (iv) the fourth
latent class captures the residual of problematic cases. Convergence to a local mode can lead
to quite different interpretations. The parameter estimates in Table 4 for the inferior mode
with log-likelihood −293.3200 presents a very different picture.

5. Factor analysis
Factor analysis models the covariation among the components of a random vector Y with p
components as the sum

where μ is a constant vector with p components, F is a p × q constant matrix, X is random
vector with q components and U is a random vector with p components. These quantities are
termed the mean vector, the factor loading matrix, the factor score and the noise,
respectively. Ordinarily, q is much smaller than p. In addition, the standard model postulates
that X and U are independent Gaussian random vectors with means and variances

where D is diagonal with jth diagonal entry dj. Given a random sample y1,..., ym from the
model distribution, the object is to estimate μ, F and D. As the log-likelihood is
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it is clear that the maximum likelihood estimate of μ equals the sample mean. Therefore, we
eliminate μ from the model and assume that the data are centred at 0.

Estimation of F and D is afflicted by identifiability issues and the existence of multiple
modes. In practice, the latter are more troublesome than the former. We attack the multiple
mode problem by flattening the log-likelihood surface. This can be achieved by maximizing

for ν∈[0, m). In effect, this inflates the noise component of the model. We progressively
adjust ν from near m to 0.

The EM algorithm is the workhorse of factor analysis, so it is natural to modify it to take
into account the added noise. The complete data in the EM algorithm for estimating F and D
are the random vectors (Yk, Xk) for each case k. The noise term of the objective function has
no effect on the derivation of the EM surrogate, which up to an irrelevant constant equals

Here, the intermediate vectors and matrices are

with

In defining vk and Ak, the matrices F and D are evaluated at their current estimates Fn and
Dn. The full derivation of the surrogate function appears in section 7.5 of Lange (2004).

The MM principle suggests that we maximize the surrogate  rather than the
objective function . If one follows the mathematical steps outlined in
Lange (2004), then it is straightforward to verify the MM updates
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It is obvious from the form of the update for the noise variance di that the amendment to the
likelihood pushes the estimate of di higher.

For a numerical example, we now consider the classic data of Maxwell (1961). There are p
= 10 variables and m = 148 subjects. The variables summarize various psychiatric tests on
148 children: (i) verbal ability, (ii) spatial ability, (iii) reasoning, (iv) numerical ability, (v)
verbal fluency, (vi) neuroticism questionnaire, (vii) ways to be different, (viii) worries and
anxieties, (ix) interests, and (x) annoyances. Table 5 lists the correlations between the 10
variables. Maxwell (1961) concludes that three factors adequately capture the variation in
the data. To illustrate the problem of multiple modes, we assume q = 5 factors, giving a total
of p(q+1) = 60 parameters. We ran both EM and aEM on the same 500 random starting
points and stopped each run when the relative change of the log-likelihood was less than
10−9. Figure 5 shows the histograms of the converged log-likelihoods found by the two
algorithms. In all 500 runs, the aEM algorithm converges to the same mode. Fewer than half
of the EM runs converge to this apparently global mode. Our discovery of several inferior
modes confirms previous findings (Duan & Simonato, 1993). Table 6 lists the estimates of
the noise variances di at the global and two local modes. In this example, we start with ν = m
−1 = 148 and halve it every five iterations.

6. Multidimensional scaling
Multidimensional scaling attempts to represent q objects as faithfully as possible in p-
dimensional space given a non-negative weight wij and a non-negative dissimilarity measure
yij for each pair of objects i and j. If  is the position of object i, then the p × q
parameter matrix θ with ith column θi is estimated by minimizing the stress

(6)

where  is the Euclidean distance between θi and θj. The stress function (6) is
invariant under translations, rotations and reflections of . To avoid translational and
rotational ambiguities, we take θ1 to be the origin and the first p−1 coordinates of θ2 to be 0.
Switching the sign of θ2p leaves the stress function invariant. Hence, convergence to one
member of a pair of reflected minima immediately determines the other member.

