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Abstract

Background: Reverse transcriptase is a major drug target in highly active antiretroviral therapy (HAART) against HIV, which
typically comprises two nucleoside/nucleotide analog reverse transcriptase (RT) inhibitors (NRTIs) in combination with a
non-nucleoside RT inhibitor or a protease inhibitor. Unfortunately, HIV is capable of escaping the therapy by mutating into
drug-resistant variants. Computational models that correlate HIV drug susceptibilities to the virus genotype and to drug
molecular properties might facilitate selection of improved combination treatment regimens.

Methodology/Principal Findings: We applied our earlier developed proteochemometric modeling technology to analyze
HIV mutant susceptibility to the eight clinically approved NRTIs. The data set used covered 728 virus variants genotyped for
240 sequence residues of the DNA polymerase domain of the RT; 165 of these residues contained mutations; totally the
data-set covered susceptibility data for 4,495 inhibitor-RT combinations. Inhibitors and RT sequences were represented
numerically by 3D-structural and physicochemical property descriptors, respectively. The two sets of descriptors and their
derived cross-terms were correlated to the susceptibility data by partial least-squares projections to latent structures. The
model identified more than ten frequently occurring mutations, each conferring more than two-fold loss of susceptibility for
one or several NRTIs. The most deleterious mutations were K65R, Q151M, M184V/I, and T215Y/F, each of them decreasing
susceptibility to most of the NRTIs. The predictive ability of the model was estimated by cross-validation and by external
predictions for new HIV variants; both procedures showed very high correlation between the predicted and actual
susceptibility values (Q2 = 0.89 and Q2

ext = 0.86). The model is available at www.hivdrc.org as a free web service for the
prediction of the susceptibility to any of the clinically used NRTIs for any HIV-1 mutant variant.

Conclusions/Significance: Our results give directions how to develop approaches for selection of genome-based optimum
combination therapy for patients harboring mutated HIV variants.
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Introduction

The threat to human health posed by the HIV/AIDS epidemic

is increasing and represents now the third largest cause of death by

infectious disease in the world [1]. Since its recognition in 1981

more than 25 million people died from AIDS; only in 2008, 2

million people died, 33 million were living with HIV, and 2.7

million became infected with the virus [2]. Although the access to

highly active antiretroviral therapy (HAART) has reduced the

mortality in the Western world, an estimated 38,000 [estimated

range 30,000–46,000] of approximately 2.25 million [1.9–2.6

million] people with HIV in the North America, Western and

Central Europe died from AIDS in 2008 [2].

When given as mono-therapy, none of the available antiretro-

virals is able to suppress HIV replication for any extended period

of time. HAART comprises combinations of three or more drugs

that aim to target HIV in different ways. First-line treatments

include two nucleotide/nucleoside analog reverse transcriptase

(RT) inhibitors (NRTIs) in combination with a non-nucleoside RT

inhibitor (NNRTI) or a protease inhibitor [3]. RT is the sole

enzyme producing double-stranded DNA from the single-stranded

RNA genome, which is an essential step in the virus’ replication

[4–6]. NRTIs are analogs of nucleotide substrates that lack the 3-

OH group present in the four natural deoxyribonucleotides.

NRTIs are phosphorylated by cellular kinases to form 59-

triphosphates, which are used by HIV-RT as substrates and

incorporated in the extending DNA chain [4,6]. NRTIs thereby

act as chain terminators, blocking further elongation of the DNA

[7]. Eight NRTIs have been approved for clinical use: Zidovudine

(AZT), Didanosine (ddI), Zalcitabine (ddC), Tenofovir (TDF),

Lamivudine (3TC), Emtricitabine (FTC), Abacavir (ABC), and

Stavudine (d4T).
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Although HAART greatly increases the life expectancy of

people with HIV, drug resistant virus variants emerge often.

Development of resistance is primarily due to the high viral

replication rate (estimated to 109 to 1010 HIV virions per day in an

average infected person [8]) and the lack of fidelity of RT with an

estimated mutation rate of ,561025 per base per generation [9].

There are two distinct mechanisms for development of resistance

to NRTIs. The first is by mutations that primarily cause steric

hindrance, decreasing the rate of incorporation of the NRTI into

the elongating DNA chain. The other is by mutations that increase

phosphorolysis leading to removal of already incorporated chain-

terminating inhibitors from the DNA, thereby allowing reverse

transcription to continue.

When first-line therapy fails, the treating physician needs to

select a new regimen from multiple alternative possible drug

combinations. Since anti-HIV drugs acting at the same target and

binding site are rather similar in their molecular properties, cross-

resistance is common and a new regime cannot be based on the

assumption that the virus will be susceptible to the drugs

remaining in the therapeutic arsenal. Therefore, resistance testing

has become an important tool in management of HIV. Such

testing can be performed either by sequencing the viral genes

coding for the drug targets (genotypic resistance testing), or by

measuring viral activity in the presence and absence of a drug

(phenotypic resistance testing). Genotypic assays are much faster

and less expensive than the phenotypic ones, but sequence data

provide only indirect evidence of resistance and interpretation is

difficult for complex mutational combinations.

