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Abstract: The human gastrointestinal tract comprises a series of complex and dynamic organs
ranging from the stomach to the distal colon, which harbor immense microbial assemblages
that are known to be vital for human health. Until recently, most of the details concerning our
gut microbiota remained obscure. Over the past several years, however, a number of crucial
technological and conceptual innovations have been introduced to shed more light on the
composition and functionality of human gut microbiota. Recently developed high throughput
approaches, including next-generation sequencing technologies and phylogenetic microarrays
targeting ribosomal RNA gene sequences, allow for comprehensive analysis of the diversity
and dynamics of the gut microbiota composition. Nevertheless, most of the microbes especially
in the human large intestine still remain uncultured, and the in situ functions of distinct groups
of the gut microbiota are therefore largely unknown, but pivotal to the understanding of their
role in human physiology. Apart from functional and metagenomics approaches, stable isotope
probing is a promising tool to link the metabolic activity and diversity of microbial communities,
including yet uncultured microbes, in a complex environment. Advancements in current stable
isotope probing approaches integrated with the application of high-throughput diagnostic
microarray-based phylogenetic profiling and metabolic flux analysis should facilitate the
understanding of human microbial ecology and will enable the development of innovative
strategies to treat or prevent intestinal diseases of as yet unknown etiology.
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Introduction
The human body typically harbors 10 times more

microbial cells than human cells, which is mainly

due to the extremely high density of microorgan-

isms found to be present in the human gastroin-

testinal (GI) tract [Backhed et al. 2005; Berg,

1996; Savage, 1977]. The vast majority of this

microbiota is located particularly at the distal

region of the human GI tract, which is the

colon [Eckburg et al. 2005; Suau et al. 1999].

From a medical perspective, the importance of

this part of the human GI tract to host health

was acknowledged even by early observers such

as Hippocrates in 400 BC, who stated that ‘death

sits in the bowel’ [Kolida et al. 2000]. Most of the

current clinical knowledge focuses on the patho-

genesis of disease and its appropriate therapy

rather than giving us a clear definition of health

[Neish, 2009; Arebi et al. 2008; Tannock, 2006].

However, there is growing evidence of the impor-

tant impact of the colonic microbiota on human

gut physiology and health which is strongly

affected by a number of microbial activities.

These activities include, but are not restricted

to, fermentation of dietary compounds that

escape digestion in the upper GI tract, processing

of mucosal cells shed in the small intestine, and

degradation of intestinally secreted mucus

[Srikanth and McCormick, 2008; Fava et al.

2006; Noverr and Huffnagle, 2004; Xu and

Gordon, 2003]. For understanding the function-

ality of microbial communities, it is necessary to

elucidate the role of individual species within a

community. However, it is estimated that approx-

imately 80% of species comprising the human

gut microbiota are yet to be cultured [Rajilic-

Stojanovic et al. 2007; Egert et al. 2006].

Hence, insights into the function and metabolic

potential of these uncultured microbes are lack-

ing. This indicates that culture-independent

approaches are crucial to comprehensively

study the ecology of the GI tract microbiota.

http://tag.sagepub.com 9

Therapeutic Advances in Gastroenterology Review

Ther Adv Gastroenterol

(2009) 2(Suppl 1) S9�S22

DOI: 10.1177/
1756283X09337646

! The Author(s), 2009.
Reprints and permissions:
http://www.sagepub.co.uk/
journalsPermissions.nav

Correspondence to:
Erwin G. Zoetendal
TI Food and Nutrition,
Wageningen,
The Netherlands;
and Laboratory
of Microbiology,
Wageningen University,
The Netherlands
erwin.zoetendal@wur.nl

Petia Kovatcheva-
Datchary
Hauke Smidt
TI Food and Nutrition,
Wageningen,
The Netherlands;
and Laboratory
of Microbiology,
Wageningen University,
Wageningen,
The Netherlands

Koen Venema
TI Food and Nutrition,
Wageningen,
The Netherlands; and
TNO Quality of Life, Zeist,
The Netherlands

Willem M. de Vos
TI Food and Nutrition,
Wageningen,
The Netherlands;
Laboratory of
Microbiology, Wageningen
University, Wageningen,
The Netherlands; and
Department of Basic
Veterinary Medicine,
Helsinki University,
Helsinki, Finland



