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Abstract Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in
animal models of experimentally induced hypertension, myocardial infarction, and chronic volume overload secondary
to aortocaval fistula and mitral regurgitation. Accordingly, mast cells have been implicated to have a major role in the
pathophysiology of these cardiovascular disorders. In vitro studies have verified that mast cell proteases are capable of
activating collagenase, gelatinases and stromelysin. Recent results have shown that with chronic ventricular volume over-
load, there is an elevation in mast cell density, which is associated with a concomitant increase in matrix metalloprotei-
nase (MMP) activity and extracellular matrix degradation. However, the role of the cardiac mast cell is not one
dimensional, with evidence from hypertension and cardiac transplantation studies suggesting that they can also
assume a pro-fibrotic phenotype in the heart. These adverse events do not occur in mast cell deficient rodents or
when cardiac mast cells are pharmacologically prevented from degranulating. This review is focused on the regulation
and dual roles of cardiac mast cells in: (i) activating MMPs and causing myocardial fibrillar collagen degradation and
(ii) causing fibrosis in the stressed, injured or diseased heart. Moreover, there is strong evidence that premenopausal
female cardioprotection may at least partly be due to gender differences in cardiac mast cells. This too will be addressed.
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1. Introduction
Mast cells are derived from precursor cells in the bone marrow, and
mature under the influence of the c-kit ligand, stem cell factor with
their final phenotype being dependent on the microenvironment in
which they reside. While mast cells throughout the body are involved
in the pathogenesis of many diseases, the role of cardiac mast cells in
diseases of the heart has been understudied despite circumstantial
evidence indicating their potential involvement. In addition to the
storage of histamine and proteases such as tryptase and chymase in
their secretory granules, cardiac mast cells also produce a wide
variety of cytokines, growth factors, vasoactive agents and other bio-
logically active mediators that are capable of mediating tissue remo-
delling. For example, several are capable of activating matrix
metalloproteinases (MMPs), which in turn degrade the collagen
matrix of the heart. This makes cardiac mast cells key in diseases
where MMP-induced remodelling of the heart occurs, such as myo-
cardial infarction and heart failure. Alternatively, cardiac mast cells
have also been implicated in the fibrotic remodelling of the heart,
such as in hypertension and myocarditis, as well as in the fibrotic
and rejection aspects of cardiac transplantation. While the pathologic

importance of cardiac mast cells is slowly becoming evident, little is
known regarding the mechanisms by which these cells are activated.
Furthermore, there appears to be distinct gender differences in
mast cell function, which may account, in part, for the cardioprotec-
tion afforded to pre-menopausal females. Accordingly, this review
will describe the role of cardiac mast cells in a wide range of
cardiac pathologies, as well as addressing what is currently known
in regard to cardiac mast cell activation and gender differences.

2. Mast cell characteristics
Mast cells are best known for the production of histamine, which is
associated with allergic reactions and the subsequent vasodilation that
can occur when mast cells are stimulated. However, mast cells are
also capable of producing a whole host of growth factors, proteases,
cytokines, chemokines and fatty acid metabolites.1 Some of these,
such as histamine, chymase, tryptase, phospholipases, and kinins are
contained in pre-stored granules that are released upon stimulation.
Other products are synthesized de novo including many cytokines (e.g.
IL-1, -4, -5, -10), leukotrienes and even nitric oxide.1 As will be discussed
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in the following sections, some of these mast cell products have been
implicated in several cardiac pathologies, however, a great deal of
work is required to fully elucidate which cardiac mast cell products
are important in mediating disease. Mast cells also have the ability to
respond to a wide range of stimuli. Despite this, the activation of
cardiac mast cells has been surprisingly understudied with only a few
endogenous secretagogues identified. These include endothelin-1
(ET-1), reactive oxygen species, complement factor 5a, several neuro-
peptides and IL-33. These will be discussed in more detail in a later
section. Also detailed in sections to follow is the fact that cardiac
mast cell density increases in numerous cardiac pathologies. Surpris-
ingly, little effort has been made to investigate the source(s) of this
increase. Nevertheless, potential mechanisms include: (i) recruitment
of haematopoietic precursor cells; (ii) maturation of immature resident
cells; and (iii) proliferation of resident cells.

