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Abstract
Biomechanical systems share many properties with mechanically engineered systems, and
researchers have successfully employed mechanical engineering simulation software to investigate
the mechanical behavior of diverse biological mechanisms, ranging from biomolecules to human
joints. Unlike their man-made counterparts, however, biomechanisms rarely exhibit the simple,
uncoupled, pure-axial motion that is engineered into mechanical joints such as sliders, pins, and
ball-and-socket joints. Current mechanical modeling software based on internal-coordinate
multibody dynamics can formulate engineered joints directly in minimal coordinates, but requires
additional coordinates restricted by constraints to model more complex motions. This approach
can be inefficient, inaccurate, and difficult for biomechanists to customize. Since complex motion
is the rule rather than the exception in biomechanisms, the benefits of minimal coordinate
modeling are not fully realized in biomedical research. Here we introduce a practical
implementation for empirically-defined internal-coordinate joints, which we call “mobilizers.” A
mobilizer encapsulates the observations, measurement frame, and modeling requirements into a
hinge specification of the permissible-motion manifold for a minimal set of internal coordinates.
Mobilizers support nonlinear mappings that are mathematically equivalent to constraint manifolds
but have the advantages of fewer coordinates, no constraints, and exact representation of the
biomechanical motion-space—the benefits long enjoyed for internal-coordinate models of
mechanical joints. Hinge matrices within the mobilizer are easily specified by user-supplied
functions, and provide a direct means of mapping permissible motion derived from empirical data.
We present computational results showing substantial performance and accuracy gains for
mobilizers versus equivalent joints implemented with constraints. Examples of mobilizers for
joints from human biomechanics and molecular dynamics are given. All methods and examples
were implemented in Simbody™—an open source multibody-dynamics solver available at
https://Simtk.org.
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1 Introduction
Physics-based simulations of biological structures employ computational tools to understand
the dynamics of complex biological mechanisms that influence human health. Simulations
of musculoskeletal dynamics, for example, are used to quantify joint reaction forces of
articulating bones in studies of osteoarthritis [1,2] and joint prosthetics [3]. Simulations of
molecular machines [4-6] are used to characterize the dynamics of molecular processes in
biology. To gain confidence in biosimulations, models must be accurate and subjected to
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sensitivity [7] and design optimization [8] analyses, demanding vast amounts of
computation. Simulation accuracy and efficiency are generally competing goals, but here we
present a multibody formulation that improves both, and is well-suited for, simulation of
biomechanisms.

Structures over a wide range of biological domains can be modeled as systems of rigid
bodies connected by joints; that is, multibody systems. Although force calculations and
specialized numerical methods [9] affect the cost of simulating biomechanisms, our focus is
on the efficiency of the multibody dynamics formulation. The multibody dynamics
formulation influences the number of force calculations and the demands on numerical
methods. We consider internal coordinate formulations [10], implemented using an O(n)
recursive algorithm (surveyed by Jain [11]), to be the preferred method for simulating
biomechanisms. Internal coordinates are particularly useful because coordinates are directly
related to degrees of freedom (dofs) of interest. Internal coordinates also provide a minimal
set of system equations with the opportunity to obtain a system free of algebraic constraints,
which yields a system composed of ordinary differential equations (ODEs) and avoids
numerically intensive mixed differential algebraic equations (DAEs) [12]. A system of
ODEs does not require constraint stabilization [13,14] and is better suited for design
optimization [15,16] and sensitivity analyses [17], as well as optimal control [18,19]
applications. Internal coordinate formulations are prevalent in musculoskeletal modeling
[20-23] and ubiquitous in coarse-grained biomolecular dynamics for NMR refinement
[24-26]. In other biomolecular contexts, multibody dynamics has yet to be fully exploited,
but internal-coordinate methods have already been applied successfully [27-29]. For
mechanically engineered systems, limitations resulting from the underlying tree structure
and the complexity of recursive internal coordinate formulations have been successfully
resolved (e.g. [30-32]); addressing the challenges for efficiently representing biomechanisms
is the subject of this paper.