In addition, our knowledge of gut microbiota is in

general restricted to the luminal part at the end of

the colon � reflected by feces � as other parts of

the GI tract can so far only be accessed using

invasive procedures. However, minimally invasive

experimental techniques that can be used in vivo

can now be applied in combination with stable

isotope probing (SIP) [Kreuzer-Martin, 2007;

Whiteley et al. 2006; Radajewski et al. 2000] to

link in situ microbial activity and the diversity of

GI tract microbiota. SIP is a powerful tool that

can be used in human studies to delineate bacte-

rial food webs that may ultimately influence

human wellbeing [Dolnikowski et al. 2005;

Kelleher, 2004; Pouteau et al. 2003].

This review presents promising strategies to delve

into the functionality of the GI tract microbiota,

including fermentation processes in the human

colon. Recent scientific advances discussed here

could assist in expanding the knowledge of

microbial determinants for a healthy gut defini-

tion based on key functional properties of gut

microbiota. This will also enable the develop-

ment of direct nutritional strategies for intestinal

disease prevention and health promotion.

Overview of human gut microbiota � microbial
diversity
The human gut is one of the most densely popu-

lated ecosystems, comprising members of the

three domains of life on Earth � bacteria, archaea

and eucarya [Finegold et al. 1983]. Bacteria

dominate this complex ecosystem, where more

than 90% of the phylotypes are member of two

bacteria divisions: the Bacteroidetes and the

Firmicutes [Turroni et al. 2008; Zoetendal et al.

2006; Backhed et al. 2005]. The Gram-positive

Firmicutes include numerous different phyloge-

netic clusters of Clostridia, with clusters IV, IX

and XIVa being the most abundant clusters.

The predominant genera are Clostridium,

Eubacterium, Roseburia and Ruminococcus.

Furthermore, the Actinobacteria, including the

genera Bifidobacterium and Atopobium, represent

important members of the gut microbial commu-

nity [Turroni et al. 2008; Van Der Waaij et al.

2005; Harmsen et al. 2002; Franks et al. 1998].

In terms of functional diversity, recent metage-

nomics-based studies have indicated that the

gut microbiome has a coding capacity that

vastly exceeds that of the human genome and

encodes biochemical pathways that humans

have not evolved [Kurokawa et al. 2007;

Turnbaugh et al. 2007; Gill et al. 2006; Ley

et al. 2006; Backhed et al. 2005].

Recent studies of the gut microbial ecosystem

have identified more than 1000 species and pos-

sibly over 7000 strains, of which the largest part

(�80%) remains uncultured [Zoetendal et al.

2008; Blaut and Clavel, 2007; Rajilic-Stojanovic

et al. 2007; Backhed et al. 2005]. However, new

approaches for culturing previously uncultured

colonic microbes are being developed

[Zoetendal et al. 2008; Duncan et al. 2007;

Ingham et al. 2007]. In addition to this, new pow-

erful tools for amplification and sequencing of

genomic DNA from minute quantities of a

sample and barcoded pyrosequencing can be

expected to give new insights into the composi-

tion of the gut microbiota at high spatiotemporal

resolution [Andersson et al. 2008; Marcy et al.

2007].

Almost sterile at birth [Digiulio et al. 2008], the

development of the infant gut proceeds to extre-

mely dense colonization, reaching by the age of

2 years a climax mixture of microbes similar to

the microbiota found in the adult intestine [Wall

et al. 2009]. The composition of infant gut

microbiota is determined by several factors that

include the mode of delivery, maternal micro-

biota, diet and environmental hygiene [Palmer

et al. 2007; Hallstrom et al. 2004; Fanaro et al.

2003; Favier et al. 2003]. In contrast to the devel-

oping infant gut microbiota, each healthy adult’s

gut appears to have a unique and stable micro-

biota, as evidenced by molecular fingerprinting,

over the time scale of months [Frank and Pace,

2008; Turnbaugh et al. 2007; Zoetendal et al.

1998]. Recent studies have also indicated aberra-

tions in the composition of the human micro-

biome in obese individuals [Ley et al. 2006], as

well as in individuals with a variety of other dis-

eases [Turnbaugh et al. 2009; Zoetendal et al.