2.1 Recruitment of haematopoietic
precursor cells
(i) Mast cells are derived from multipotent haematopoietic progeni-

tor cells from bone marrow and do not develop into mast cells
until reaching the tissue or organ in which they become resident.2

The search for the specific mast cell precursor cells has been
elusive, however, Thy-1loc-Kithi progenitor mastocytes were ident-
ified in murine fetal blood and shown to contain cytoplasmic gran-
ules and mRNA for mast cell proteases, but did not contain mRNA
for Fc1RI (IgE receptor).2,3 These cells developed into mast cells, in
vitro, but not into other haematopoietic lineages. Lin2Kit+Sca-12

Ly6c2Fc1RIa2CD272b7+T1/ST2+ cells from adult mouse bone
marrow also develop into mast cells in culture and can reconstitute
as mast cells in mast cell-deficient mice.4 Additionally, a population
of cells from mouse spleen, designated as Lin2Kit+FcgRII/IIIhib7hi,
have been identified as a precursor for both mast cells and baso-
phils, as well as the mast cell precursor CD45+Lin2CD34+-

b7hiFc1RIalo in the intestine.5 In humans, mast cell progenitors
circulate in the blood as mononuclear leucocytes without granules,
and express the surface markers CD13, CD33, CD38, CD34 and
Kit.2 As far as we are aware, no studies have investigated
whether recruitment of mast cell progenitor cells is the mechanism
behind the increase in mast cell density observed in many cardiac
pathologies. It seems unlikely that this is a mechanism of increased
mast cell density, at least in the initial stages in experimental
models, since it has been demonstrated that following depletion
of mast cells from the peritoneal cavity in rats, it takes 6 days
before mast cell numbers approach control levels and a full 20
days for full restoration to be achieved.6 In the days prior to this
point, numbers of new mast cells were low and those present
were immature mast cells. It was concluded that these new mast
cells were derived from bone marrow-derived progenitor cells
since mast cell precursors in the bone marrow decreased dramati-
cally in the days following mast cell depletion. A significant number
of these newly recruited cells were also undergoing mitosis.

2.2 Maturation of immature resident cells
(ii) Maturation and differentiation of resident cardiac mast cells is

another possible mechanism of increased mast cell density, and
is associated with progressive sulphation of heparin, the formation
of mast cell chymase and histamine, and the loss of mitotic
activity.7,8 Using differential alcian and safranin staining, four

stages of mast cell maturation have been identified as follows:
Stage I or immature mast cells are those that appear completely
blue following this staining technique; stage II mast cells stain
blue (i.e. .60% of the granules), with small amounts of red (i.e.
,40% of the granules); stage III mast cells stain predominantly
red (i.e. .60% of the granules), with reduced amounts of blue
(i.e. ,40% of the granules); and stage IV or totally differentiated,
mature mast cells appear completely red. In addition to staining
differences, Yong et al.8 found the mean diameter of mast cells
from adult rat peritoneal washings and cardiac tissue to be smallest
in stage I and largest in stage IV. Our data in a model of volume
overload indicates that maturation of cardiac mast cells accounts
for the increase in mast cell density observed in that model.9

Using the described staining and cell size criteria, we demon-
strated a significant decrease in stage II cardiac mast cells,
coupled with a significant increase in stage III cells, and no
change in the number of stage IV cardiac mast cells relative to
sham-operated rats within 24 h of creating volume overload.
Thus, the acute rise in cardiac mast cells following volume over-
load appears to be due to the maturation/differentiation of resi-
dent immature cardiac mast cells. Using a cultured tissue slice
system, whereby sections of left ventricle from normal rats were
incubated in media-containing stem cell factor (20 ng/mL) for
24 h, we have shown that mast cell density increased �2-fold
(unpublished observation). This demonstrates that mast cell
density can increase independently from recruitment of precursor
cells because there were no precursors present in the media in
which the left ventricular slices were cultured. From our data, it
also appears that mast cell degranulation is required in order for
mast cell density to increase since mast cell stabilization in
volume overloaded animals results in decreased mast cell
density.10,11 Similarly, in sham animals mast cells are reduced to
below normal levels by mast cell stabilization.10

2.3 Proliferation of resident cells
(iii) Using 3H-thymidine uptake, stage I and II (i.e. immature) mast

cells have been identified as being capable of mitosis, while
stages III and IV were mitotically inactive.8 Thus, in theory it is
possible that some proliferation may occur in the population of
immature mast cells, but probably not once they have matured.
In volume overload, we have shown that proliferation is not a
mechanism of increased mast cell density.9