The stress function tends to have multiple local minima in low dimensions (Groenen &
Heiser, 1996). As the number of dimensions increases, most of the inferior modes disappear.
In support of this contention, one can mathematically demonstrate that the stress has a
unique minimum when p = q−1 (de Leeuw, 1993; Groenen & Heiser, 1996). In practice,
uniqueness can set in well before p reaches q−1. In dimension crunching, we start
optimizing the stress in some space  with m>p. The last m−p components of each θi are
gradually subjected to stiffer and stiffer penalties. In the limit as the penalty tuning
parameter ν tends to ∞, we recover the minimum of the stress in . Before we go into the
details of how crunching is achieved, it is helpful to review the derivation of the MM stress
updates given in Lange et al. (2000).

Because we want to minimize the stress, we first majorize it. In doing so, it is helpful to
separate its parameters as well. The middle term in the stress (6) is majorized by the
Cauchy–Schwartz inequality
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To separate the variables in the summands of the third term of the stress, we invoke the
convexity of the Euclidean norm  and the square function x2. These manoeuvres yield

Assuming that wij = wji and yij = yji, the surrogate function therefore becomes

up to an irrelevant constant.

Setting the gradient of the surrogate equal to 0 vector gives the updates

for all movable parameters θik. To perform annealing, we add the penalty 
to the stress function and progressively increase ν from nearly 0 to ∞. This action shrinks
the last m−p components of each θi to 0. It is straightforward to check that the updates for
the penalized stress are

Taking m = q − 1 is computationally expensive if q is large. In this situation, we typically
choose m much smaller than q but still considerably larger than p.
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For the US city distance data summarized in Table 7, we ran both the MM and aMM
algorithms for multidimensional scaling with wij = 1 and p = 2 from 100 random starting
points. For aMM we set m = 9, started with ν = 0.001 and multiplied ν by 1.1 every 10
iterations. The histogram of final converged stress values are displayed in Fig. 6. It is
gratifying that 97 runs of aMM converge to the global minimum 321.68 whereas only 59
runs of MM do. Figure 7 shows the city configurations from multidimensional scaling at
different local minima.

7. A one-way random effects model
Our last example is novel in three respects. It is Bayesian, it yields readily to maximum a
posteriori estimation by block relaxation, and its transition from unimodality to bimodality
is fairly well understood mathematically. In the one-way random-effects model described by
Liu & Hodges (2003), the data are modelled as yij|θi, σ2 ~ N(θi, σ2), j = 1,..., ri, where the θi
are unobserved random effects distributed as θi|μ, τ2 ~ N(μ, τ2), i = 1,..., s. The
hyperparameters μ, σ2 and τ2 are unknown. In a Bayesian framework it is convenient to
assume conjugate priors for them of the form μ ~ N(ν, η2), σ2 ~ IG(α, β) and τ2 IG(γ, δ),
where IG denotes the inverse Gamma distribution parameterized so that E(σ2) ~ = β/(α − 1)
and E(τ2) = δ/(γ 1) for α and γ exceeding 1.

The joint probability density of the data and parameters ({yij}, {θi}, μ, σ2, τ2) is

This translates into the log-posterior function

where c is an irrelevant constant. Maximum a posteriori estimation can be an end in itself or
a prelude to a full Bayesian analysis by Markov chain Monte Carlo or Laplace
approximation (Rue et al., 2009).