2008]. Furthermore, Ley et al. [2006] reported

that the composition of the human gut micro-

biota is responsive to dietary modulation for

weight reduction.

Metabolic roles of gut microbiota
An important role of the human gut microbiota is

that of a metabolic ‘organ’, which delicately

affects our physiology with functions that we

have not had to evolve on our own [Turnbaugh

et al. 2007; Gill et al. 2006; Backhed et al. 2005].

The ability to process otherwise indigestible com-

ponents of our diet is one of these vital microbial
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activities that significantly influences the gut envi-

ronment and the host, such as providing an energy

source and maintaining gut health [Guarner

and Malagelada, 2003; Xu and Gordon, 2003;

Savage, 1986].

Microbial performance, growth and metabolism

in the human colon depends to a large extent on

the supply of substrates that resist digestion in the

upper GI tract and endogenous substrates, such

as mucin, secreted by the host [Blaut and Clavel,

2007]. The main dietary products, which serve as

food for the colonic microbiota, are complex car-

bohydrates (starches, nonstarch polysaccharides)

and proteins [Cummings and Englyst, 1987].

The majority of microorganisms in the human

colon ferment carbohydrates and then switch to

protein fermentation when these are not available

[Ouwehand et al. 2005]. Carbohydrate metabo-

lism is of great importance in the large intestine,

as in terms of absolute numbers, the vast majority

of culturable microorganisms are saccharolytic

[Macfarlane and Macfarlane, 1997]. Numerous

different types of carbohydrates reach the colon,

where their rates of fermentation are affected by

the transit time and vary according to substrate

availability, chemical structure and composition

[Englyst et al. 1992]. Several studies suggest that

dietary carbohydrates are protective against sev-

eral GI disorders such as colorectal cancer

[Guarner, 2005; Topping and Clifton, 2001]

but many of these studies have been performed

with animal models [Young et al. 2005, Le Leu

et al. 2007a, 2007b; Pool-Zobel, 2005; Cassidy

et al. 1994]. The underlying mechanism of pro-

tection could be associated with the end products

of these anaerobic bacterial fermentations, but

other metabolic interactions cannot be excluded

[Roediger, 1988]. In the human colon, the end

products of fermentation are short-chain fatty

acids (SCFAs) such as butyrate, acetate, propio-

nate, as well as other terminal products such as

lactate. SCFAs lead to lowering of the luminal

pH, an increase in the bacterial biomass and

fecal bulk, and modification of the microbial

composition, especially by stimulating the

growth of beneficial bacteria including bifidobac-

teria and lactobacilli [Le Leu et al. 2005].

Butyrate, one of the major SCFAs, has been the

focus of studies aimed at understanding the role

of SCFAs in nourishing the colonic epithelium

and in the prevention of colon cancer [Hamer

et al. 2008; Bauer-Marinovic et al. 2006;

Sengupta et al. 2006; Cummings and Bingham,

1987]. Recently, it was observed in healthy indi-

viduals that colonic butyrate application resulted

in reduced visceral pain perception [Vanhoutvin

et al. 2009]. In contrast, colonic protein fermen-

tation is often associated with an increased colon

cancer risk as this fermentation results in the pro-

duction of branched chain fatty acids and poten-

tially toxic metabolites such as amines, ammonia,

phenolic compounds and thiols [Bingham et al.

1996; Cummings et al. 1979]. This is also indi-

cated by the fact that colon cancer mostly occurs

at the distal end of the colon [Muir et al. 2004;

Bufill, 1990]. Therefore, an intake of more slowly

fermentable carbohydrates could result in pro-

longation of the potentially beneficial saccharoly-

tic activity, which would lead to an increased

production and delivery of SCFA, particularly

butyrate, to the distal colon [Wong et al. 2005;

Topping and Clifton, 2001; Jacobasch et al.

1999].

Obviously, diet affects colonic nutrition mainly

through its effects on gut microbiota. Increasing

evidence defines the roots of many colonic dis-

eases and particularly colonic cancer risk to be

determined by interactions between the diet

and gut microbiota. However, further studies

should focus on unraveling the in situ functional-

ity of the gut microbiota and improving the

understanding of the impact of the microbiota

on host health and wellbeing. This is a difficult

task because of the individuality and complexity

of a microbial community in a largely inaccessible

environment.