To illustrate one of the challenges with a simplified example, consider the representation of
screw motion that has a single rotation about a screw axis and a translation along the same
axis (z-axis, Fig. 1), which are coupled by the screw’s pitch s (in m/rad, for example).
Whereas typical mechanical joints such as a pin, slider, universal, cylindrical, and planar
partition motion into rotational and translational components, a screw joint inconveniently
couples a rotation and a translation. In automated software having no built-in screw, a
common approach [33,34] is to employ a cylindrical joint providing two dofs with internal
coordinates u1 and u2 and then to enforce the relationship of rotation to translation via the
constraint u2 = su1. The result is a set of three DAEs (one rotational and one translational
differential equation, and one algebraic equation). While this is a substantial reduction from
the eleven equations required by spatial formulations (three rotational and three translational
differential equations, and five algebraic equations), it still requires a system of three DAEs
to model a single dof.

In practice, of course, a screw can be treated efficiently [45]. But the problem is more severe
for biomechanical joints, where a knee [35] or shoulder [36] couples multiple rotational and
translational motions according to bone geometry that differs between subjects and must be
determined empirically. Coarse-grained models of biomolecular machines can also lead to
coupled, empirically described motion [37]. Lee and Terzopoulos [38] recognized this
limitation of mechanical joints and introduced a spline joint in a differential geometry
framework for expressing a complex motion path in terms of a single internal coordinate.

In this paper we introduce a practical, extensible formulation and implementation of the
internal-coordinate joint, called a “mobilizer,” which encapsulates a general mapping of
complex joint motion, including motion that is empirically-determined, to internal
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coordinates critical for modeling biomechanisms, and deals with pragmatic issues such as
the laboratory frame and joint directionality (from parent to child) associated with the
spanning-tree structure of internal-coordinate methods. We begin with the mobilizer
formulation and demonstrate how to define the screw above and a novel ellipsoid joint with
a mobilizer. These examples lead to the derivation of a user-configurable mobilizer, which
we use to define a realistic biomechanical knee model and a coarse-grained molecular
model. We compare the performance of mobilizers to conventional joints using constraints
and discuss the implications of mobilizers for the simulation of biomechanisms.

2 Joints in internal coordinates
In biomechanics the term “joint” connotes a physically-realizable connection that can be
represented by various combinations of coordinates and algebraic constraints. The term
“hinge” refers to a revolute rotational joint. To avoid confusion between these physical
objects, the multibody dynamics concepts of the generalized hinge, and their computational
representations, we use the term “mobilizer” to encapsulate the complete specification of the
unconstrained motion permitted between two bodies, modeling requirements, and the
resulting implementation in software. A single mobilizer connects each body of a multibody
system to its unique “parent” body forming a tree topology; that concept is often called a
“hinge” in internal-coordinate multibody dynamics literature (e.g. [39]). A body connected
by a mobilizer introduces new coordinates q and speeds u to the system, which we term
“mobilities,” but does not add constraints. This contrasts the conventional notion that every
rigid body has six dofs, some of which may be removed by joints. We take the view that a
body only possesses those dofs that are granted by its mobilizer. This provides a clear
distinction between a body connected by a pin mobilizer (i.e. the internal-coordinate joint
representation) introducing a single mobility and an ODE, and an otherwise free (6-dof)
rigid body constrained by a pin (five algebraic constraints) that leads to a set of 11 DAEs.

2.1 Mobilizer representation of permissible motion
The main purpose of a mobilizer is to define the permissible-motion space spanned only by
coordinates that are degrees of freedom associated with a physical joint. To do so, we build
on the internal-coordinate concept of the “hinge matrix” [39] (also “hinge map matrix” [31];
“joint map matrix” [40]; or “joint motion map matrix” [25,41]), which is a mapping between
mobilities and the relative spatial kinematics used to formulate the recursive Newton–Euler
equations of motion [42]. Specifically, we exploit the hinge matrix and its time derivative to
map the permissible-motion space of a physical joint, in terms of the mobilities that
correspond to joint dofs, which would otherwise require scleronomic constraints acting on
spatial kinematics.