Several types of statistical and machine learning techniques

have been proposed for finding relationships between mutations in

the HIV genome and phenotypic drug susceptibility. These

include support vector regression [10–12], least-squares regression

[12], artificial neural networks [12,13], decision trees [12], and

non-linear regression methods [14]. However, all these models

considered only one drug at a time. Hence the predictions afforded

by them did not incorporate any information on similarities and

differences in the structural and physicochemical properties of the

antiretrovirals. This is unfortunate as it is these properties that

determine the similarities and differences in a drug’s interaction

with drug-sensitive and drug-resistant virus variants. The models

are therefore not optimal for explaining cross-resistance and they

are unable to extrapolate to new anti-HIV agents. Moreover, in

the previous modeling studies mutations were represented from

the amino acid letter codes as binary indicator variables, rather

than being based on quantitative descriptions of molecular

properties of the mutated sequence residues that are relevant for

drug-protein interactions (e.g. amino acid size and shape,

hydrophobicity, charge, etc.). For this reason the models have

limited ability to generalize and predict the effect of less common

mutations on virus-drug interactions.

It is important to realize that in vitro susceptibility is only one of

the factors to consider for drawing clinical inferences. Models have

earlier also been developed to predict therapy outcome from virus

genotype using clinical markers (viral load and CD4+ cell count),

data on drug combinations in previously failed treatment

regimens, and patient data (age, gender, mode of virus

transmission, and adherence), as additional parameters in the

modeling [15,16]. However, these models still do not include any

structural or physico-chemical data and hence cannot extrapolate

to new mutations and novel drugs. Although the models show fair

predictive ability (the accuracy of EuResist prediction engine being

76% when the full feature set is available for the prediction)

presumably because of the inability to generalize to new mutations

and drugs, these models do not include recently approved drugs

for which less clinical data has been collected, such as for example

the HIV protease inhibitors darunavir and tipranavir.

For quite some time we have been developing a multivariate

modeling approach, termed proteochemometrics (PCM), that can

perform concomitant analysis of the interactions of multiple

proteins with multiple ligands. In PCM interaction activity data

are correlated to the physicochemical and structural descriptions

of proteins and ligands and their-derived protein-ligand cross-

description, using a suited multivariate data modeling technique.

In this way interpretable and predictive interaction models are

created that are able to generalize to new protein-ligand

combinations, and to new proteins and new ligands [17]. We

have previously applied PCM for the analysis of drug interactions

with different classes of G-protein coupled receptors, [18–24],

antibody-antigen interactions [25], cleavability of protease sub-

strates [26], and HIV resistance to protease inhibitors [27]. Here

we aimed to create a generalized PCM model for predicting the

susceptibility of mutated HIV variants to the clinically used

NRTIs. The approach presented here to model susceptibility of

antiretrovirals might find use in genome-based optimization of

HIV therapy.

Results

Development and evaluation of the PCM model
The data set used herein comprised 728 HIV variants with

unique RT sequences, covering phenotypic assays for eight

NRTIs; in total the data set comprised 4,495 drug-RT

combinations. As detailed in the Methods section, the eight NRTIs

of the study were characterized by seven principal components

derived from 58 molecular descriptors representing properties

related to molecular geometry, flexibility, and the ability of the

inhibitor to form different types of non-covalent interactions

(Table S1). In the following, these seven principal components will

be denoted I descriptor block. The 165 mutated positions in the

RT sequences were each encoded by three physicochemical z-

scale descriptors, totally giving 16563 = 495 variables (R descrip-

tor block). The ability for inhibitor-specific interactions of HIV

mutants was described by inhibitor-RT cross-terms (I6R block)

and eventual cooperative effects of sequence mutations were

represented by cross-terms between RT descriptors (R6R block).

Several models of varying complexity were created from these

descriptions in order to find the model that provided the highest

predictive ability and best interpretability.

Model-1 included only inhibitor and RT descriptors (I and R

blocks, 7+495 = 502 X variables); Model-2 used inhibitor and RT

descriptors together with inhibitor-RT cross-terms (I, R and I6R

blocks, 502+76495 = 3,967 X variables); Model-3 used additionally

1,128 intra-RT cross-terms (i.e. I, R, I6R, and R6R blocks,

3,967+1,128 = 5,095 X variables). The logarithmically trans-

formed change in susceptibility (log fold-decrease in susceptibility,

here abbreviated logFDS) was used as the response (y) variable.

Correlation of the X variables to y was performed by partial least-

squares projections to latent structures (PLS).

Model performances are summarized in Table 1. Model-1 could

only partially explain the variation in inhibitor-RT susceptibility,

the squared correlation coefficient (R2) being 0.57. Model-2

performed substantially better; the R2 being 0.92. These results

were expected since Model-1 used merely a linear combination of

drug and RT descriptors and hence could explain only the linear

part of interactions (i.e. mutations that lead to cross-resistance).