In vitro models of the human colon
The human colon is a largely inaccessible part of

the GI tract, and a difficult area to study the gut

microbiota and microbial activities in vivo. To

this end, in vitro modeling represents an elegant

way to study the microbial processes, such as car-

bohydrate and protein fermentation [Macfarlane

and Macfarlane, 2007]. In vitro studies are less

expensive using pure cultures, defined mixed

cultures and stool material as inoculum.

Furthermore, in vitro models allow for fast and

reproducible experiments under standardized

conditions. The strength of in vitro models, how-

ever, has also been questioned with respect to

several issues. The degree to which the inoculum

represents the human colonic microbiota

[Drasar, 1988] and the precise mimicking of

the colonic conditions [Edwards and Rowland,

1992] are recurring points of discussion.

Another limitation of in vitro modeling is that it
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does not represent the colon as an open system

with respect to the absence of excretion of fecal

content which inevitably results in changes in

bacterial composition and subsequently meta-

bolic activity [Christian et al. 2003]. Similarly,

in vitro models lack host cells, thus, their activity

and interaction with colonic microbiota cannot

be measured. Despite these constraints, in vitro

model systems can serve as tools (Table 1) to

study microbe-mediated processes occurring in

the human colon and to estimate the conse-

quences of these activities on gut health.

Many studies on the fermentation characteristics

of relevant dietary carbohydrates have been

performed with the use of in vitro models of the

gut [Jiménez-Vera et al. 2008; Van De Wiele et al.

2007; Probert et al. 2004; Van Nuenen et al.

2003]. Additionally, in vitro modeling systems

are also used to study human intestinal microbes

able to colonize mucus and to establish biofilm

communities [Macfarlane et al. 2005]. Recently

the TNO in vitro model of the large intestine �
termed TIM-2 [Minekus et al. 1999] � was used

in combination with isotopically labeled sub-

strates to identify colonic populations actively

involved in the fermentation of glucose [Egert

et al. 2007] and potato starch [Kovatcheva-

Datchary et al. 2008]. An important advantage

of this in vitro system is the fact that metabolites

and water can be constantly removed from the

module. In this computer-controlled model,

parameters such as transit time and pH are

regulated and, for example, age-dependent

colon simulations can be achieved. Moreover,

peristaltic mixing is simulated and micro-

organisms reach physiological densities (about

1� 109�1010ml�1).

We have recently used high-throughput phyloge-

netic microarray analysis to compare the micro-

bial community that colonized the TIM-2 model

with the fecal community of randomly selected

adult volunteers. The data indicated that

TIM-2 microbiota is not significantly different

from the fecal microbial community of the

human volunteers with respect to composition

and diversity of the major microbial groups

(Figure 1). This is further evidence that the

TIM-2 system appears to be representative of

the human large intestinal microbiota

[Kovatcheva-Datchary et al. 2008].

Diagnostic tools to assess microbial diversity
of the human gut
Our current knowledge about the microbial com-

position of the colonic ecosystem in health and

disease is still limited. In order to be able to diag-

nose the presence and abundance of key players

of the gut microbiota, a number of culture-inde-

pendent approaches have been applied.

The gut microbiota composition is likely to be

influenced by complex interactions between

host, microbes and the environment. Diet is an

important factor, which undoubtedly shapes the

gut microbiota, and has been explored in detail

using the power of molecular fingerprinting tech-

niques and 16S ribosomal RNA gene sequencing

[Abell et al. 2008; Bartosch et al. 2005; Hayashi

et al. 2002]. Recently, the influence of dietary

factors was studied by Ley et al. [2006], where

a high throughput sequencing approach was

applied to characterize the fecal microbiota of

12 obese individuals who received either fat-

restricted or carbohydrate-restricted low-caloric

diets. It was shown that the stool samples of

obese subjects were significantly enriched in

Firmicutes and depleted in Bacteroidetes, in com-

parison to samples obtained from lean indivi-

duals. In addition, the microbiota of obese

individuals became more similar to that of

lean subjects over the course of 52 weeks of treat-

ment. In a separate study, fluorescent in situ

Table 1. In vitro systems used to study human gut microbiota.