The Internal Variable Dynamics Module (IVM) of X-PLOR [25] was built on internal-
coordinate methods using spatial operators described by Jain et al. [39], and we have built
on this fundamental framework to implement the mobilizer and develop the multipurpose
open-source multibody dynamics solver, Simbody, as part of a biosimulation toolkit (SimTK
[43], https://simtk.org).

In Simbody, a mobilizer from parent frame P to child frame B is completely characterized
by the following four equations:

(1)

Seth et al. Page 3

Nonlinear Dyn. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://https://simtk.org


(2)

(3)

(4)

Equation (1) describes the position transform, , comprised of the rotation matrix, R, and
translation vector, p, of a mobilizer frame, B, fixed in the body (Bo frame) with respect to a
parent mobilizer frame P, fixed in the parent body (Po) (Fig. 2). The spatial velocity,  in
(2), and acceleration,  in (3), of B with respect to P, are specified by the hinge matrix, H,
and its time derivative, . The evolution of the coordinates, q, is governed by the
differential relationship (4) with the mobilities, u, according to the kinematic coupling
matrix N. Each of these elements can be found in the literature; our contribution is to present
them in a form which permits non-dynamicist end users to routinely map external data into
novel internal-coordinate joints, as will be shown below.

In formulations where explicit constraints are used, joint reaction forces are obtained
directly from the Lagrange multipliers used to enforce the constraints [44]. However,
explicit constraints are unnecessary to compute reaction loads (e.g. bearing loads of a pin
joint) and can be obtained from the spatial accelerations of the bodies from (3). Internal-
coordinate codes like SD/FAST [33] and Simbody use a recursive force balance from leaf
bodies inwards to the root to yield the reactions imposed by each mobilizer.

2.2 Screw mobilizer example
In the screw motion example (Fig. 1), either the angular (u1) or the translational speed (u2)
of the collar (blue) with respect to the screw (green) is a good choice for the mobility. Given
the pitch s of the screw, we choose the angular speed of the collar as the single mobility, u,
and its angular position as the single coordinate, q, such that . The mobilizer equations
for the collar (the child) body with respect to a frame fixed in the screw (the parent) are:

(5)

(6)

(7)

such that  and .

The hinge matrix, H, effectively describes mechanical joints, and has been used elsewhere
to model the coupled motion of the screw joint using a single internal coordinate (e.g.
[30,45]). We now extend this capability to capture more complex permissible-motion
granted by a mobilizer to specify the behavior of biomechanical joints. The mobilizer
mapping equations (1)–(3) enable the modeler to specify the transformation between
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arbitrary mobilizer frames on the parent and body (P and B,Fig. 2) that may be dictated by
the data collection apparatus, or otherwise preferred as more natural descriptions of joint
motions than transformations described with respect to body origins or mass centers.
Multibody formulations based on mechanical joints (including composites of pins and
sliders) are typically written in terms of body frames, and are limited to coordinate choices
that yield a constant H [39] or specifically map from angular parameterizations (e.g. Euler
angles and speeds) to relative angular velocity [25,46]. Simbody enables user-selected
frames and a general form for H and its derivative to permit users to create novel and
biologically accurate mobilizers.

2.3 Ellipsoid mobilizer example
Several biologically inspired joints highlight the variety of permissible-motion manifolds
realizable by the mobilizer formulation. The ellipsoid mobilizer extends the ball-and-socket
joint to enable translation of the body such that it is bound to the surface of an ellipsoid
(fixed in the parent) as the body rotates about the parent. Unlike a ball-and-socket joint, an
ellipsoid joint would be difficult to manufacture and few industrial machines employ one;
however, in nature similar joints exist. Specifically, in human biomechanics, the hip joint
has been reported to be more ellipsoidal in shape [47] than a pure ball-and-socket, and Van
der Helm et al. [36] have described the thorax as an ellipsoid upon which the scapula
(shoulder blade) translates and rotates (Fig. 3).