The direct attempt to maximize the log-posterior is almost immediately thwarted. It is much
easier to implement block relaxation, which maximizes the objective function over
successive parameter subsets. Like the EM or MM algorithms, block relaxation enjoys the
ascent property. With the superscripts k and k+1 denoting iteration numbers, block
relaxation operates via the updates
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In the case of a balanced design where the sample sizes ri are equal, Liu & Hodges (2003)
systematically study the modality of the log-posterior and determine how it depends on the
parameters α, β, γ, δ and the data {yij}. They assume a flat prior on μ, achieved by taking ν =
0 and η2 = ∞. Under a flat prior, the joint posterior distribution is proper, and our block
relaxation algorithm remains valid. It is noteworthy that their theorem 1 implies that the
joint posterior has at most two modes. Furthermore, their theorem 3 implies that in the
presence of bimodality, increasing α or δ with all other parameters fixed extinguishes one of
the modes, whereas increasing β or γ with all other parameters fixed extinguishes the other
mode. This insight immediately suggests a two-run annealing procedure that is almost
guaranteed to identify the global maximum. In the first run, we replace α (or δ) in block
relaxation by a large tuning parameter αk (or δk) and gradually sent it to its limiting value. In
the second run, we replace β (or γ) in block relaxation by a large tuning parameter βk (or γk)
and gradually sent it to its limiting value. If the two final modes agree, then the log-posterior
is unimodal. If they disagree, then one of them is bound to be the global mode.

As an example, we tested the peak discharge data analysed by Liu & Hodges (2003). With
the settings α = 8, β = 1, γ = 10 and δ = 0.1, the log-posterior has two modes. We tried
ordinary block relaxation and four versions of deterministic annealing from 100 randomly
generated points. As Fig. 8 shows, every run of deterministic annealing reliably converges to
its targeted mode. It would appear that the two-run tactic is highly successful.

8. Discussion
The existence of multiple modes is one of the nagging problems of computational statistics.
No one knows how often statistical inference is fatally flawed because a standard
optimization algorithm converges to an inferior mode. Although the traditional remedies can
eliminate the problem, they enjoy no guarantees. Bayesian inference is also not a refuge.
Markov Chain Monte Carlo (MCMC) sampling often gets stuck in the vicinity of an inferior
posterior mode, and it may be hard to detect departures from adequate random sampling. For
these reasons, any technique for finding the dominant mode of a log-likelihood or a log-
posterior function is welcome.

It is probably too much to hope for a panacea. Continuous optimization by simulated
annealing comes close, but it imposes an enormous computational burden. The recent
marriage of computational statistics and algebraic geometry has considerable promise
(Pachter & Sturmfels, 2005). The new field, algebraic statistics, attempts to locate all of the
modes of a likelihood function. This is probably too ambitious, and current progress is
limited to likelihoods composed of simple polynomials and rational functions.
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The EM annealing algorithm of Ueda & Nakano (1998) deserves wider use. In our opinion,
the MM principle clarifies its derivation and frees it from the restriction to probability
densities. In multidimensional scaling, the tunnelling method of Groenen & Heiser (1996) is
a competitor to dimension crunching. It would be worthwhile to undertake a systematic
comparison. Several, but not all, of the annealing techniques used for the multivariate t
distribution extend to other elliptically symmetric families of densities such as the slash
family (Lange & Sinsheimer, 1993). We will let readers explore the relevant algorithms at
their leisure.

We would be remiss if we did not confess to experimenting with the annealing parameters
ν0, r and s to give good performance. We have not been terribly systematic because a broad
range of values works well in many problems. Again, this is an area worthy of further
investigation. Rigid guidelines are less important than rules of thumb.

In closing, let us emphasize that our purpose has been to introduce basic strategies rather
than detailed tactics. Wider application of annealing will require additional devices for
flattening function surfaces and moving towards the global mode. Although the MM
algorithm is one among many choices, its simplicity and ascent (or descent) property are
very attractive. MM algorithms tend to home in quickly on the basis of attraction of the
dominant mode. Once an MM algorithm reaches this region, its rate of progress can slow
dramatically. Thus, many annealing algorithms have to be accelerated to be fully effective.
The challenge for the statistics community is to tackle a wider range of statistical models
with multiple modes. This will have to be done piecemeal to sharpen intuition before we can
hope to make a general assault on this vexing general problem.
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Appendix. Pseudocode For EM algorithms
Algorithm 1

EM.

Initialize: μ0, Ω0

repeat

    wi
n ← α + p

α + di
n , v n ← ∑i=1

m wi
n

    μn+1 ← 1

v n
∑i=1
m wi

nxi

    Ωn+1 ← 1

v n
∑i=1
m wi

n(xi − μn+1)(xi − μn+1)t

Until convergence occurs

Algorithm 2

aEM1 (inflating degree of freedom).