In vitro model Targeted part of the human GI-tract Reference

SHIME�model (Simulator of the
Human Intestinal Microbial Ecosystem)

Small intestine and colon Molly et al. [1993]

Continuous three-stage system Proximal and distal colon Macfarlane et al. [1998]
TIM-model (TNO intestinal model) Stomach, small intestine and colon Minekus et al. [1995],

Minekus et al. [1999]
Continuous two-stage system Proximal and distal colon Brück et al. [2003]
Three-stage culture system Infant proximal, transverse and distal colon Cinquin et al. [2006]
Human proximal colon system Proximal colon Jiménez-Vera et al. [2008]
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hybridization (FISH) analysis was applied to

investigate the effect of reduced carbohydrate

intake on fecal microbiota composition of

twenty obese individuals [Duncan et al. 2007].

A progressive decrease was observed in popula-

tions related to Roseburia spp., E. rectale and

Bifidobacterium spp., as a fraction of total bacte-

rial cells, after decreasing carbohydrate intake.

These data showed that dietary carbohydrate

supply is an important factor for these microbial

groups in order to maintain their populations in

the human colon [Duncan et al. 2007].

The two primary human inflammatory bowel dis-

eases (IBD), Crohn’s disease (CD) and ulcerative

colitis (UC), are usually associated with unstable

and disturbed composition of the gut microbiota

in comparison with healthy individuals. In the

last few years, a number of research groups

have focused their activities on determining the

gut microbial composition in patients and to

define how it is impacted by disease. The com-

position of the gut microbiota in concordant and

discordant identical twins with CD, and healthy

twins, was studied to identify members of the

microbiota, which could be linked to CD inci-

dence or development [Dicksved et al. 2008].

Molecular fingerprinting analyses based on

T-RFLP of the 16S rRNA sequences revealed a

higher microbial diversity in the healthy twins

compared to the CD twins. Moreover, the fecal

microbiota of the healthy individuals was found

to be less variable than those of CD twins. The

microbial community profiles of individuals with

ileal CD were significantly different from healthy

individuals and those with colonic CD.

Furthermore, a lower relative abundance of

B. uniformis and higher abundance of B. ovatus

and B. vulgatus was observed in all patients with

ileal involvement in comparison to both healthy

twins and twins with colonic disease [Dicksved

et al. 2008]. In another study, temperature gradi-

ent gel electrophoresis (TGGE) of PCR-ampli-

fied 16S rRNA gene fragments was applied to

investigate the effect of enteral nutrition therapy

on the fecal microbiota in children with CD

[Lionetti et al. 2005]. This revealed differences

in the microbial composition of healthy subjects
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Figure 1. Similarity of the total microbiota and major phylogenetic groups between TIM-2 profile and
human faecal profiles. Samples were analyzed using the Human Intestinal Tract Chip (HITChip) [Rajilić-
Stojanović et al. 2009].
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and CD patients, but also within the latter,

between patients in remission and relapse.

Recently, 16S rRNA sequence data were col-

lected from fecal and biopsy samples from CD

and UC patients, and compared to those from

healthy individuals [Frank et al. 2007].

Significant differences between the gut micro-

biota of the two patient groups were detected,

including depletion in the level of Firmicutes

and Bacteroidetes in comparison with healthy con-

trols. Determining the differences in microbial

composition in patients and healthy controls

may thus provide novel therapeutic targets.

For this purpose, high-throughput, cost-effective

methods for microbiota characterization are

needed. Recently the application of 454-pyrose-

quencing of hypervariable regions of the 16S

rRNA gene revealed taxonomic richness of the

gut microbiota that exceed any previously

reported estimates [Andersson et al. 2008;

Dethlefsen et al. 2008]. Pyrosequencing analyses

were applied recently in order to study the role of

the gut microbiota in the development of obesity.

High bacterial diversity and enrichment of

H2-producing Prevotellaceae accompanied by a

high abundance of H2-utilizing methanogenic

Archaea, was found [Zhang et al. 2009].