We begin with the formulation of the conventional ball-and-socket mobilizer (Fig. 4A):

(8)

where q = {θ1, θ2, θ3} is a body-fixed 1–2–3 Euler sequence of rotations (assuming a limited
range of rotation). The spatial velocity is specified by the hinge matrix:

(9)

where the chosen mobilities u = [ω1 ω2 ω3]T are the components of the angular velocity
vector of B in P (Fig. 2). Typical of mechanical joints,  for the ball-and-socket
mobilizer, but the kinematic coupling matrix N ≠ I in (4) and maps from angular velocity to
Euler angle derivatives [10]:

(10)

The ellipsoid mobilizer (Fig. 4B) has the same angular definition as the ball-and-socket, but
rather than grant 3 additional mobilities for spatial translations, which would then have to be
constrained, the translations are coupled to the orientation of the body such that:

(11)

where q remains the 1–2–3 Euler angle sequence describing the orientation of the body, but
now
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(12)

describes the translation of the body’s mobilizer frame, B, onto the surface of an ellipsoid (n
= n(q) being the normal vector) fixed in the parent’s mobilizer frame, P, with a, b, c
corresponding to the ellipsoid radii along the axes of P. The angular velocity remains the
same function of u as for the ball-and-socket joint, so N is unchanged from (10), but now
there are coupled linear velocities that are a consequence of the rotating normal vector; this
results in the ellipsoid hinge matrix having the form:

(13)

In this case,  and must be resolved to obtain angular velocity contributions to the
body’s linear acceleration:

(14)

The hinge matrix  and its derivative  span exactly and map only onto the subspace
of the permissible-motion manifold of an ellipsoid surface. If limited to multibody dynamics
codes with conventional joints, then a free joint (six dofs) is required with an additional
three constraint equations, for a total of nine DAEs versus the mobilizer formulation’s three
ODEs.

We compared the ellipsoid mobilizer to a ball-and-socket mobilizer and an ellipsoid joint
implementation with nine DAEs (Table 1). The ellipsoid mobilizer formulation had the same
computational cost as a ball-and-socket mobilizer in terms of evaluating the system
acceleration and reaction loads for a given configuration as well as for integrating the
equations of motion in a simulation. We expected computation of the system acceleration
and reaction loads computed with constraints to be at least three times more costly since the
constrained system has three times the number of equations. We measured performance of
the constrained system as 12 times slower, due primarily to the solution phase for Lagrange
multipliers that enforce the ellipsoid constraint. That phase is skipped if there are no
constraints. In a simulation, there are additional costs independent of the formulation so the
overall speedup is lesser; in this case, we measured a factor of 10 with a constraint tolerance
of 10−4. The deviation from the permissible-motion manifold was essentially zero with the
ellipsoid mobilizer while the constrained system error is maintained to the requested
tolerance. With a tighter tolerance, the constrained system would run more slowly.

The simplicity of an ellipsoid mobilizer contrasts with the complexity of applying kinematic
constraints to generate realistic motion of the shoulder. De Sapio et al. [48], for example,
used nine generalized coordinates and five constraints to produce a 4-dof shoulder model.

2.4 General reversibility of a mobilizer
A tree of mobilized bodies is ordered parent-to-child along each branch in an internal
coordinate formulation. It is therefore useful to reverse the topological direction of
mobilizers while preserving the definition of the mobilities. For example, in the shoulder
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model (Fig. 3), it is typical to have the thorax as the parent and the scapula and arm as
descendants in a model of arm-reaching tasks. However, when modeling a push-up task with
the hand affixed to ground, we can avoid constraints at the hand if the topology is reversed.
However, we wish to preserve the definition of the generalized coordinates and speeds such
that they describe the motion of the scapula relative to the thorax. Several internal-
coordinate mechanical codes ignore this problem while others have addressed it with a
library of “reverse” joints [33]. Featherstone [46] solved the problem generally for a non-
Euclidean spatial vector formulation [42,49]; however, the mobilizer formulation, which
uses spatial notation comprised of ordinary Euclidean vectors [50], is also generally
reversible, as we show here.