3. Volume overload-induced
adverse myocardial remodelling
and heart failure
Cardiac mast cell density increases in the left ventricle under conditions
of volume overload such as that which occurs with mitral regurgita-
tion.12 To establish a causal relationship between mast cells and
adverse myocardial remodelling, we have utilized the aortocaval (AV)
fistula model of volume overload. With this model, we first observed
that a rapid increase in cardiac mast cell density is concurrent with a
significant increase in myocardial MMP-2 activity and 50 and 60%
reductions in collagen volume fraction by 3 and 5 day post-fistula,
respectively.11 Both the MMP activation and subsequent collagen
degradation were prevented with mast cell membrane stabilization
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with cromolyn sodium (24 mg/kg/day),11 showing a direct causal
relationship. We then went on to investigate the role of mast cells in
long-term remodelling in response to volume overload, by continu-
ously treating rats with another mast cell stabilizing compound, nedo-
cromil (30 mg/kg/day), for a period of 8 weeks post-fistula.13

Nedocromil attenuated left ventricular hypertrophy (sham, 961+
149; AV fistula, 1686+ 249; AV fistula + nedocromil, 1352+
118 mg) and pulmonary oedema, and prevented ventricular dilatation,
the increase in compliance, and the decrease in intrinsic contractile
function. The collective outcome of this preventive study was a signifi-
cant decrease in mortality and again provided direct evidence that mast
cells are critical to volume overload-induced remodelling. The final
approach that we utilized to demonstrate causality between mast
cells and adverse myocardial remodelling was the use of mast cell-
deficient rats.14 In these animals, hypertrophy was unchanged in com-
parison to the wild type following 8 weeks of volume overload
(1285+248 vs. 1205+ 78 mg, respectively), however, left ventricular
dilatation, determined in vivo by echocardiography, was markedly
reduced. MMP-2 activity was not increased and, thus, collagen degra-
dation was prevented at 5 days and 8 weeks post-fistula in mast cell-
deficient rats.14 As further confirmation that cardiac mast cells
mediate remodelling via activation of MMPs, Chancey et al.,15 using a
blood-perfused isolated heart preparation, administered the mast cell
secretagogue, compound 48/80, to normal hearts. The resultant mast
cell degranulation led to an increase of 126% in MMP activity and a
nearly 50% decrease in myocardial collagen volume fraction within
30 min of administration of compound 48/80. A tendency for the left
ventricle to dilate was also evident despite a significant
histamine-induced myocardial oedema. Thus, using several approaches
we have conclusively demonstrated a central role for cardiac mast cells
in initiating myocardial remodelling through the activation of MMPs.
The fact that mast cell density is also increased in the left ventricle of
dogs with experimentally induced mitral regurgitation12 demonstrates
that mast cell-mediated myocardial remodelling in response to volume
overload is not species or model specific. In these animals, mast cell
density was significantly increased at 2 and 4 weeks post-mitral regur-
gitation (MR), but had returned to normal by 24 weeks. This correlated
with an increase in MMP-2 activation and was concurrent with collagen
degradation. Chymase activity was also elevated in MR dogs at all time
points. Ventricular dilatation was present at 4 weeks post-MR and
remained so throughout the duration of the experimental period. An
increase at 24 weeks in the left ventricular end diastolic diameter to
wall thickness ratio was indicative of an eventual mast cell-mediated
inappropriate hypertrophic response of the ventricle to volume over-
load.16 Together, these studies demonstrate the central role of mast
cells in activating MMPs and thereby producing collagen degradation
and left ventricular dilatation.

Mast cells store and release several products that are capable of
activating MMPs. Studies linking peritoneal and skin mast cells to
tissue remodelling have shown that mast cell tryptase can activate
interstitial collagenase (MMP-1) and stromelysin (MMP-3) under in
vitro conditions.17,18 Gruber et al.19 demonstrated that tryptase was
unable to directly activate MMP-1, however, tryptase first cleaves
proMMP-3, with active MMP-3 then activating MMP-1. Studies using
peritoneal mast cells isolated from mice have shown that chymase
can activate MMP-2 and -9.20 Also, mast cells appear to be an impor-
tant source of TNF-a, which has been shown to activate MMPs.21 In
the heart, TNF-a is localized to mast cells under normal con-
ditions.22,23 Histamine may also play a role in myocardial remodelling.