Due to the cross-terms, Model-2 can locate inhibitor-RT mutant

property combinations that lead to decrease of mutated virus

susceptibility to one or few of drugs, while showing lower influence

Modeling of RT
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or even opposite effects on other inhibitors. The large difference

between the two R2 values indicates a high degree of non-linearity

in inhibitor-RT interactions, which results in differing resistance

profiles for the different NRTIs.

Model-2 was used to identify the most influential RT descriptors.

Of the 495 descriptors, 48 obtained variable importance in

projection (VIP) values larger than one and were used to choose

intra-RT cross-terms (see Methods for explanation of VIP and for

further details on selection of intra-RT cross-terms). Adding intra-

RT cross-terms (Model-3) gave a further improvement, thus

confirming the existence of cooperative effects of mutations in

the transcriptase in the development of resistance.

For all three models, the predictive ability, as assessed by 7-fold

cross-validation, was very close to the goodness of fit; for Model-3

the cross-validated squared correlation coefficient Q2 was as high

as 0.89. However, since the results of cross-validation were used in

model optimization (i.e. selecting scaling weight for cross-terms

and number of extracted PLS components) there is a risk for a bias

in the Q2 estimate, and we wanted to ascertain that these high Q2

values were not overoptimistic. To this end we performed external

predictions by building the models on the data for only 70% (503

of 728) of RT sequences and setting aside the remaining 225

sequences as an independent test-set. As seen from Table 1, the

external prediction results correlate well with the goodness of fit

and cross-validation results for the three models; the margin

between R2 and Q2
ext is 0.09 or less and the margin between Q2

and Q2
ext is as small as 0.02–0.04. The difference between the

goodness of fit and the predictive ability of a PLS model can be

seen as a measure for the risk of having chance-correlations with

irrelevant descriptors in the model, which further on could give

rise to erroneous interpretations of the physical relationships

underlying the model. Alternatively the difference could result

from the presence of outliers in the data-set, which would also bias

the interpretations [28]. The small differences between these

measures for all our three models verify that they can be used

reliably for interpretations.

The performance of Model-3 is summarized in Table 2,

presenting the root mean squared error of prediction (RMSEP) as

well as the first quartile (Q1), median, and third quartile (Q3) of

the absolute values of prediction errors for each of the eight

inhibitors. As seen from the table, the average RMSEP is 0.25

logarithmic units, the best results being obtained for ddI, ddC,

d4T, ABC, TDF, and FTC. The average Q1 is 0.07, the median

0.13, and the Q3 0.23 logarithmic units. The performance of

Model-3 is also illustrated graphically in Figure 1. Inspection of

the figure reveals that altogether about 94% of the predictions fall

in the area between the oblique grey lines indicating an error of

60.5 logarithmic units. In less than 1% of the cases (13 out of

1372) the prediction errors exceed 61 log units (not shown

graphically). A closer inspection of the data presented in Figure 1

reveals that eight of the thirteen largest mispredictions occurred

for 3TC, while five occurred for AZT. A feasible explanation for

this is that for these two inhibitors the FDS values often exceeded

the upper limit of the assay, which we had approximated to

FDS = 200 for the sake of the modeling (see Methods). Obviously

this may lead to over or underestimations of the impact of

mutation combinations on drug susceptibility in heavily mutated

virus variants. For 3TC an additional explanation is that this drug

is highly influenced by mutations of a single residue, M184, to V

or I. A point mutation at this position is present in more than half

the data-set sequences and brings about an, on the average, 30-

to 100-fold loss of susceptibility for 3TC (vide infra). Inspection of

the sequences of the four isolates harboring this mutation, but

which retained high susceptibility to 3TC, indicates that although

V (Valine) was the dominant amino acid at position 184,

genotyping had detected also the wild type amino acid at this

position; thus the virus isolate actually contained a mixture of

several strains. Similarly, in three of the four virus isolates that

were predicted falsely to be susceptible to 3TC, genotyping along

with the wild type amino acid M identified also the mutant

M184V. Thus, the mispredictions can be explained by the

discrepancy between the results of genotype and phenotype

assays; in some cases the genotypic assay identified M as the

prevailing amino acid but in the phenotypic assay the dominant

amino acid was actually V, while in some other cases the situation

was the opposite.

Analyzing the PLS regression equation further reveals that the

over-predicted FDS for isolate 75739 versus AZT (shown as the

AZT-75739 encircled point in bottom right corner of Figure 1)

arises mainly due to an F77L mutation. All virus variants in the

work-set bearing this substitution are AZT resistant (logFDS = 1.7–

2.3). Moreover, the RT of isolate 75739 contains several atypical

mutations, such as T215H, which is not present in any of the

work-set sequences. Since histidine is more hydrophilic than the

amino acids that predominate at this sequence position (i.e. T, Y,

and F), the 75739 isolate resides outside the modeled physico-

chemical space. Accordingly the model derives the estimate for the

isolate by extrapolation. It is also appropriate here to mention that

PLS modeling provides tools for detection of outliers to identify

situations when predictions must be used with caution. This

includes the distance-to-model, DModX, criterion [29], which for

the AZT-75739 pair exceeded grossly the critical value in the

model; the DModX (normalized) was 1.83; the critical value (at the

default significance level of 0.05) was 1.11.