Given a mobilizer in a reversed topological sense than desired if defined from frame B in a
parent body (e.g. thorax) to frame P in a child body (e.g. scapula), that is , , ,
and N (with time derivatives taken in parent B) as in the above thorax-to-scapula ellipsoid
mobilizer, the reversibility problem can be distilled to formulating the mobilizer that yields

, ,  and N describing a parent (scapula) frame P to body (thorax) frame B
mobilizer (with time derivatives taken in now-parent P) with internal coordinate and
mobility definitions preserved as though the parent body had remained the thorax.

Since we want q and u to retain their original meanings, N must stay the same. The position
transform is easily reversed, with

(15)

where . However, the time derivatives are taken in different moving frames, so
these quantities cannot be simply reversed and must account for the relative angular velocity
between the frames. This leads to

(16)

where p× is the skew-symmetric matrix form of the cross product. (Note the spatial notation
of “scalar” multiplication for the rotation matrix , which distributes across the rows of

the spatial vector as though it were arranged  as with a scalar.)

Time differentiation of  in P yields:

(17)

Equations (15)–(17) describe any available mobilizer as being reversed so that the motion
between bodies is parameterized with respect to the child body, although the topology
remains parent-to-child. When a modeler requires a reverse mobilizer, Simbody automates
the process by first using the definition of the mobilizer to describe the motion of the parent
in the child and then applies (15)–(17) to maintain the definition of the mobilities but obtain
the desired parent-to-child topology to build the multibody tree.
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3 Generic joint motion without constraints
The formulation of the position transform, relative spatial velocity and acceleration, and
kinematic coupling equations in (1)–(4) comprise the essence of the mobilizer. However, it
is undesirable to require biological researchers to formulate these transforms, hinge matrices
and their derivatives. This section describes a general function based mobilizer that is
configurable by user-specified functions and automates the process of deriving the hinge
matrix and its derivative.

To simplify the specifications required by the modeler, we assume that  (i.e., N is
identity in (4)) although the mobilities u are not necessarily the components of the relative
spatial velocity. The kinematic relationship is scleronomic (dependent only on coordinates,
q); thus, velocity and acceleration relationships can be derived from the position
relationship. This is a subset of all the kinematic constraints that can be embedded in a
mobilizer; however, it represents the majority of joint models based on the geometry of
structures from experimental measurements (e.g., MRI of articulating bones). Specifically,
experimental measurements or knowledge of the joint geometry enable the modeler to write
the position transform  of a body with respect to its parent. This transform is a map from
the coordinate space, q, to the spatial orientation and position. For example, consider a
particle whose motion in space is known to travel on a manifold (a surface in three
dimensions) that was obtained from imaging data (Fig. 5). In conventional terms, a
constraint equation is necessary to eliminate a dof to restrict the motion to the manifold. The
constraint provides a reaction force that is normal to the manifold surface (arrow in Fig. 5),
acting at whatever point the particle may be on the manifold.

In contrast, a mobilizer can parameterize the motion of the particle in Cartesian space such
that its motion cannot exist off the manifold. This is done by first describing the spatial
transform in terms of just two coordinates, x and θ, whose derivatives are the mobilities of
the joint.

To facilitate the description of the orientation and position transform of a rigid body in 3-
space, we write the spatial transform in terms of three rotational and three translational
spatial coordinates, in θ and p:

(18)

that define a body-fixed Euler angle sequence (θ1–θ3) for the orientation and the
components of the position (p1–p3) of the body in the parent. In turn, θ and p are functions
of a set of m(1-6) mobilizer coordinates, q. We can now express the velocity of the body in
terms of the underlying mobilities of the joint (since ) given that θ and p are continuous
and twice differentiable, with respect to q. Simbody automatically generates both  and

 to characterize the velocity and acceleration transformation enabled by this mobilizer.