In a retrospective and prospective clinical study, the histamine type 2
(H2) receptor antagonist, famotidine (20–40 mg), was found to
reduce plasma BNP levels (a marker of left ventricular hypertrophy),
left ventricular diameter in diastole and systole, while improving
NYHA class.24 Thus, it is likely that multiple pathways mediated by
mast cells are involved in the activation of MMPs and subsequent
development of heart failure.

4. Myocardial infarction and
ischaemic–reperfusion injury
Cardiac mast cell density increases dramatically following myocardial
infarction (MI) (1.8+ 0.3 to 26.3+7.4 cells/mm2).25 Frangogiannis
et al.26 demonstrated a striking increase in mast cell numbers during
the healing phase post-MI, with maximum accumulation in areas of
collagen deposition. Consistent with the concept that mast cells
orchestrate inflammation,27 mast cell density was elevated after 7
days of reperfusion following ischaemia in a canine model of MI,
with newly recruited macrophages and neutrophils gathered in
close proximity to degranulating mast cells.28 Further, mast cells
were closely associated with vascular structures after 7 days of reper-
fusion. In further support of mast cells mediating the inflammatory
response, Frangogiannis et al.22 determined that cardiac mast cells
were the predominant source of TNF-a in the canine heart in the
first few hours following ischaemia-reperfusion. Gilles et al.23 also
suggested that this was the case, based on the observation that the
mast cell-stabilizing compounds, ketotifen and disodium cromogly-
cate, prevented the increase in myocardial TNF-a levels following
reperfusion. Jaggi et al.29 subjected isolated rat hearts to 30 min of
global ischaemia followed by 120 min of reperfusion and used two
approaches to investigate the role of cardiac mast cells in ischae-
mia–reperfusion injury. Initially, they treated the hearts with ketotifen
and found that mast cell degranulation and myocardial injury were
decreased. Secondly, they degranulated mast cells with compound
48/80 effectively removing mast cell mediators from the heart prior
to inducing ischaemia–reperfusion. This too resulted in attenuation
of injury. Frangogiannis et al.22 also observed degranulating cardiac
mast cells and an �2-fold increase in histamine levels in cardiac
lymph following ischaemia–reperfusion in the canine heart. Ischae-
mia–reperfusion studies using histamine receptor antagonists in a
canine model of ischaemia–reperfusion revealed that blockade
of H2, but not H1, receptors decreased infarct size regardless of
whether the H2 antagonist was administered during ischaemia or
reperfusion.30 However, this did not lead to functional improvements.
The effects of mast cells on the myocardium in response to MI and
ischaemia–reperfusion may be secondary to the production of angio-
tensin (Ang) II since mast cells contain chymase, which is capable of
cleaving inactive Ang I to the active Ang II.31 This notion is reinforced
by the fact that treatment with an AT1 receptor antagonist had an effi-
cacious effect on mortality post-MI in hamsters, while an ACE inhibi-
tor did not.32 Further, ACE-independent Ang II formation was
important for the release of norepinephrine from sympathetic
nerves following an ischaemic event in the human heart.33 Also signifi-
cant amounts of Ang II was mast cell derived following ischaemia–
reperfusion in the guinea pig heart34 with this mast cell-derived Ang
II being responsible for increased norepinephrine levels and
norepinephrine-induced arrhythmias. Mast cell-derived renin is also
thought to be important in the formation of myocardial Ang II.34,35
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Recent studies have begun to utilize mast cell (c-kit)-deficient mice
to attempt to determine the role of mast cells in ischaemia–reperfusion
injury and MI. Using a protocol of 30 min ischaemia followed by 6 h of
reperfusion in the W/Wv strain of mast cell-deficient mice, Bhatta-
charya et al.36 found that the amount of viable myocardium was signifi-
cantly greater in the mast cell (or c-kit)-deficient mice. Using female
W/Wv mast cell-deficient mice, Cimini et al.37 reported that at 14
days post-MI, these mice had a greater infarct area and ventricular
dilatation, but reduced infarct thickness. However, they discounted
the importance of mast cells to myocardial remodelling post-MI due
to their small number and concluded that diminished recruitment of
myofibroblasts accounted for the impaired healing of the scar. Inter-
estingly, mast cells are known to have a prominent role in regulating
myofibroblast function,38 and as described above, although small, the
number of mast cells in the normal heart is sufficient to induce MMP
activation and collagen degradation when stimulated.15 Ayach et al.39