Phylogenetic microarrays are high-throughput

analytical tools, which can be used to measure

diversity and abundance of the human gut micro-

biota. Recently, such a DNA microarray, the

Human Intestinal Tract Chip (HITChip), was

developed, combining the power of fingerprint-

ing, phylogenetic and quantitative community

analysis [Rajilić-Stojanović et al. 2009]. The

HITChip targets over 1000 phylotypes of intesti-

nal microbiota, and its application for the analy-

sis of intestinal samples of patients and healthy

individuals can provide novel insights into the

relationship between the gut microbiota in

health or disease [Zoetendal et al. 2008].

Diagnostic tools to assess microbial function-
ality of the human gut
To understand the complex changes in gut

microbiota composition that may predispose

towards intestinal disorders or promote human

health, techniques that can assay and link meta-

bolic activity to the diversity of intestinal bacteria

are needed. Recently explored metagenomics

approaches allow the comprehensive study of

phylogenetic, physical and functional properties

of complex microbial communities, providing

a full picture of microbiota dynamics

[Handelsman, 2004]. Because metagenomic

analyses allow the study of phylogenetic diversity,

as well as providing an inventory of potential

functions of gut microbiota, it can be used as a

tool to link diversity to functionality [Booijink et

al. 2007]. Metagenomics screening approaches

can be divided into functional and sequence-

based driven analyses of collective microbial gen-

omes in complex environments [Gabor et al.

2007]. Sequence-based metagenomic investiga-

tions have started to reveal core metabolic func-

tions of the gut microbiota. An early

metagenomic study on two healthy adults

showed that their fecal microbial metagenomes

were enriched with genes involved in energy

metabolism, which also include the production

of SCFAs as the pivotal energy supply for the

intestine [Gill et al. 2006]. Additionally, a

recent study where metaproteomics analyses

were applied to study distal gut microbiota of a

healthy twin pair, indicated that more than 50%

of the detected proteins were involved in transla-

tion, energy production and carbohydrate metab-

olism [Verberkmoes et al. 2009]. Comparison of

metagenomics [Gill et al. 2006] and metaproteo-

mics data [Verberkmoes et al. 2009] indicated

matches in the fucose and butyrate colonic fer-

mentation pathways. Recent large-scale compar-

ative metagenomic analyses demonstrated a clear

effect of diet and age on the gut microbiome

[Kurokawa et al. 2007].

However, an ongoing challenge for microbiolo-

gists is to be able to identify which microbes in

the human gut carry out a specific metabolic con-

version, the products of which may promote

intestinal disorders and/or gut health. Recently,

isotope probing approaches have been developed,

offering great potential to identify microbes that

are involved in the metabolism of specific sub-

strates. These molecular tools involve the use of

commercially prepared substrates highly enriched

in a stable isotope (e.g. 13C) or radioisotope

(e.g. 14C), which is added to an environmental

sample. Endogenous microbes that metabolize

the labeled substrate will incorporate the isotope

into components of the microbial cells that

provide phylogenetic information [Dumont

et al. 2006; Manefield et al. 2006; Lueders et al.

2004; Manefield et al. 2002; Radajewski et al.

2000]. Such components are often referred to

as biomarkers, and nucleic acids and fatty acids

are most commonly used. FISH-microautoradio-

graphy (FISH-MAR) and isotope array technol-

ogy both use radioactive tracers to study the
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incorporation of substrate. With FISH-MAR, a

direct monitoring of the incorporation of the sub-

strate labeled with a radioactive isotope into

single microbial cells is performed [Lee et al.

1999]. In a different way, the analyses with the

isotope arrays are performed, requiring the isola-

tion of the labeled biomarker. Ribosomal RNA is

hybridized to oligonucleotide arrays to target the

16S rRNA of the bacteria of interest [Adamczyk

et al. 2003]. However, since both methods use

radioisotopes their application is limited, espe-

cially in animal and human subjects, and there-

fore stable isotopes can offer a safe and

convenient alternative for in vivo analysis. SIP

methodologies vary in the use of biomarkers,

but also the means by which biomarkers are ana-

lyzed for isotopic and phylogenetic content

(Figure 2). The first application of SIP was in

the analysis of phospholipid fatty acids (PLFA)

that can be extracted from environmental sam-

ples and analyzed by isotope-ratio mass spectro-

metry (IRMS) [Boschker et al. 1998]. Microbial

populations often have signature PLFA mole-

cules, which allow identification of microbes

that have incorporated the 13C-substrate.