We begin with the mobilizer’s relative spatial velocity transformation with :
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(19)

Given that θ1–θ3 are rotations about body fixed axes (â1 to â3) that specify the rotation, ,
then

(20)

is the relative angular velocity of the body in terms of the time derivatives of the Euler
angles θ1–θ3, where  and  are the first and second body-fixed rotations. We can then
define a transformation matrix, W, from spatial speeds to relative angular velocity. The
spatial (rotational) speeds are now expressed in terms of the mobilities according to the
Jacobian, θq, of the rotational coordinate functions, θ, with respect to the mobilizer
coordinates, q:

(21)

which yields the transformation from the mobilities to the angular velocity of frame B in P:

(22)

Similarly, given p1–p3 as the body translations along independent axes (â4 to â6) defined in
the parent, we can express the velocity of the body in terms of the mobilities according to:

(23)

(24)

(25)

To obtain , we differentiate the angular velocity to yield the angular acceleration β of B
(the body) with respect to its parent:

(26)

(27)

The time derivative of W, in turn, is obtained from the fact that the body-fixed axes are
rotating:
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(28)

where  and  are the angular velocity vectors due to only the first and the first and
second rotational speeds, respectively, and Wi is the corresponding column of W. The
derivative of the transformation from mobilities to spatial speeds can be expanded:

(29)

where we define

(30)

given that θi is twice differentiable to express the body angular acceleration in terms of the
mobilities and their derivatives.

(31)

(32)

(33)

The derivative of the translational velocity (where the axes, A, are constant) yields the
translational acceleration of the body in the parent:

(34)

(35)

The automatic formulation of the position transform equation (18) and the hinge matrices
equations (22), (25), (33), and (35) is implemented in Simbody, which creates a custom
mobilizer based on user-supplied functions (θ and p) that can be either analytically defined
or constructed as splines from user-specified data points, for example, those obtained from
experimental measurements. This is a powerful tool for modeling unusual joints that are
typical of biomechanisms.

4 Capturing the kinematics of the human knee
Mobilizers can be used to model the complex motion of the human knee. Unlike an ideal pin
joint, the shape of the femoral condyles is not circular resulting in a non-stationary center of
rotation [51,52]. Furthermore, both sliding and rolling of the femoral condyles on the tibial
plateau surface (Fig. 6) lead to motion of the tibia with respect to the femur that includes
translation in the plane of rotation. Biomechanists have characterized the translation of the
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tibia based on experiments [51-53] and have created kinematic models that prescribe the
translations of the tibia as spline functions of experimental data [35]. Recently, dynamical
models of human gait [54-56] have allowed the tibia to move freely in the plane of rotation
and then applied kinematic constraints to enforce the desired behavior of the knee based on
Delp et al. [35].

Spline points from constraints in a knee model [35] were used to specify the functions of a
custom mobilizer in Simbody, which couples the horizontal (x) and vertical (y) translations
of the tibia (with respect to the femur) to a single knee-angle, θ (Fig. 6). The spline
characterizes a permissible-motion manifold, which in this case is a curve in the
unconstrained planar motion space of the tibia with respect to the femur as the knee flexes.

The spatial transform and hinge matrices for the resulting mobilizer, with q = θ and 
such that both the single rotation and angular velocity of the tibia are about the z-axis of the
femur’s mobilizer frame (P in Fig. 6), are:

(36)

(37)

(38)

(39)

These matrices (36)–(39) are created automatically; the user only supplies the empirical or
analytical functions fx and fy mapping the knee-flexion angle to displacements.

The performance of the custom mobilizer implementation was compared to the application
of constraints to enforce the coupled translations during knee-flexion. The calculation of the
tibia acceleration and a leg swing simulation exercising the full range of motion were
clocked and times were normalized by the time to perform the same evaluations using an
ideal pin joint. The standard implementation required a planar joint with three dofs and two
constraint equations for a system of five DAEs. Both the pin and custom mobilizer, on the
other hand, required only one ODE but the custom mobilizer produced the physiologically
relevant motion of the tibia, unlike the pin.