examined long-term remodelling and cardiac function in male W/Wv

mice as well as W/Wv mice reconstituted with bone marrow cells at
35 days post-MI. Their results indicated that W/Wv mice developed
larger hearts with more collagen deposition albeit with an increased
stroke volume; although they had reduced rates of contraction and
relaxation. There was virtually no difference in survival rate
between the wild type and W/Wv mice 35 days post-MI. Improve-
ments were observed in all parameters measured post-MI in mast cell-
deficient mice reconstituted with bone marrow-derived mast cells.
Recently, we investigated the contribution of mast cells to post-MI
myocardial remodelling also in the W/Wv mouse at 7 days post-MI
(unpublished observations). Converse to the previously mentioned
studies, our preliminary results indicate that chamber dilatation is sig-
nificantly greater in WT hearts compared with W/Wv hearts (126 vs.
73% increase in end diastolic volume, respectively) together with
increased wall thinning and an increase collagen deposition in the
viable myocardium. While based on the data accumulated thus far,
it seems likely that mast cells are important in ischaemia–reperfusion
injury, at this stage it is difficult to determine the importance of mast
cells in ventricular remodelling post-MI due to the conflicting nature
of the results between mouse studies. Further studies are required
to shed more light on the subject, and in fact mast cell-deficient
mice may not be the ideal model for these studies. These mice
suffer from pronounced haematopoietic abnormalities, whereas the
mast cell-deficient rat (Ws/Ws) has only a four amino acid deletion
associated with the c-kit kinase autophosphorylation site, which
means that, because the mutation is highly localized, the only other
phenotypic differences in this mutant rat are a deficiency in melano-
cytes and intestinal interstitial cells of Cajal.40,41

5. Hypertension
Cardiac mast cells have also been implicated in the development of fibro-
sis in the hypertensive heart. Olivetti et al.42 first described an association
between cardiac fibrosis and mast cells when they observed increases in
cardiac mast cell density in the right ventricle following pulmonary artery
banding in rats; although they did not indicate whether the mast cells
were associated with myocyte damage or replacement fibrosis. Panizo
et al.43 were the first to investigate mast cells in the left ventricle in
response to systemic hypertension. They noted an increase in mast
cell density in the left ventricle of spontaneously hypertensive rats
(SHR), and that this strongly correlated (r ¼ 0.87) with collagen
volume fraction. Subsequently, Shiota et al.44 followed the progression

of cardiac mast cell density in the SHR from 1 day through to 20
months of age and observed that density increased dramatically above
control levels throughout the lifespan of those animals. The striking
increase in mast cell density at 2 weeks of age in the SHR was concurrent
with increased levels of stem cell factor and its c-kit receptor, which are
known to increase mast cell density.45 Isolated heart studies also showed
that cardiac mast cells were a significant source of increased NF-kB and
IL-6 expression in the left ventricle of compensated 12 month old SHR.
However, these studies stopped short of showing a causal relationship
between cardiac mast cells and cardiac fibrosis in the hypertensive
heart. We recently provided the first causal evidence when we treated
SHR with the mast cell stabilizing compound nedocromil (30 mg/kg/d)
and found that fibrosis was completely prevented.46 Searching for mech-
anisms by which mast cells regulate fibrosis, we found that mast cell
stabilization prevented macrophage recruitment and normalized cyto-
kine profiles in the hypertensive heart. Further, incubation of adult
cardiac fibroblasts with tryptase led to proliferation and collagen syn-
thesis. Thus, it seems that cardiac mast cells regulate fibrosis via multiple
pathways including inflammatory cell recruitment, cytokines and direct
effects on fibroblasts. Hara et al.47 focused on the role of mast cells in
the progression to heart failure following experimentally induced
pressure overload. They followed mast cell-deficient mice over a 15
week period following aortic banding and found that, in contrast to
their wild-type counterpart, heart and lung weights were markedly atte-
nuated, ventricular dilatation was prevented and fractional shortening
preserved. Therefore, mast cells appear to be involved in various
stages of the remodelling process.