However, the interpretation of the PLFA patterns

of microbes for which there are no cultivated

representatives still remain limited, which is the

main restriction of the PLFA-SIP [Dumont and

Murrell, 2005].

Nucleic acids (NA) have a higher phylogenetic

resolution than PLFA-SIP and enable identifica-

tion of active but as yet uncultured populations at

the species level. NA-based SIP works on the

principle of separation of isotopically labeled

DNA or RNA from unlabeled NA. The isolated

labeled DNA/RNA represents the microbial

populations that incorporated the isotope into

the biomarker through metabolic sequestration.

NA-based SIP experiments have been applied to

a large number of environmental studies focused

on the identification of bacteria that carry out

specific degradative functions. Different culture

independent techniques were used to monitor

the 13C-DNA/RNA. DNA-based SIP studies

have described the application of polymerase

chain reaction (PCR) analyses, targeting func-

tional or taxonomic marker genes [Morris et al.

2002; Radajewski et al. 2002; Radajewski et al.

2000]. As a culture-independent microbial taxo-

nomic marker, the 16S rRNA and the encoding

Figure 2. Summary of stable isotope probing (SIP) approaches, suitable diagnostic tools, to assess gut
microbiota functionality and link it to phylogeny.
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gene have been applied most frequently.

Subsequent fingerprinting (e.g. denaturing gradi-

ent gel electrophoresis [DGGE] or T-RFLP),

16S rRNA clone library construction and/or

microarray analyses, are further used to reveal

the microbial populations involved in the degra-

dation of the particular substrate [Cupples et al.

2007; Neufeld et al. 2007; Dumont et al. 2006].

DNA-SIP enables analysis of isotopically labeled

functional genes [Dumont and Murrell, 2005],

which provides a further functional view of the

active microbiota. Moreover, DNA-SIP in com-

bination with metagenomics can provide a broad

insight into the genetic potential of microorgan-

isms that are attributed to the in situ use of spe-

cific substrates [Egert et al. 2006]. An important

limitation of DNA-SIP is the requirement for

DNA synthesis and cell division in order to

obtain sufficient incorporation of the label into

the DNA for gradient separation. Conversely,

RNA occurs in greater cellular copy numbers,

has a higher turnover rate than DNA and is pro-

duced independent of cellular replication. For

this reason, RNA will be labeled more rapidly

than DNA making it a highly responsive biomar-

ker in SIP analyses [Manefield et al. 2002]. Due

to its greater buoyant density, isopycnic centrifu-

gation of RNA is performed in cesium trifluoroa-

cetate (CsTFA) rather than CsCl. Additionally,

based on the reduced loading capacity of CsTFA,

lower RNA loading amounts (250�500 ngml�1)

[Egert et al. 2007; Whiteley et al. 2006; Lueders

et al. 2004] are required for a successful separa-

tion in comparison with the DNA-SIP, where

5mgml�1 of DNA is an optimal concentration

[Jensen et al. 2008; Lueders et al. 2004]. To ana-

lyze the fractionated RNA, qualitative analyses

such as reverse transcriptase PCR-based finger-

printing methods (DGGE T-RFLP) and subse-

quent cloning and sequencing, or phylogenetic

microarray analysis, are applied, which enable

phylogenetic identification of the active microbial

population [Kovatcheva-Datchary et al. 2008;

Egert et al. 2007; Lueders et al. 2004].

Additionally, quantitative evaluation of the iso-

pycnic RNA gradients can be performed using

reverse transcriptase quantitative PCR (RT-

qPCR), which leads to high precision and

better resolution for recovery of the labeled

nucleic acids [Lueders et al. 2004]. The success

of NA-SIP depends mostly on the sufficient

degree of labeling required for the separation

of labeled and unlabeled nucleic acids by buoy-

ant density centrifugation. To this end,

extended incubation times are often required.

However, increasing the time of nucleic acid

enrichment has to be balanced in order to avoid

changes that can occur in the bacterial commu-

nity after addition of the substrate of interest. An

example could be the effect of secondary degra-

dation of the substrates (cross-feeding), which

can affect bacterial diversity and metabolic activ-

ity [Belenguer et al. 2006]. However, such cross-

feeding effects can also be instrumental in

identifying food chains in the human intestinal

systems. Recent studies with 16S rRNA-based

SIP performed using in vitro conditions in the

human intestine showed that a high concentra-

tion of labeled tracer is necessary to have good

separation between the labeled and unlabeled

fractions of the nucleic acids [Egert et al. 2007].