The calculation of the acceleration of the knee using the conventional approach of
constraints required nearly six times more computing time than the custom mobilizer for the
same results (Table 2). In terms of simulation cost (time to integrate the equations) the
custom mobilizer implementation was 3.6 times faster than the use of constraints (in
Simbody, version 1.5). Error tolerances for constraint violations were set to 10−4 (0.1 mm),
which was also the same as the integration error tolerance. The custom mobilizer
implementation, however, remained exactly (to machine precision) on the permissible-
motion manifold using the same integration tolerance.
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5 Capturing coarse-grained kinematics of proteins
Most molecular dynamics investigations are performed using atomistic simulations in which
each atom is modeled as a point mass and bonds between them are modeled with forces
[57]. A multibody treatment is unnecessary for simulating a system composed only of
particles. However, it is common practice to constrain some of the bonds to remove the
highest frequencies from a simulation and allow larger integration step sizes. When groups
of atoms are treated as rigid bodies, multibody methods are appealing [24-27,29,58,59].
However, most molecular models group just a few atoms per body, and almost every torsion
along an atomic bond is given a degree of freedom.

Large biomolecular machines are impractical to simulate in such detail and many are
empirically observed to form nearly-rigid subcomponents, called domains, which move
relative to one another. Domains may consist of hundreds or thousands of atoms. The
connections among domains may exhibit very few degrees of freedom, but they are
composed of numerous rotational bonds and are capable of complex coupled motions.
Custom mobilizers simplify the dynamic model by incorporating empirical data to define the
permissible-motion space of the model. The reduced model can then be used to perform
coarse-grained simulations to investigate the large-scale dynamic behavior of
macromolecules.

To illustrate this, we selected Lysine–Arginine–Ornithine (LAO) binding protein from the
Hinge Atlas Gold (HAG) annotated set of domain hinge bending proteins [37,60].
According to the HAG annotation, the flexible hinge connecting the two domains consists of
residues 90–91 and 192–193. The “mobile” domain (blue body in Fig. 7) is thus comprised
of residues 92–191, while the remaining residues comprise the “stationary” domain (green).

To demonstrate how a mobilizer can be used to recreate bulk protein motion, a rigid-body
model of the LAO protein consisting of two rigid bodies (one for each protein domain)
connected by a custom hinge was constructed. In biomolecular parlance the molecule goes
from an “open” state to a “closed” state; this does not represent a topological change. We
first created a “synthetic-closed” conformation similar to the actual closed protein
conformation by rotating and translating the mobile domain (as a rigid body) from the open
conformation. We did this by structurally aligning the alpha-carbon atoms of the mobile
domain of the open conformation to those of the closed conformation using Visual
Molecular Dynamics [61]. The resultant mobile domain transformation specified by three
Euler angles and three translation components was then parameterized by a single internal
(mobilizer) coordinate, q, such that the mobile domain transitioned from the open to the
closed conformation as a function of q (18) from 0 to 1. This single q is analogous to the
reaction or transition coordinate in chemistry (International Union of Pure and Applied
Chemistry). Note that we could have chosen two or more internal coordinates if desired to
increase the modeled mobility.

Unlike purely kinematic models, however, the domains connected by the mobilizer are part
of a multibody system in which forces can be applied to drive the conformational changes of
the protein, as well as to estimate the net motive force necessary to generate observed
motions. Likewise, reaction forces can be calculated to determine the bearing loads of the
hinge region of the protein. Whether these models will yield information of biological
importance has not been evaluated because practical methods to represent their motion and
explore their dynamics have been unavailable.

Developing simulations across a range of physical scales may be enabled by these methods.
For example, it may be possible to study the contractile behavior of muscle fibers (i.e.
muscle cells) by first modeling the mechanics of myosin interacting with actin (e.g. [62])
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with reduced coordinates and then to replicate thousands of these subunits to model the
dynamics of a complete muscle fiber.