6. Cardiac transplantation/rejection
Cardiac mast cells have also been implicated in the fibrosis and rejec-
tion that occurs in the transplantated heart. Li et al.48 showed that
cardiac mast cells degranulate following cardiac transplantation, and
that both the number of mast cells and the extent of degranulation
correlate positively with fibrosis (r ¼ 0.63 and 0.73, respectively). In
an attempt to further show the importance of mast cells in this fibro-
tic response, patients were divided into two groups based on the
number of mast cells present 2 weeks after transplantation. Those
with prominent numbers of mast cells showed a 17% increase in
fibrosis by week 3, while the minimal mast cell reaction group
showed only a 3.5% increase. Interestingly, patients in the prominent
mast cell group also scored higher on the rejection scale. In rat hearts,
Zweifel et al.49 found that mast cell density initially decreased at 5 days
post-transplantation, which then significantly increased by 16 days
post-transplantation.

7. Myocarditis
One of the first reports of disease-related increases in mast cells in
the heart was associated with myocarditis.50 While autoimmune myo-
carditis is recognized as a disease driven by T cells, in particular CD4+

T cells,51 mast cells have also been observed in fibrotic areas in mice
with dilated cardiomyopathy following experimentally induced auto-
immune myocarditis. Inhibition of acute pathological changes using
IL-10 are presumed to be via mast cell inhibition since histamine
levels, mast cell density and mast cell size were all reduced by
IL-1052. Furthermore, IFN-g protects against chronic myocarditis by
preventing mast cell degranulation and fibrosis.53 In viral myocarditis
in mice, induced by infection with coxsackievirus B3, mast cell
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degranulation was observed within 6 h of infection.54 In mice infected
with encephalomyocarditis virus, mast cell density was decreased
slightly 5 days after virus inoculation (1.6+0.3 vs. 1.8+0.3 cells/
mm2) before subsequently increasing to levels that were significantly
greater than normal after 14 days (2.7+0.3 cells/mm2), which
coincided temporally with the pattern of fibrosis within these
hearts.55 In experimental Chagas’ disease, mice infected with Trypano-
soma cruzi show increased histamine levels in the heart56 and histo-
logical examination revealed that mast cells in these mice appear in
areas of fibrosis.57 In the strongest evidence to date, Palaniyandi
et al.52 demonstrated an extremely strong correlation between mast
cell density and collagen volume fraction (r ¼ 0.946) in hearts from
mice with dilated cardiomyopathy following experimentally induced
autoimmune myocarditis. Treatment of these mice with a mast cell
stabilizing compound reduced mast cell density, fibrosis and TGF-b1.

8. Atherosclerosis/aneurysm
Current evidence has implicated inflammation in atherogenesis and
plaque destabilization. Firstly, monocytes and macrophages then lym-
phocytes were identified as being involved in atherogenesis.58 Now
mast cells have also been recognized as composing part of this inflam-
matory response and have been identified as playing a role in plaque
rupture in atherosclerosis. This may occur via several mechanisms.
Bot et al.59 provided in vivo evidence that activated mast cells
increased vascular leakage and the influx of leucocytes into the
plaque, and induced intraplaque haemorrhage causing plaque destabi-
lization with increased risk of rupture. Further, it has been shown that
plaque rupture may be brought about by inducing apoptosis of over-
lying endothelial cells by the secretion of chymase and TNF-a from
activated mast cells.60 Another vascular pathology in which mast
cells play a pivotal role is aortic abdominal aneurysms. Sun et al.61

used mast cell-deficient mice to demonstrate the importance of
mast cells in the development of aortic aneurysms. Further, they
reconstituted mast cell-deficient mice with bone marrow mast cells
lacking chymase and found that this prevented the development of
the aneurysms. This was seemingly through the inhibition of cathep-
sins and MMP expression.

9. Cardiac mast cell activation
Despite the obvious importance of cardiac mast cells in myocardial
remodelling, the factors responsible for initiating mast cell activation
are poorly understood, in fact, our understanding of the effects of secre-
tagogues on cardiac mast cells is very limited. This must become a central
focus for understanding the myocardial remodelling process.

9.1 Endothelin-1
Cardiac expression of mRNA for both ET-1 and the ETA receptor are
increased in volume overload.62 Blockade of the ET-1 receptor pre-
vented MMP activation and attenuated ventricular dilatation in
animal models of heart failure,63,64 a response similar to that observed
with mast cell stabilization. In fact, Murray et al.65 demonstrated that
administration of 20 pg/ml of ET-1 to blood perfused, isolated rat
hearts resulted in extensive cardiac mast cell degranulation, MMP-2
activation and collagen degradation. This resulted in moderate ventri-
cular dilatation and was prevented by the mast cell membrane stabi-
lizing compound, nedocromil. The role of ET-1 may also extend
beyond activation of cardiac mast cells to include induction of mast

cell maturation. Murray et al.66 also showed that the non-selective
endothelin receptor antagonist, bosentan, prevented the increase in
mast cell density seen in the left ventricle under conditions of
volume overload.

