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Abstract

The Coastal Giant Salamander (Dicamptodon tenebrosus) is classified as threatened at the northern periphery of its range in
British Columbia (BC), Canada, primarily due to forestry practices and habitat fragmentation. Characterising dispersal
behaviour and population connectivity is therefore a priority for this region, while genetic differentiation in core versus
peripheral locations remains unstudied in this wide-ranging species. We present seven new polymorphic microsatellite
markers for use in population genetic analyses of D. tenebrosus. We examine locus characteristics and genetic variation in 12
streams at the species’ northern range limit in BC, and within two regions representing sub-peripheral (North Cascades) and
core localities (South Cascades) in Washington State, United States. In BC, the number of alleles per locus ranged from 2-5
and observed heterozygosity ranged from 0.044-0.825. Genetic differentiation was highest between BC and the South
Cascades, and intermediate between BC and the North Cascades. Across loci, mean allelic richness was similar across
regions, while private allelic richness was highest in the core locality (corrected for sample size). These new microsatellite
loci will be a valuable addition to existing markers for detailed landscape and population genetic analyses of D. tenebrosus

across its range.
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Introduction

Species at the periphery of their range may show reduced genetic
diversity that can limit microsatellite variation and the potential for
detailed genetic analyses that are relevant for conservation [1]. The
stream-breeding Coastal Giant Salamander (Dicamptodon tenebrosus) is
endemic to the Pacific North-west coast of North America, from
northern California up to an approximately 100 km? arca in the
Chilliwack Valley of southern British Columbia (BC), Canada. In
Canada, D. tenebrosus is designated as Threatened and is on the
provincial Red List in BC (COSEWIC 2000: http://www.sarar-
egistry.gc.ca/species/speciesDetails), due to high susceptibility to
decline from habitat degradation owing to forestry practices [1,2].
Such peripheral populations are uniquely positioned to aid
conservation management throughout a species’ range, as they
can provide information regarding adaptive potential and local
adaptation at environmental margins [1]. We describe seven new
polymorphic loci specific for D. tenebrosus, complementing existing
microsatellite loci developed for D. tenebrosus [2,3] and those
previously cross-amplified from D. coper [4]. We examine locus
characteristics in populations of D. tenebrosus at their northern range
limit to evaluate genetic variation at these new microsatellite
markers. We also provide locus characteristics for two regions in
Washington State (WA) to examine for differences in allelic
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diversity, heterozygosity, and genetic differentiation between
peripheral populations in BC, with sub-peripheral (North Cascades)
and core (South Cascades) regions of the species’ range. These new
loci have potential use in other Dicamptodon species and combined
with existing loci, will enable range-wide genetic analyses using
high-resolution microsatellite data.

Materials and Methods

Ethics statement

This research was conducted with approval of the Animal Care
Committee of the University of British Columbia (permit A08-
0241) in accordance with the Canadian Council on Animal Care.