The few discrepancies observed are not unique to our approach

and have been reported previously for genotype/phenotype data

[12] and even in between different phenotypic assays [30]. It is not

expected that the influence of rare mutations should be possible

always to be fully accounted for in statistical modeling. Still,

despite the few mispredictions, the high Q2 and Q2
ext values of our

model manifest its robustness and suggest that quantitative

assessment can be done on the impact of RT mutations on the

Table 1. Performance of proteochemometric models for prediction of HIV-1 RT drug susceptibility.

Model Descriptor blocks Goodness of fit (R2) Predictive ability (Q2) External predictions (Q2
ext)

Model-1 I, R 0.57 0.55 0.51

Model-2 I, R, I6R 0.92 0.87 0.85

Model-3 I, R, I6R, R6R 0.95 0.89 0.86

In the table I and R represent the descriptors of the inhibitors and the reverse transcriptases, respectively. I6R represents the cross-terms of descriptors of the inhibitor
and the reverse transcriptase. R6R represents the intra-reverse transcriptase cross-terms (i.e. cross-terms formed from descriptors of different amino acids in the reverse
transcriptase sequences).
doi:10.1371/journal.pone.0014353.t001
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susceptibilities for each one of the NRTIs in the model. Although

the RT sequences in the test-set harbored, on average, eleven

mutations, the root mean squared error of prediction (RMSEP) was

as low as 0.25, which indicates a good model performance also for

heavily mutated virus variants.

Analysis of the role of individual amino acids in drug
resistance

Interpretation of a PLS model can be based on the analysis of

the coefficients of its regression equation. E.g., a positive value for

a coefficient for a z1-scale descriptor of an RT residue reveals that

a mutation to a more hydrophilic amino acid at this position

should (on the average) lead to decreased susceptibility to the

NRTIs, whereas a negative value indicates the opposite.

Comparisons of coefficients for all three z-scale descriptors of a

mutated sequence position thus allow delineation of physicochem-

ical and structural properties of amino acids that are responsible

for the change in susceptibility. This in turn allows for predictions

of the effect for mutations to any amino acid, including to such

that are not present in the virus variants in the model training

data-set.

The model also takes into account of interaction effects. A large

absolute value of a coefficient for a cross-term between RT and

inhibitor descriptors reveals that mutations of the represented

sequence residue induce large changes in the susceptibilities for

some particular inhibitors and not-so-large or even opposite

changes in the susceptibilities for other inhibitors. A large absolute

value of a coefficient for an intra-RT cross-term pinpoints

mutation pairs in the RT that regulate drug resistance in a

cooperative manner. However, a detailed interpretation that

includes the effects of cross-terms is difficult to describe in a written

account like this one. This is due to the large number of cross-

terms that needs be taken into account simultaneously. An

alternative, simpler approach is to use the whole regression

equation to predict drug susceptibilities of in-silico mutated virus

variants. This is done in Figure 2, which presents the predicted

changes in virus susceptibilities to the eight inhibitors due to single

point mutations in the wild type RT sequence. Shown are the 99

most frequent mutations; each of them was found in over 9% of

the isolates in the data-set.

The analysis of Figure 2 shows that 18 mutations reduce the

susceptibility to one or several NRTIs by more than 0.2 log units.

Some of these mutations afford inhibitor-specific effects. For

example, mutations L210W and T215Y/F are the most

deleterious for the thymidine analogues AZT and d4T, although

they also reduce the susceptibility to the other NRTIs. Similarly,

mutation M184V/I confers high resistance to the two structurally

Figure 1. Predictive ability of the HIV RT proteochemometric model. Illustrated is the external predictive ability of the proteochemometric
model (Model-3) for HIV drug susceptibility. The predicted versus measured susceptibility values are shown as red triangles. Goodness-of-fit of the
models (i.e. model data) are shown as blue triangles.
doi:10.1371/journal.pone.0014353.g001

Table 2. Prediction errors for the eight NRTIs in
proteochemometric model (Model-3).

NRTI Cross-validation results External predictions

RMSEP* Q1 Median Q3 RMSEP Q1 Median Q3

3TC 0.34 0.07 0.16 0.26 0.37 0.07 0.14 0.24

ABC 0.17 0.04 0.09 0.17 0.20 0.05 0.12 0.20

AZT 0.42 0.11 0.21 0.40 0.47 0.12 0.24 0.48

d4T 0.14 0.04 0.08 0.15 0.18 0.04 0.09 0.16

ddC 0.16 0.05 0.10 0.17 0.17 0.05 0.09 0.17

ddI 0.12 0.03 0.07 0.14 0.15 0.04 0.08 0.15

FTC 0.21 0.06 0.14 0.20 0.25 0.05 0.12 0.23

TDF 0.23 0.05 0.12 0.19 0.22 0.14 0.12 0.24

Average 0.22 0.06 0.12 0.21 0.25 0.07 0.13 0.23

*RMSEP – root mean squared error of prediction; Q1 – first quartile; Q3 – third
quartile.
doi:10.1371/journal.pone.0014353.t002
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very similar inhibitors 3TC and FTC; it also affects susceptibility

to ABC, DDC, and DDI, but is unimportant or even beneficial for

AZT, d4T, and TDF. In contrast, some other mutations, such as

Q151M exert similar influence on most of NRTIs (except on 3TC

and FTC).