Initialize: μ0, Ω0, ν0 > > α
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repeat

    if mod(n, s) = 0 then

        νn ← rνn–1 + (1 – r)α

    else

        νn ← νn–1

    end if

    wi
n ← v n + p

v n + di
n , v n ← ∑i=1

m wi
n

    μn+1 ← 1

v n
∑i=1
m wi

nxi

    Ωn+1 ← 1

v n
∑i=1
m wi

n(xi − μn+1)(xi − μn+1)t

until νn ≈ α and convergence occurs

Algorithm 3

aEM2 (noise addition version 1).

Initialize: μ0, Ω0, ν0 < < 1

repeat

    if mod(n, s) = 0 then

        νn ← rνn–1 + (1 – r)

    else

        νn ← νn–1

    end if

    wi
n ← α + p

α + di
n , v n ← ∑i=1

m wi
n

    v ∗n ← v nα

α + (1 − v n)p

    μn+1 ← 1

v n
∑i=1
m wi

nxi

    Ωn+1 ← 1

v ∗nv n
∑i=1
m wi

n(xi − μn+1)(xi − μn+1)t

until νn ≈ 1 and convergence occurs

Algorithm 4

aEM3 (noise addition version 2).

Initialize: μ0, Ω0, ν0 < < 1

repeat

    if mod(n, s) = 0 then

        νn ← rνn–1 + (1 – r)
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    else

        νn ← νn–1

    end if

    wi
n ← α + p

α + v ndi
n , v n ← ∑i=1

m wi
n

    μn+1 ← 1

v n
∑i=1
m wi

nxi

    Ωn+1 ← 1

v n
∑i=1
m wi

n(xi − μn+1)(xi − μn+1)t

Until νn ≈ 1 and convergence occurs
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Fig. 1.
The log-likelihood ln L(μ) for various degrees of freedom ν with Ω = 1.
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Fig. 2.
Histograms of the converged log-likelihoods found by the EM (top left panel) and aEM
algorithms from 100 random starting points for the data in Table 2. For aEM1, ν0 = 100, r =
0.5 and s = 10. For aEM2 and aEM3, ν0 = 0.001, r = 0.5 and s = 10.

ZHOU and LANGE Page 19

Scand Stat Theory Appl. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Progress of MM and two aMM algorithms in the log-likelihood landscape of a Gaussian
mixture model.
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Fig. 4.
Final log-likelihoods found for the pathology data set by MM (left) and aMM (right) using
100 random starting points. The annealing parameters are ν = 0.05, s = 10 and r = 19/20.
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Fig. 5.
Converged log-likelihoods found by EM (left) and aEM (right) from 500 random starting
points. For aEM, ν0 = 147, r = 1/2 and s = 5.
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Fig. 6.
Final stress values found by MM (left) and aMM (right) from 100 random starting points.
The annealing parameters are ν0 = 0.001, r = 1.1 and s = 10.
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Fig. 7.
Multidimensional scaling maps of the 10 cities at various local modes of the stress function.
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Fig. 8.
Histograms of converged posterior log-likelihoods (up to an additive constant) under
different annealing schemes from 100 random starting points. Here, s = 1 and r 0.5. Top: no
annealing; middle left: b0 = 103; middle right: α0 = 103; bottom left: a0 = 103; bottom right:
β0 = 103.
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Table 6

Estimates of di at different three modes

Mode

ln L –1865.8 –1867.5 –1871.8

d̂ 1 0.3095 0.0090 0.3122

d̂ 2 0.0275 0.5916 0.4993

d̂ 3 0.3536 0.0106 0.4236

d̂ 4 0.4956 0.1921 0.0212

d̂ 5 0.4582 0.5448 0.3605

d̂ 6 0.5274 0.4722 0.5548

d̂ 7 0.4187 0.4892 0.5389

d̂ 8 0.0206 0.4233 0.3851

d̂ 9 0.6840 0.6539 0.6958

d̂ 10 0.5859 0.5903 0.0201
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