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Abstract

Background: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and
multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major
depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The
neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this
neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the
pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To
extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-
dependent signaling networks, we combined supervised and unsupervised algorithms.

Results: We present an efficient variable selection strategy by consecutively applying univariate as well as
multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not
differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD)
discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost
genes representing major nodes in the expression network were ranked to find highly separating candidate genes.
By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm
separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four
repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy
selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we
obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with
a genetic algorithm.
With two unsupervised algorithms, principal component analysis and graphical Gaussian models, putative interac-
tions of the candidate genes were determined and reconstructed by literature mining. Differential regulation of six
candidate genes was validated by qRT-PCR.

Conclusions: The combination of supervised and unsupervised algorithms in this study allowed extracting a small
subset of meaningful candidate genes from the genome-wide expression data set. Thereby, variable selection
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using different optimization algorithms based on linear classifiers as well as the nonlinear random forest method
resulted in congruent candidate genes. The calculated interacting network connecting these new target genes was
bioinformatically mapped to known CRHR1-dependent signaling pathways. Additionally, the differential expression
of the identified target genes was confirmed experimentally.

Background
The neuropeptide corticotropin-releasing hormone
(CRH), discovered in 1981, is the key regulator of the
hypothalamic-pituitary-adrenal (HPA) axis [1] and
orchestrates the neuroendocrine, autonomic and beha-
vioral responses to stress [2]. Stress and disturbances in
the CRH system, i.e. hyperactivity and impaired negative
feedback regulation of the HPA axis, are frequently
accompanying psychiatric disorders including depression
and anxiety [3-5]. The CRH system has been extensively
studied applying genetically engineered gain-and loss-of-
function mouse models underscoring its importance for
the development of psychiatric disorders [6-8].
The two CRH receptors, CRHR1 and CRHR2, are class

B G protein-coupled seven transmembrane receptors that
are capable of activating different G proteins and signaling
cascades upon ligand-binding. The dominant CRHR1-
activated signaling pathway in endogenous and recombi-
nant cell lines is the adenylyl cyclase-protein kinase A
(PKA) pathway via Gas [9,10]. Dependent on species, tis-
sue and cell type, both receptors are known to activate
Gaq/phospholipase C (PLC)-, AKT/PI3 kinase-, NOS/gua-
nylyl cyclase-, caspase pro apoptotic-and NFKB or
NURR1/NUR77 transcription factor signaling pathways
[11]. In AtT-20 cells, a mouse corticotrope pituitary tumor
cell line expressing CRHR1, PKA activation on the one
hand triggers Ca2+-dependent signaling via CamKII, which
increases NUR77 and NURR1 transcription [12]. On the
other hand, PKA activates a mitogen-activated protein
kinase (MAPK) pathway including RAP1, B-RAF, MEK1
and extracellular signal-regulated kinase (ERK) 1/2 result-
ing in NUR77 phosphorylation/transactivation and tran-
scription of proopiomelanocortin (POMC). In specific
brain areas such as the hippocampus CRH activates
ERK1/2 via CRHR1, whereas in hypothalamic nuclei and
the central nucleus of the amygdala CRH triggers other
signaling pathways as no CRH-dependent ERK1/2 phos-
phorylation was detected [13]. CRHR1, as key regulator of
the neuroendocrine and behavioral responses to stress, has
attracted major interest as a potential novel target for the
therapeutic intervention in major depressive disorder
[14-17]. However, CRH/CRHR1-dependent signal trans-
duction mechanisms are only partially understood. There-
fore, a more precise understanding of the involved
intracellular signaling mechanisms is a prerequisite
towards the development of efficient and less pleiotropic
CRHR1-specific antagonists [18].

The activation of specific signaling pathways will cause
changes in gene expression signatures. Changes at tran-
scriptional level normally precede changes at protein
level and provide an entry point to understand the
underlying regulatory networks. Expression profiling
applying high-throughput microarray technology allows
monitoring thousands of genes simultaneously and to
characterize changes in gene expression patterns
induced by a defined stimulus on a genome-wide scale.
In order to dissect signaling mechanisms of the CRHR1
in depth we used AtT-20 cells, which are a well estab-
lished in vitro system to study CRHR1 signaling
[12,19,20]. To gain insight into the dynamics of CRH-/
CRHR1-dependent signaling pathways we investigated
the alterations in expression patterns after CRH treat-
ment at five different time points between 1 and 24 h
on the Max Planck Institute of Psychiatry (MPIP) 24 k
cDNA microarray platform [21].
For the analysis of expression profiling data a plethora