Samples were collected from D. tenebrosus throughout the
Chilliwack Valley of British Columbia in Canada (~70 km? in
area), and from two regions in Washington State, United States
(cach ~30 km? in area). All individuals were anaesthetised in a
0.05% solution of MS-222 (0.5 g/L), before a 2-4 mm? sample of
tail tissue was cut from the tail tip and preserved in 90% ethanol.
Individuals were immediately recovered in a stream water bath for
10-20 minutes before being returned to their capture location.
Genomic DNA was extracted from British Columbian samples
using a standard phenol-chloroform extraction method [5] and
from WA samples using a QIAGEN DNeasy 96 extraction kit. An
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enriched library was made by Ecogenics GmbH (Zurich,
Switzerland) from size-selected genomic DNA ligated into SNX
forward/SNX reverse linker [6] and enriched by magnetic bead
selection with biotin-labelled (CT);5, (GT);5, (GTAT); and
(GATA); oligonucleotide repeats [7,8]. Of 528 recombinant
colonies screened, 330 gave a positive signal after hybridization.
Plasmids from 100 positive clones were sequenced and primers
were designed for 33 microsatellite inserts, of which 25 were tested
for polymorphism. Polymorphism at seven loci (Table 1) was
established by preliminary testing undertaken by Ecogenics
GmbH (Zurich, Switzerland) using 42 randomly selected individ-
uals. We present locus characteristics and examine genetic
diversity in a larger sample size from 12 streams (i.e. populations)
sampled within the northern range limit of D. tenebrosus in British
Columbia (Latitude: 49°4'10; Longitude: -121°53'00). We then
compare BC locus characteristics with those from individuals
collected within the North Cascades (NC) (Latitude: 48°42'00;
Longitude: -121°12'00), and the South Cascades (SC) (Latitude:
45°41'00; Longitude: -122°08'00) of Washington State, which are
located approximately 60 km and 350 km south of the Chilliwack
Valley respectively. NC may therefore be regarded as sub-
peripheral, and SC as core within the entire range of D. tenebrosus.
Individuals with missing genetic data were excluded from the
dataset. Genotypes from each region (BC, NC and SC) were
screened for genetic relatedness in the program COLONY 2.0 [9]
and full sibs were removed from each population to minimise the
effect of relatedness on allele frequencies. This resulted in a total
sample size of 291 individuals (16-32 per stream, for 12 streams) in
BC, 22 for NC (4 streams) and nine for SC (two streams). Streams
are analysed separately for BC, and are pooled by region in
Washington State (NC and SC) due to small sample sizes per
stream and a less extensive sampling area. Furthermore, strong
evidence for high dispersal and minimal population genetic
structuring of D. tenebrosus in the Cascade Mountains [10] suggests
the sampling areas in WA represent panmictic populations.
Microsatellite loci were amplified for all individuals by polymer-
ase chain reaction (PCR) using a QIAGEN Multiplex PCR Kit. All
loci were labelled with fluorescent dye (forward primer) and
multiplexed in a 20 pl reaction on a PTC-100 Thermal Cycler (M]
Research). PCR reagents were: 2x QIAGEN Multiplex PCR
Master Mix (I1x final concentration), 0.2 uM primer mix (forward
and reverse), 5x Q-Solution (0.5x final concentration) and 10-20 ng
DNA. Amplification conditions followed the QIAGEN protocol for
Multiplex PCR using Q-Solution: 15 min at 95°C (initial activation
step), followed by 30 cycles consisting of 94°C for 30s, 57°C
annealing for 1.5 min, 72°C for 1.5 min, and a final extension step
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at 72°C for 10 min. Electrophoresis of multiplexed PCR products
was performed on an ABI3730 automated sequencer (Applied
Biosystems) with a LIZ500 size standard run with each sample.
Genotypes were manually scored using Genemapper v.3.7 (Applied
Biosystems). The presence and frequency of null alleles (Oosterhout
method) was examined using MICROCHECKER [11]. Tests for
departure from Hardy—Weinberg (HW) equilibrium and linkage
disequilibrium were performed using GENEPOP 3.4 [12] and
corrected using the sequential Bonferroni procedure [13]. Observed
and expected heterozygosity, and the frequency of private alleles in
each region were calculated using GenAlex 6.2 [14]. The observed
number of alleles in a sample is highly dependent on sample size,
therefore allelic richness and private allelic richness was calculated
using HP-Rare 1.1 [15] correcting for sample size (n) in each region
using the rarefaction method, which fixes n as the smallest number
of individuals typed for a locus in a sample [16]. Pairwise Fst was
calculated in Microsatellite Analyser 4.2 [17] between all 12 BC
populations, NC and SC, and between BC populations pooled with
NC and SC, with 10 000 permutations on alleles using only loci in
linkage and HW equilibrium. Significant genetic differentiation (Fst)
between populations was assessed after Bonferroni correction using
a threshold of P<C0.05, and significant genotypic differentiation
within populations was assessed using GENEPOP 3.4, which tests
whether genotypes were drawn from the same distribution in all
populations [12].