6 Discussion and conclusions
The mobilizer formulation encapsulates the mapping of the permissible spatial kinematics of
a body with respect to its parent in terms of a reduced set of internal coordinates and speeds
(i.e., the mobilities). This mapping (the hinge matrix, H) can vary as a function of the
internal coordinates, which enables parameterization of a vast set of permissible-motion
manifolds. The user-customizable mobilizer obviates the need for superfluous coordinates
and the subsequent enforcement of scleronomic constraints to obtain a desired permissible-
motion manifold for a joint. With fewer differential equations and no algebraic constraint
equations to enforce, mobilizers improve the efficiency of simulating biomechanical joints.
Since the mobilizer mapping is exact, no motion can exist off the manifold, and the accuracy
of the solution is also improved. Fewer coordinates also facilitate optimization, such as
fitting the model to an experimental trajectory by keeping the number of unknowns low and
providing a smaller unconstrained solution space that is always on the desired manifold.

We have demonstrated new joints that can be formulated directly, such as the ellipsoid
mobilizer, that provide novel behavior with no additional costs when compared to
conventional joints with the same degrees of freedom, such as a ball-and-socket joint, but
can be an order of magnitude faster than conventional joints with constraints. Furthermore,
we have constructed a mobilizer that utilizes user-defined functions to automatically specify
the position transform and hinge matrices when functions are twice differentiable and
continuous with respect to the mobilizer coordinates. The improved accuracy of joint
kinematics via the mobilizer, unlike the alternative of adding constraints, comes at low
computational cost even when evaluating user-supplied functions. For a model of the human
knee, simulations were 3.5 times faster for the mobilizer with embedded bone translation
information than enforcing the same joint kinematics via constraints. The ability to embed
joint-specific geometry from experimental measurements, such as MRI images of the human
knee or known protein conformations from crystal structures, makes mobilizers practical for
biomechanists and biomolecular modelers.

The mobilizer formulation improves the efficiency of internal-coordinate multibody
dynamics and simplifies the specification of joints necessary to simulate biomechanisms.
Speed and accuracy are garnered by minimizing the number of coordinates and eliminating
joint constraints, thereby reducing the number of system equations. These are the benefits
long enjoyed by mechanical engineers employing the state-of-the-art multibody
formulations. Now the power of these methods can be enjoyed by biomechanists and
computational biologists as well.
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Fig. 1.
Screw motion. A collar body translates (u2) along a common z-axis with a screw as it spins
(u1) about the same axis
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Fig. 2.
A mobilizer (bold dashed arrow) is the kinematic relationship between two bodies (a parent
P and a child body B) parameterized by 1 to 6 mobilities in Euclidian space. Equations of
motion are recursively generated in terms of the derivatives of the mobilities and applied
forces of each body
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Fig. 3.
An ellipsoid mobilizer used to model the human shoulder. The scapula (blue) contacts the
thorax approximated by an ellipsoid surface (shaded red) affixed to the ribs (green) at a
point (axes’ origin) in the scapula
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Fig. 4.
Ball-and-socket and ellipsoid mobilizers. A ball mobilizer (A) (drawn without the socket)
enables the purely rotational motion of a body (blue) about the center of the ball. The
ellipsoid mobilizer (B) requires the body to trace and remain normal to the surface of an
ellipsoid
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Fig. 5.
Example of a permissible-motion manifold. The manifold is a 2-dimensional surface in
Cartesian space and is parameterized by two coordinates, x and θ, where ρ is a vector
function of x and the radius of the manifold is a constant, r. The arrow illustrates the
direction of the orthogonal reaction loads necessary to enforce motion of a particle along the
permissible-motion manifold
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Fig. 6.
Schematic of the human knee joint (adapted from Delp et al. [35]). Due to the rolling and
sliding of the non-circular femoral condyles (oval fixed in the femur, parent P ) on the tibia
plateau (body, B), the joint does not operate as a simple pin. In this model, the tibia has one
rotational degree-of-freedom, θ, but translates in the plane of rotation (x, y) with respect to
the femur
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Fig. 7.
Simulated conformations of Lysine–Arginine–Ornithine (LAO) binding protein from (A)
open (q = 0) to (B) closed (q = 1)
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