Figure 2 also discloses that quite many polymorphic mutations

(i.e. reflecting natural variations in the RT) as well as some of the

drug-pressure induced mutations may cause hyper susceptibility to

certain inhibitors. For example, mutations M184V/I and K65R,

which are the most deteriorating for 3TC and FTC, lead to

significant increase in susceptibility to AZT, thus suggesting a

benefit of combining these inhibitors. (However, co-formulated

3TC/AZT is only considered an alternative for first line therapy,

due to adverse effects of AZT [3]).

Online prediction of susceptibility resulting from
accumulated mutations

Although some single point mutations are sufficient to render

HIV resistant to individual drugs, escape from combination

regimens requires accumulation of multiple mutations, which

often appear in specific patterns. Cooperative effects that augment

drug resistance and/or compensate for loss of virus viability are

well known for many sets of mutations. E.g., a pathway that the

Figure 2. Effects of amino acid mutations on NRTI susceptibility. Illustrated are the changes in susceptibility to the eight NRTIs on single
amino acid mutations in the wild type HIV-1 RT. Shown are the decimal logarithms of the fold-changes in susceptibility calculated from the
proteochemometric model (Model-3). The green, yellow, and red areas in each panel represent susceptibilities falling, respectively, below the lower
cut-off, between the lower and upper cut-off, and above the upper cut-off levels for resistance; the cut-offs being as defined by the PhenoSense assay
documentation [http://www.monogramhiv.com/phenosense_report.aspx]. For some NRTIs, only one cut-off value is defined (shown in the figure by
omission of the yellow zone); the cut-off for ddC (a discontinued NRTI) is set arbitrarily for illustration purposes only.
doi:10.1371/journal.pone.0014353.g002

Modeling of RT
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virus uses often to escape from thymidine analogs is by the

mutation T215Y (or T215F), followed by M41L, which in turn is

followed by L210W [31]. As seen in the above-presented Figure 2,

the model does not find that mutations of residues 41 and 210

alone are influential on the susceptibility to d4T. However,

analysis of the regression equation reveals that large regression

coefficients have been given to the cross-terms between the

descriptors of these sequence positions and position 215, thus

indicating the possibility for strong cooperative effects within the

mutation triplet.

The number of all possible combinations of mutations in the RT

is immense and it is therefore beyond any practical possibility to

present their complete analysis in a written report. Therefore, to

facilitate predictions of the drug susceptibility of any HIV RT

variant bearing any clinically known or hypothetical mutation

pattern, we have set up a Web service to allow free public access to

our model. The service makes use of the novel XMPP protocol

[32], and a web page for invoking the service is available at [33].

Figure 3 presents screenshots of outputs from the web page,

illustrating the predicted susceptibilities for two patterns of

mutations: K65R+M184V (Panel A) and M41L+L210W+T215Y

(Panel B). We can there see that the double mutant

K65R+M184V is highly resistant to 3TC and FTC, while it

shows essentially unchanged susceptibility to d4T and TDF and is

hypersusceptible to AZT. On the other hand, the RT variant that

harbors the triple mutation M41L+L210W+T215Y is highly

resistant to AZT, while it shows an unchanged susceptibility to

ddC and ddI. By comparing the susceptibility profiles in the two

panels one can see that co-administration of AZT and ddI would

defer each of these resistance development pathways. On the other

hand, once all five mutations have accumulated in one HIV

variant, this would confer resistance to all of the available NRTIs,

which is a stage that poses a challenge for current anti HIV

therapies.

Discussion

In this study we applied proteochemometrics modeling to

analyze susceptibilities of multiple HIV mutants to eight clinically

used nucleoside/nucleotide analog reverse transcriptase inhibitors.

We represented the sequences of RT variants by physicochemical

property (z-scale) descriptors, rather than using letter codes for

amino acids. This approach enabled us to develop models that can

be used to assess the contributions of distinct physico-chemical

properties of sequence residues and their combinations for the

induction of resistance to RT inhibitors, and it allows us to

perform predictions for new RT sequences, provided that they fall

within the mutational space of polymorphic or drug-pressure

created mutants of the HIV-1 subtype B.