Results

None of the loci were in linkage disequilibrium within BC
populations, NC or SC after correction for multiple comparisons.
There was no evidence for scoring error due to stuttering or large
allele dropout in any of the loci within any region. In BC,
Dicten27 and Dictenl] deviated from HW equilibrium in 100%
and 91.7% of the populations sampled respectively, while all other
loci were in HW equilibrium across all BC populations except for
Dicten29 in one population (Table S1, Table 2). Dicten27 and
Dictenl1 will therefore be of limited use in further studies of
population substructuring. All loci in NC and SC were in keeping
with HW expectations (Table 2). Evidence for null alleles was only
found for Dicten27 in BC, as suggested by the excess of
homozygotes for most allele size classes. Although similar among
regions, observed heterozygosity (He) across loci increased with
sample size of each region, with mean He (* s.e.) being highest in
BC (0.321%0.11, n=291), intermediate in SC (0.302%0.09,
n=22) and lowest in NC (0.266%+0.09) (Table 2).

Table 1. Locus name, clone name, GenBank accession number, primer sequence with fluorescent dye label forward (F) and reverse
(R), clone repeat unit and primer annealing temperature (T,°C) for D. tenebrosus microsatellite loci.

Genbank accession

Locus Clone name number Primer sequence (5'-3) Clone repeat unit T.°C
Dicten02 020048 GU187896 F:(NED)ACCTGTGGACAGGAGGTTTG R:CATTCCCCTGTGTGGCTAAC (GT)y2 57
Dicten11 020320.2 GU187905 F:(FAM)CTCGACCACTTCGGTCAAAC RTGCCTCTGGATACCTTGTGG (CATA)s 57
Dicten18 020361 GU187909 F:(VIC)CGAATGGAGCACATACAGACC R:TTTCACAGGCTTTTGCAGTG (ATAQ),, 57
Dicten20 020363 GU187910 F:(NED)TCGCACTTTATAAATCCCAACAC R:ACCCAACCCCATAAGGTCTC (TACA) g 57
Dicten25 020330 GU187907 F:(VIO)GCTTCTGCGGTGAAGGATG R:AGACCATCCGTAGCATGACC (ATAC)14 57
Dicten27 020355 GU187908 F:(NED)AGGTTCGCGCTATATAAATCC R:GCACCACATGATGTTTGACAG (ATAC)1 57
Dicten29 020326 GU187906 F:(VIC)TTCGTGATATATAACAACCAGCACR:CAAATCAGGCAAATACTTAATGG  (CATA)s (CATG) 57
(CATA)14

doi:10.1371/journal.pone.0014333.t001
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The mean number of alleles across loci (= s.e.) showed an
expected increase with sample size in  each region
(BC=3.86%0.40; SC=2.71%0.61; NC=2.14%0.26). However,
when corrected for sample size (n =9 samples with 18 genes based
on NC), allelic richness in BC was more similar to NC and SC
BC=2.31%0.31; NC=2.71%£0.61; SC=1.99%0.25), indicating
that estimates of allelic richness in NC and SC may be
underestimated due to sample size. Despite a higher number of
private alleles in BC (as expected for a greater sample size), their
mean frequency was very low (mean 0.04*0.02) compared to NC
(0.295%0.0) and SC (0.22%0.15) (Table 2). Furthermore, when
corrected for sample size, private allelic richness was highest in SC
(0.92) compared to NC (0.25) and BC (0.53).