9.2 Reactive oxygen species
Surprisingly, little work has been done to investigate the role of reac-
tive oxygen species in activating mast cells. In an interesting study,
Calderón-Garcidueñas et al.67 found that degranulated mast cells
were associated with scattered foci of mononuclear cells in hearts
from dogs in highly polluted cities, while those from less polluted
cities showed virtually no abnormalities. Further to this, we have
found that incubation of isolated rat cardiac mast cells with Na2SO3

induced a concentration-dependent histamine release.68 Degranula-
tion was prevented and attenuated by the anti-oxidant compounds
ebselen and dyphenyleneiodinium, respectively, indicating that
cardiac mast cells can degranulate in response to oxidative stress. Fur-
thermore, Gilles et al.23 had shown in ischaemic pre-conditioning
studies of the heart, that mast cell-derived TNF-a occurred in
response to oxidative stress, indirectly suggesting that cardiac mast
cells are responsive to oxidative stress. Masini et al.69 was able to
demonstrate this more directly using the superoxide dismutase
mimetic, M40403, which prevented mast cell degranulation following
reperfusion of the ischaemic rat heart.

9.3 Complement 5a
The complement molecule, C5a, is a known chemotactic factor for
mast cells.70 C5a seems to be important in scar formation in MI71

and ischaemia–reperfusion injury.72 Patella et al.73,74 have shown
that human cardiac mast cells do degranulate in response to C5a,
however, it is not known if activation of cardiac mast cells by C5a
is an important factor in myocardial remodelling.

9.4 Neuropeptides
Another group of very important potential cardiac mast cell secreta-
gogues are neuropeptides. These may be especially important
because of the prominent role of the nervous system, in cardiac
disease and the fact that many mast cells in the heart are spatially
located close to nerves.35,75 Despite this, and aside from effects on
the vasculature and blood pressure regulation, little attention has
been directed toward the role of neuropeptides in myocardial remo-
delling. While a wide range of neuropeptides have been examined in
relation to their effects on mast cells in general, few have been prop-
erly evaluated with respect to the cardiac mast cell.

Substance P is an 11 amino acid member of the tachykinin family of
neuropeptides, which is released predominately from afferent fibres
of the sympathetic nervous system acting on neurokinin receptors.
In recent years, substance P has become recognized as an important
regulator of inflammation.76 In this respect, substance P has been
shown to induce degranulation of peritoneal, dural, skin, bladder,
and bone-marrow-derived mast cells.77– 83 It was believed that
cardiac mast cells were unresponsive to substance P,73,74 however,
those studies tested cardiac mast cells obtained from transplanted
hearts of patients with end-stage cardiac disease. Further, the
cardiac mast cell isolation technique used in those studies required
numerous washes as well as enzymatic dispersion,73,74,84– 87 which
damages the cells.85 Using our newly developed isolation technique,
we have been able to clearly demonstrate that cardiac mast cells do
respond to substance P.88
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Neurotensin has been found in nerve fibres associated with the
heart, including the coronary vasculature, myocytes, nodal cells, and
intra-cardiac ganglia.89 Neurotensin appears to invoke non-cardiac
mast cell degranulation,90,91 and while only a couple studies have
investigated the effect of neurotensin on cardiac mast cells, the
results are convincing. The strongest evidence was presented by
Rioux et al.92 who found that infusion of isolated hearts with neuro-
tensin induced a rapid, but transient, release of histamine. This effect
was prevented in hearts from rats depleted of histamine by the mast
cell secretagogue, compound 48/80. This appears to be a direct effect
of neurotensin that is calcium dependent.93 Further evidence by Pang
et al.94 demonstrated that cardiac mast cell degranulation, brought
about by immobilization-induced stress, could be prevented by neuro-
tensin receptor blockade. While the positive inotropic effects of
neurotensin in the heart have been shown to be mediated by the
stimulation of norepinephrine release and not histamine or seroto-
nin,95 the effects of neurotensin on cardiac mast cell-mediated myo-
cardial remodelling have not been examined.