We assessed the predictive ability of the obtained PLS model by

cross-validation and by predicting a large independent test-set

comprising more than 200 RT mutants. The data-sets of earlier

studies addressing HIV-RT drug resistance vary both in size and

diversity. It is therefore impossible to straightforwardly compare

the performance of different computational techniques for

modeling the drug resistance from the literature data. However,

to the best of our judgment, the resolution of our PCM model,

being characterized by Q2
ext = 0.86 and RMSEP = 0.25, is superior

compared with the resolution of the other hitherto best-performing

approaches, which analyzed the susceptibilities for each NRTI in

separate models [11–13]. This is best illustrated by comparing our

results with those of the previously reported models that were also

based on Stanford HIV DB data. Thus, in a study by Rhee et al.

[12] regression models were created for six NRTIs exploiting least-

squares regression (LSR), support vector regression (SVR), and

least angle regression (LARS) and the models had been evaluated

by 5-fold cross-validation. The mean values of squared correlation

coefficients between the actual and predicted logFDS values (i.e.

Q2) were for these models, respectively, 0.36, 0.53, and 0.72. The

best results were achieved for 3TC (Q2 being, respectively, 0.76,

0.84, and 0.93), whereas the worst predictions were for TDF (Q2

being 0.01, 0.34, and 0.40) (However, it shall be noted that the

study of Rhee et al. comprised 639 isolates from the Stanford

database whereas our study contained 728 isolates so the results

are not entirely comparable). It is notable that no models were

created for ddC and FTC in the Rhee et al. study, which are

inhibitors for which comparatively little amount of data have been

collected in the Stanford HIV DB. While the reason for this could

be that ddC was discontinued in 2006, at least for FTC it could be

that insufficient data were available to create a model with the

methods chosen. Again this contrasts to the PCM approach, which

Figure 3. Prediction server for NRTI susceptibility. Shown are screenshots from the output from the web-page at www.hivdrc.org, utilizing the
web-service based on the proteochemometric model (Model-3). Shown are the predicted susceptibilities for the eight NRTIs covered by the model for
two sets of HIV mutant strains; K65R+M184V (panel A), and M41L+L210W+T215Y (Panel B). The web service takes an HIV-1 RT sequence as input and
predicts the virus susceptibility to the NRTIs using the unified proteochemometric model.
doi:10.1371/journal.pone.0014353.g003
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is able to accommodate good predictions also for a new inhibitor

for which only little data is available.

In another recent study by Kjaer et al. [13], genotype-

phenotype correlation models were induced for all clinically used

NRTIs (except for ddC), by use of artificial neural networks

(ANN). The quality of ANN models had been estimated by 10-fold

cross-validation and the squared correlation coefficients between

the predicted and observed log susceptibility values (i.e. Q2) ranged

from 0.56 (for TDF) to 0.88 (for 3TC), with the average value

being 0.74. The mean squared errors in these models ranged from

0.06 (corresponding to RMSEP~
ffiffiffiffiffiffiffiffiffi
0:06
p

~0:25) for ddI to 0.98

(corresponding to RMSEP~0:99) for AZT, the average being

0.26 (corresponding to RMSEP~
ffiffiffiffiffiffiffiffiffi
0:26
p

~0:51). Thus, although

exact comparisons of our results with the results of Kjaer et al. [13]

is impossible due to the differences in the analyzed data sets, the

listed Q2 and RMSEP values points out that these models, which

just covers one inhibitor at a time, are inferior to the here

presented unified PCM model.

The web service developed herein has a potential to guide

inhibitor selection for combination regimens against particular RT

variants. Moreover, the model might also be used to derive general

guidelines for inhibitor combinations for HIV variants harboring

known sets of mutations. A pair-wise comparison of predicted

susceptibilities for the eight NRTIs for 728 viral isolates is shown

in Figure 4. For example, as can be seen from the figure,

combining 3TC with TDF gives high chances that the virus is

susceptible to at least one of the drugs. By contrast, co-

administration of 3TC with FTC gives no benefits according to

this analysis. Also, according to the analysis co-administration of

ABC with FTC is the least optimal among the recommended [3]

NRTI combinations for initial therapy (see Figure 4). In fact these

results arise due to that a mutation of residue 184 confers

resistance to both ABC and FTC. Moreover, aside from this

mutation, there is also a very high correlation between the

susceptibilities of the two drugs. By contrast, ABC and AZT have

different resistance patterns for most mutants (Fig. 4). As shown in

the figure, the analysis can be performed for any pair of drugs for

the whole mutational space of HIV RT, as well for any HIV

variant in a patient, and might therefore be used to find improved

treatment strategies.