Pairwise Fst was calculated excluding Dicten 27 and Dicten 11 in
all regions. Genetic differentiation (Fst) was significant (P<<0.05) for
all pairwise regional comparisons, and followed expectations of
isolation by distance, with the lowest differentiation between the
northern peripheral (BC) and sub-peripheral (NC) regions
(Fst=0.176) The highest genetic differentiation was between the
most spatially distant BC and SC regions (Fst=0.330) and was
mtermediate between NC and SC (Fst=0.192). Genetic differ-
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Table 2. Summary of locus characteristics for D. tenebrosus by region (British Columbia, 12 populations pooled), North Cascades
and South Cascades.
Allele size # Private alleles
Region A range He Ho (frequency range) Null HW test
British Columbia (n=291) # of streams not in HW (%)
Dicten02 5 168-190 0.374 0.450 4 (0.002-0.151) —0.241 0
Dicten11 4 139-149 0.504 0.825 2 (0.009-0.009) —0.444 11(91.7)
Dicten18 3 118-126 0.044 0.038 0 0.038 0
Dicten20 4 211-225 0.130 0.137 1 (0.002) —0.071 0
Dicten25 2 193-197 0.063 0.058 0 0.027 0
Dicten27 4 121-141 0.592 0.343 1 (0.138) 0.227% 12 (100)
Dicten29 5 158-174 0.332 0.395 1 (0.010) —0.157 1(8.3)
North Cascades (n=22) P-value for HW test
Dicten02 2 178-188 0416 0.59 1 (0.295) —0.360 0.121
Dicten11 2 139-147 0.268 0.32 0 —0.216 1.0
Dicten18 2 118-126 0.087 0.09 0 —0.080 1.0
Dicten20 3 203-231 0.606 0.50 0 0.138 0.101
Dicten25 1 193 0.000 0.00 0 0 -
Dicten27 133-141 0.492 0.36 0 0.175 0.07
Dicten29 2 158-182 0.087 0.00 0 0.238 0.024*
South Cascades (n=9)
Dicten02 2 180-188 0.444 0.444 1 (0.667) 0 1.0
Dicten11 2 139-147 0.222 0.198 0 —0.118 1.0
Dicten18 2 122-126 0.111 0.105 0 —0.057 0.860
Dicten20 5 203-231 0.667 0.710 2 (0.056-0.111) 0.053 0.403
Dicten25 2 193-197 0.222 0.198 0 —0.118 1
Dicten27 1 133 0.000 0.000 0 0 =
Dicten29 5 158-182 0.444 0.457 1 (0.056) 0.044 0.548
n= sample size of individuals, A= number of alleles, He = expected heterozygosity, Ho = observed heterozygosity, Null = estimated null allele frequency (Oosterhout
method), and the number of private alleles per locus and their frequency range for each region. Results of Hardy-Weinberg (HW) equilibrium tests are presented for
British Columbia as the number of populations with significant deviation from HW expectations (P<<0.05 after Bonferroni correction). Within the North Cascades and the
South Cascades, P-values of HW tests are presented for each locus.
*= significant deviation from HW equilibrium after Bonferroni correction.
= evidence for null alleles at this locus.
See Table S1 for population-level locus characteristics in British Columbia.
doi:10.1371/journal.pone.0014333.t002

entiaton within BC populations was low to moderate and significant
for ~31% of all pairwise comparisons, while all 12 populations
differed significantly from NC and SC (Table 3), further
emphasising the genetic distinctiveness of the three regions. There
was highly significant genotypic differentiation (Fisher’s exact test
=P<0.002, df = 14) within populations for all loci except Dicten18
and Dicten27 (Fisher’s exact test =P>0.1, df=14).

Discussion

We present seven new polymorphic microsatellite loci for D.
tenebrosus, and show variation in allelic richness and increasing
genetic differentiation between peripheral (BC), sub-peripheral
(NC) and core (SC) regions of the species’ range. Although our
sample sizes restrict conclusions regarding differences in genetic
variation between regions, our data indicate that allelic richness is
comparable between regions, with rare alleles being more common
in the range core. Previous studies at the species’ northern periphery
have found monomorphism or low genetic diversity in loci for D.
lenebrosus (range of He for three loci = 0.0-0.24) [2,3], compared to
studies conducted in the South Cascades (range of He for nine loci
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=0.18-0.85) [10], yet these studies were not concurrent and used
different microsatellite markers. Clearly, a larger sample size of core
populations and more genetic markers will be necessary to
adequately test the central-peripheral hypothesis in this species
[18]. The new markers we present will provide greater power to
conduct these analyses, and ensure that genetic structure can be
well-characterised across the range of D. tenebrosus. However, our
data provide the first indication of high genetic differentiation
between British Columbian and Washington State regions, lending
it to broader questions relating to ecological adaptation in this
species. Not only will the new loci provide increased potential for
high data resolution in genetic studies of this species, but may also be
useful in studies of three other Dicamptodon species occurring in the
Pacific Northwest (e.g. D. copei, D. atterimus, D. ensatus). We suggest
these new loci will complement existing loci [2,4] for conducting
analyses of population genetic structure, and the effects of habitat
degradation on core and threatened peripheral populations of this
stream amphibian.
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