Protein-based stable isotope probing (protein-

SIP) is a novel approach that analyzes specific

metabolic activity of a single bacterial species

within a community, which incorporate the

labeled substrate using proteins as a biomarker

[Jehmlich et al. 2008]. The most important

advantage of the protein analysis is its direct con-

nection to physiological function, as proteins are

known to catalyze the biochemical reaction.

Thus, proteins are a source of phylogenetic and

functional information, making them ideal bio-

markers for monitoring community structure

and function.

Recently, new elegant tools have been developed

that combine single-cell technologies with stable

isotope analysis of microbial communities to

monitor stable-isotope uptake at the single-cell

level. These include technologies such as

Raman microspectroscopy [Huang et al. 2004]

and nano-secondary ion mass spectrometry

(nano-SIMS) [Kuypers and Jørgensen, 2007].

Raman spectroscopy analyses enable the detec-

tion of clear shifts in key regions (phenylalanine,

proteins and nucleic acids) of bacterial Raman

spectral profiles, which allow detection of the

incorporation of the stable isotope into an indi-

vidual cell. Furthermore, the Raman approach

can be combined with FISH (Raman-FISH),

which facilitates the understanding of the link

between individual bacterial cells and their met-

abolic functions [Huang et al. 2007]. The nano-

SIMS technology analyses both stable- and

radioactive-isotope content at single cell resolu-

tion, which exceeds the capacity of a Raman

microscope [Kuypers and Jørgensen, 2007].

Combination of FISH-nanoSIMS allows the

phylogenetic and isotopic analysis of a sample
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in a single scan. Nevertheless, this technology is

far from becoming commonplace and affordable,

mostly because of the high cost of the infrastruc-

ture required for nanoSIMS analysis.

Furthermore, SIP techniques are also suitable for

obtaining qualitative and quantitative informa-

tion about metabolic fluxes in the colon.

Isotopically labeled compounds enable the selec-

tive study of that part of the microbial or host

metabolism that involves the isotopic tracer.

NMR and gas- or liquid-chromatography can

be used to measure the labeled compounds and

further identify active metabolic pathways [Egert

et al. 2006; Bacher et al. 1998]. In a very recent

study, we reported the application of RNA based-

SIP in combination with liquid-chromatography

(LC-MS). The molecular data indicated

Ruminococcus bromii as the primary degrader of

starch in an in vitro model of the human colon,

as it was found to predominate in the labelled

fractions. Furthermore, the integration of molec-

ular and metabolite data suggested metabolic

cross-feeding in the system, where populations

related to R. bromii are the primary starch degra-

der, while those related to Prevotella spp.,

Bifidobacterium adolescentis and Eubacterium rec-

tale might be further involved in the trophic

chain.

Future perspectives
Identification of the prime functions of human

gut microbiota in maintaining human health

requires a better understanding of its diversity

and functionality, which can also facilitate its

manipulation. Most intestinal microbes have

not been cultured and the in situ functions of dis-

tinct groups of gut microbiota are largely

unknown but pivotal to the understanding of

their role in health and disease. Technological

advances in culture-independent microbiology

have revolutionized gastroenterological micro-

biology. Recently introduced metagenomics

approaches have become extremely useful in

addressing knowledge gaps on gut microbiota

composition and have started to reveal core met-

abolic functions of the gut microbiota. However,

it is not known which members of the gut micro-

biota are involved in specific metabolic activities

in situ. An important function of the gut micro-

biota is related to fermentation of nondigestible

dietary residue, metabolites of which are consid-

ered to be essential for intestinal health. New

developments in stable isotope-based approaches

can be used in identifying the key players of gut

microbiota, the functions of which may have a

direct impact on human wellbeing. Furthermore,

extending the in vitro models to human feeding

trials, in which relevant dietary oligo- and poly-

meric carbohydrates are delivered to the human

colon, will allow the exploration of the real power

of these molecular approaches.
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