Thus, to sum up we have here shown how proteochemometric

modeling can create a statistically valid unified model for

Figure 4. Pair-wise comparisons of NRTI susceptibilities. Shown are pair-wise comparisons of NRTI susceptibilities for mutant HIV variants,
predicted from the proteochemometric model (Model-3). The figure represents the computed susceptibilities for all mutation combinations occurring
in the data-set; red symbols represent predictions for the seven RT variants in the data-set that contained the double mutations K65R+M184V; green
symbols represent the susceptibilities for 153 variants containing the triple mutations M41L+L210W+T215; the blue symbols represent predictions for
568 other RT variants in the data-set retrieved from the Stanford HIV database.
doi:10.1371/journal.pone.0014353.g004
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predicting the susceptibility of HIV to NRTIs from virus genome,

and we have shown how it can be used to analyze resistance

patterns for combination treatments, thus giving a direction how

genome-based HIV therapy can be optimized. As our modeling

approach is completely general it can straightforwardly incorpo-

rate new NRTI inhibitors, and even so for new inhibitors where

little data has yet accumulated for their resistance patterns. We

have also made available a free web service where the model can

be used to predict the resistance pattern for existing and novel

mutated HIV RT variants for eight NRTIs. This web service can

be found at www.hivdrc.org.

Materials and Methods

Data-set
Phenotypic susceptibility data estimated by the PhenoSense

assay for the eight clinically approved NRTIs, Lamivudine (3TC),

Abacavir (ABC), Zidovudine (AZT), Stavudine (d4T), Zalcitabine

(ddC), Didanosine (ddI), Emtricitabine (FTC) and Tenofovir

(TDF), were retrieved from the Stanford HIV Drug Resistance

Database [34]. The PhenoSense assay measures the concentration

of the anti-HIV drug required to inhibit the replication rate of an

HIV isolate by 50%; i.e. the drug’s IC50 value. The susceptibility is

then expressed as the fold change in IC50 compared to a well-

characterized drug-sensitive reference virus, the NL4-3 HIV-1

strain. The resulting quotient (IC50 for the tested virus divided by

the reference IC50) is termed Fold Decrease in Susceptibility (FDS);

a value higher than 1 indicates a decrease in susceptibility. The

measurement range for the PhenoSense assay is for most NRTIs

0.1 to 200. For two NRTIs, namely AZT and 3TC, approximate

FDS values exceeding 200 were reported in some cases. For these

cases we set the values to FDS = 200 for sake of the PCM

modeling.

The Stanford database also provides the sequences of the first

240 residues (i.e. the active site) of the RT sequences (i.e. data

obtained by the genotypic assay) along with the HIV susceptibility

data. The downloaded data-set comprised 728 HIV variants with

unique RT sequences, covering phenotypic assays for totally 4,495

drug-RT combinations. Sequences contained from one to 28 (on

the average 11) mutations, when compared to the HIV-1 subtype

B consensus sequence reported at the Stanford database [35]. (The

data-set used herein is available at http://www.hivdrc.org/data/

NRTI_PhenoSense_DataSet.xlsx, and can be used for fair

comparison of PCM with other modeling methods.)

For about 0.7% of the codons the genotyping had determined

that a mixture of two or more amino acids was present in the data

set. In most of these cases a mutated amino acid was found to be

present together with the wild-type amino acid; e.g. for the

resistance associated mutation M184V seventeen combinations

VM and eight combinations MV were reported. For creating

PCM models we used the description of the first-listed amino acid.

This was justified as we in a preliminary study had explored a

description utilizing the physico-chemical properties of all detected

amino acids. However, such a more complex description did not

give any improvement in the predictive ability of the resulting

models over using the first listed amino acid only. Accordingly we

did not use this approach in the subsequent modeling.

Some of the RT sequences contained so called ‘insertion

complexes’, which consist of a mutation followed by the insertion

of one or several amino acids; e.g. the insertion complex of residue

69, which reduces susceptibility to all NRTIs, was present in 10 of

728 sequences. Unfortunately, insertions were only indicated in

the Stanford database, providing no data on how many and which

amino acids that were inserted. Accordingly, we could not

compare the physico-chemical properties of the inserted amino

acid(s) and analyze their influence on the drug interactions. Since

the insertions could not be described explicitly the proteochemo-

metric model transferred their influence to the influence of the

underlying mutation.

Since the Stanford database does not provide patient identifiers

we do not know whether or not several sequences originate from

the same patient. This may give a risk that the model performance

is overestimated due to correlation of data originating from the

same patient. (However, this risk is inversely proportional to the

number of new mutations that have accumulated in a patient

between the repeated measurements). On the other hand, using

susceptibility data of virus strains evolving from the same patient

may allow better assessment of the contribution of individual

mutations on development of resistance, and may thus be

beneficial for model performance.

Numerical descriptions for PCM modeling
Description of Reverse Transcriptase. Of the 240

sequence residues of the RT recorded in the database, 75 were

invariant while 165 contained two or more different amino acids

in the set of the 728 RT sequences. We encoded each residue in

the mutated positions by three z-scale descriptors [36]. These z-

scales were obtained by principal component analysis [37] of 26

measured and calculated physicochemical and structural

properties of amino acids and can be interpreted as representing

hydrophobicity (z1), steric properties (i.e. size/shape; z2), and

electronic properties (z3) [36]. In this way, all the differences in the

physicochemical properties of the 728 RT sequences in the data-

set were characterized by 16563 = 495 descriptors. Prior to

further use, descriptors were mean-centered.