9.5 Interleukin-33
IL-33 is a member of the IL-1 family of cytokines and is a functional
ligand of the ST2 receptor. Recent interest in arthritis has centred on
the potential of IL-33 to regulate mast cell function. Extending this to
the heart, we have preliminary studies to indicate that IL-33 can activate
isolated rat cardiac mast cells to a level equal to that of the mast cell
secretagogue, compound 48/80 (unpublished observations). This may
offer an exciting new avenue of investigation in mast cell biology.

10. Gender differences in cardiac
mast cells
The prevalence and severity of gender differences in cardiovascular
disease has been convincingly identified in human clinical studies,96

however, the underlying mechanisms responsible for the lower inci-
dence of cardiac disease in premenopausal females are poorly under-
stood. Since cardiac mast cells play a central role in mediating the
remodelling process through the activation of MMPs leading to the
subsequent degradation of the ECM, gender differences in cardiac
mast cell activation and function may provide a mechanism for the
cardioprotection afforded to pre-menopausal females. However,
information regarding gender differences is extremely limited. Isolated
hearts from ovariectomized female rats showed a marked increase in
MMP-2 activity (133%), a decrease in collagen volume fraction (37%)
and ventricular dilatation (15%) when compared with hearts from
normal females following stimulation with the mast cell secretagogue,
compound 48/80.97 The response seen in the ovariectomized females
following mast cell activation is similar to that seen in males following
creation of an AV fistula, which we have shown to be mast cell
mediated.11,13 Restoration of oestrogen to ovariectomized female
rats was able to prevent the changes in MMP-2 activation, collagen
volume fraction and ventricular dilatation. A possible explanation
for the differences between male and female cardiac mast cells may
be that oestrogen prevents the release of mast cell proteases98 or
other products such as TNF-a99 as has been shown in non-cardiac
mast cells. TNF-a is well established to be critical in remodelling
leading to heart failure100 –102 and our laboratory has shown that
mast cell deficient rats have little myocardial TNF-a at 5 days post-
fistula in contrast to the wild type.14 Therefore, the possibility exists

that oestrogen is reducing the synthesis of TNF-a by cardiac mast
cells as well as other myocardial cells. Preliminary evidence from
our laboratory indicates that males have increased levels of TNF-a
mRNA following volume overload and similarly ovariectomy of
female rats induces an elevation in cardiac TNF-a mRNA. This
could be reversed by supplementation with oestrogen.

11. Conclusions
As summarized in Figure 1, the literature presented in this review
clearly indicates that cardiac mast cells play a central role in remodel-
ling of the cardiovascular system secondary to sustained elevations in
stress or injury. Despite this, our understanding of how mast cells
regulate remodelling is limited. While we know that mast cell
secretory products activate MMPs, it is not known how they may
mediate their pro-fibrotic actions. Several key areas need to
become the focus of future investigations, as indicated by question
marks in Figure 1, including: (i) the downstream effector molecules
by which mast cells induce remodelling; (ii) the interactions of
cardiac mast cells with other inflammatory cells; and (iii) the mechan-
isms responsible for the activation of cardiac mast cells. While mast
cell proteases and TNF-a appear to be important products released
by cardiac mast cells, many other cytokines and growth factors known
to be involved in the remodelling process and recruitment of

Figure 1 In response to elevations in myocardial stress such as
volume or pressure overload, or injury such as lesions of the vascu-
lature or myocardial infarction, a variety of factors are released that
have the potential to activate cardiac mast cells. Upon activation,
cardiac mast cells release numerous products that may include hista-
mine, chymase, tryptase and TNF-a as well as others that are as yet
undetermined. These products can act directly on cardiac fibroblasts,
endothelial cells, smooth muscle cells or cardiac myocytes, depend-
ing on the pathology involved. In addition to this, cardiac mast cells
may also interact with other inflammatory cells such as T cells and
macrophages to amplify their effects on remodelling. Oestrogen
may protect females from the same degree of adverse cardiovascular
remodelling as males by altering the phenotype of cardiac mast cells
or by inhibiting their activation.
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inflammatory cells may be produced. Although ET-1 is an important
activator of cardiac mast cells in vivo, few other secretagogues have
been identified and this should become a major area of focus in the
future. There is evidence that some neuropeptides, such as substance
P, induce cardiac mast cell degranulation, and other neuropeptides
also seem likely candidates since mast cells are often found in close
proximity to nerves. At this stage there are more questions than
answers about the role of cardiac mast cells and many more
focused studies are required in order to fully understand the role
of these cells in cardiac disease.
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