Description of RT Inhibitors. The 3D structures of the

active 5-triphosphate form of the organic compounds were

obtained by modeling with the Corina unit of the Tsar 3.3

(Accelrys Inc.) software. Compounds were then characterized by

molecular descriptors representing properties related to molecular

shape, flexibility, and ability to form different types of non-

covalent interactions. To this end descriptors of different classes

were calculated using Dragon 2.1 software (Talete S.r.1), as

follows: geometrical descriptors, charge and aromaticity indices,

constitutional descriptors, counts of functional groups and atom-

centered fragments, empirical descriptors, and molecular

properties. Descriptors were checked for mutual correlation;

when two or more descriptors were highly correlated (pairwise

r2.0.95) only one of them was retained. In this way 58 molecular

descriptors were obtained for modeling [38] (see Table S1 for a

complete list of descriptors used).

Descriptors were mean centered and scaled to unit variance.

Further on, to reduce the number of descriptors and to eliminate

their mutual co-linearity, we performed principal component

analysis (PCA) [37] on the data set, which transformed all

descriptors into seven orthogonal principal components.

Reverse Transcriptase-Inhibitor and intra-Reverse

Transcriptase cross-terms. Protein-ligand interactions

depend on the complementarities of protein and ligand

properties. In PCM these can be represented by protein-ligand

cross-terms. We here calculated cross-terms by multiplying each of

the protein descriptors with each of the principal components for

the ligand descriptors, which yielded 76495 = 3,465 inhibitor-RT

cross-terms.

To account for eventual cooperative effects of mutations in the

RT, we also introduced intra-RT cross-terms. However, deriving

cross-terms between each and every one of the 495 RT descriptors

would have resulted in a huge amount of variables that could give
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rise to chance correlations in the subsequent modeling and make

model interpretations incomprehensible. We therefore elected to

derive cross-terms only between the descriptors of sequence

residues that appeared important for drug susceptibility. To this

end we calculated variable importance in the projection (VIP) for

RT descriptors in a preliminary model (i.e. Model-2, vide infra). A

VIP value larger than one indicates that a variable has higher than

average influence in the model [39]. Inspection of Model-2 (see

Results) showed that 48 RT descriptors obtained VIP.1. These

most influential descriptors were used to calculate cross-terms,

which accordingly gave 48647/2 = 1128 intra-RT cross-terms.

Prior to use in the modeling all cross-terms were mean-centered.

Since the number of cross-terms (i.e. 3,465 inhibitor-RT cross-

terms and 1,128 intra-RT cross-terms) greatly exceeded the

number of ordinary descriptors (i.e. 495 RT and 7 ligand

descriptors), block scaling was applied onto the block composed

of inhibitor-RT cross-terms (I6R block) and the block composed

of intra-RT cross-terms (R6R block). The scaling weights of these

two blocks of cross-terms were varied systematically starting from

zero and increasing them gradually until an optimal model was

obtained (i.e. the most predictive model according to the model’s

Q2 parameter).

Correlation by partial least-squares projections to latent
structures

RT descriptors, inhibitor descriptors, and cross-terms were

correlated to the susceptibility data, expressed as the logarithmi-

cally transformed FDS values (logFDS), by partial least-squares

projections to latent structures (PLS). PLS finds a quantitative

relationship between a matrix of independent variables X and one

or several response variables (y vector or matrix) by simultaneously

projecting X and y to latent structures (PLS components) [29].

The directions and magnitudes of the influence of X variables on

the response y are revealed by coefficients in the regression

equation derived by a PLS model. PLS modeling was performed

using the orthogonal-PLS algorithm [40] as implemented in the

Simca-P 11 software (Umetrics AB).

The goodness-of-fit of a PLS models is characterized by the

fraction of explained variation of y (R2). The predictive ability was

characterized by the fraction of the predicted y-variation (Q2),

estimated by seven-fold cross-validation. Q2 is calculated as:

Q2~1{

PN

n~1

(ypredicted, n{ymeasured, n)2

PN

n~1

(ymeasured, n{�yy)2

where �yyis the average of the measured outcome values for the N

objects in the data-set [39]. While the goodness of fit increases by

each extracted PLS component, the predictive ability typically

reaches a maximum and then declines when the model becomes

too complex.

Some earlier studies have indicated that a high value of Q2 may

be insufficient evidence for a model to be highly predictive, when

only this parameter is used as a criterion for selecting model

parameters (e.g. adjusting scaling weights for cross-terms and

finding optimal number of PLS components) [41]. We therefore

also performed external validation of the PLS models. For these

validations the data-set was subdivided into a work-set (about 70%

of the RT sequences) and a prediction-set (about 30% of the RT

sequences). Splitting was performed in a random fashion by

assigning to the prediction-set all sequences for which the last digit

in the SeqID number in the Stanford database was 3, 6, or 9.

Supporting Information

Table S1 List of 58 molecular descriptors used to characterize

molecular properties of NRTIs for proteochemometric modeling

of HIV drug susceptibility.

Found at: doi:10.1371/journal.pone.0014353.s001 (0.06 MB

PDF)
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