of methods has been developed in order to rank genes
by t-statistics [22-24]. Applying these univariate feature
selection methods the most significantly regulated genes
can be determined, but variables (genes) are always con-
sidered in isolation. Our aim was to predict gene-gene
interactions between candidate genes that are signifi-
cantly regulated within the time course by sequentially
using univariate as well as multivariate variable selection
methods and afterwards graphical models. Multivariate
variable selection was considered of importance because
variables (genes) contribute only in combination with
other variables to the discrimination of the input data
rather than in isolation. For variable selection we used a
maximum likelihood discriminant method (MLHD),
which is equivalent to linear discriminant analysis
(LDA) combined with a genetic algorithm (GA) [25].
The method combines a small number of five variables
(genes) into subsets (chromosomes) mimicking biologi-
cal crossover and mutation for computation of the dis-
criminant function. Due to computational limitations to
determine all possible chromosomes out of the complete
set of variables a stochastic search strategy for feature
selection is necessary. GA procedures in combination
with classification methods have been successfully used
in the analysis of microarray data [26,27]. Other optimi-
zation procedures implementing classification methods
such as the greedy algorithm and simulated annealing
were also investigated here and in the past [28-30].
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To oppose MLHD embedded in GA to selection proce-
dures which are in principle not affected by the dimen-
sionally problem (small sample size compared to large
variable number) also random forest was used. Subse-
quently, graphical Gaussian models (GGMs) have been
applied to a small subset of genes in order to derive
genetic interactions [31]. The resulting putative gene-
gene interactions from the graphical model were
assigned to signaling pathways activated by CRH/
CRHR1 via text mining methods.

Results and Discussion
Identification of candidate genes
AtT-20 cells are a widely used and best studied in vitro
model to investigate CRHR1-dependent signal transduc-
tion. As pituitary-derived corticotrope cell line, AtT-20
cells express CRHR1 but not CRHR2 [20] which permits
specific analyses of CRHR1 signaling. A plethora of
molecules regulated downstream of CRHR1 have been
identified and studied in this cell line [12,19,20], how-
ever, the complex system of CRHR1-regulated signaling
cascades is not fully understood. To further elucidate
genes involved in CRH-activated signaling pathways we
treated the cells with 100 nM CRH at five different time
points (1, 3, 6, 12, 24 h). The dose of 100 nM CRH was
chosen as 100 nM CRH evokes a response in AtT-20
cells but is still below the concentration of maximal sti-
mulation observed in transactivation assays [20]. Within
the first 3 h CRH is known to activate immediate early
genes such as c-Fos [20]. With the first two time points
this immediate early effect of CRH was investigated
whereas at 6 and 12 h the late CRH response was ana-
lysed. Furthermore, we were interested in the long-term
effects of 24 h of continuous CRH treatment.
The gene expression data obtained by microarray analy-

sis of CRH-treated vs untreated AtT-20 cells at different
time points have been deposited in NCBI’s Gene Expres-
sion Omnibus (GEO) [32] and are accessible by the GEO
Series accession numbers GSE13156 and GPL7467.
Candidate genes were selected following (i) data nor-

malization and preprocessing, (ii) a preselection process
and (iii) supervised variable selection (Figure 1). By sta-
tistical tests it has been verified that prerequisites for
the two-way ANOVA like normal distributed expression
ratios and equal variances across samples are fulfilled.
Furthermore, a balanced design was chosen in the pre-
sent microarray study meaning equal group size of six
technical replicates for each time point. As the technical
replicates were performed on six different arrays, the
data sets are independent.

Normalization and Dye-swap correction
MA-plots of the spot signals from 48 pins (encoded by
different colors) before and after the normalization

procedure are shown in Additional File 1 (exemplified
by time point 12 h after CRH treatment). The normali-
zation procedure was successful as the loess fit curves in
the MA-plots of the transformed array data (i.e. the dif-
ference between measured and predicted M-ratios)
show nearly horizontal lines meaning that most of the
genes do not show much change in their intensity ratios
as expected [33]. After normalization, signals of 12593
spots measured at each time point were tested applying

Figure 1 Workflow scheme demonstrating stepwise analysis of
the microarray data.
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a linear model to exclude genes showing significant dye-
dependent effects in their expression profile over time.
A microarray design based on fixed effects parameters
which was applied here was originally described by Kerr
and Churchill [34]. According to this fixed effects model
differential expression values of 946 genes (p < 0.01 and
false discovery rate FDR < 0.13) with a significant inter-
action of the factors time and dye-swap were excluded
from the dataset.

Preselection 2-way ANOVA
It is important to further restrict microarray data before
multivariate analysis since most of the genes do not
show dynamic differential expression over time follow-
ing CRH stimulation and thus do not contribute to the
discrimination between classes. By applying a two-way
linear model without interaction of the factors time and
dye-swap, genes were preselected for supervised cluster-
ing and variable selection with GA/MLHD. Because one
of the main assumptions of the ANOVA is equal var-
iances across groups we applied Levene’s test for homo-
geneity of variance. For the predominant part of the
gene expression ratios it has been verified by Levene’s
test that there is no shift in variation resulting in 450 of
11647 tests with p < 0.1% and a maximum FDR of 2.5%.
By the two-way ANOVA utilized in the preselection
process, 387 genes (p < 0.01 and false discovery rate
FDR < 0.3) were identified as significantly regulated over
time. This reduction of the feature space was proposed
by many authors [35,36] to improve the predictive
power of the classifier. In principle, due to the small
number of genes in a subset (chromosome) considered
as training data for classification, a reduction of the
initial data set is not necessary. However, stochastic
searches such as genetic algorithms are able to detect
only a small part of the total solution space. To reduce
the solution space and to generate more stable results,
we used the preselected set of 387 genes as input for
the GALGO program. Before, Shapiro-Wilk’s tests (also
applied by Karlovich et al. [37]) were performed to
demonstrate that the expression ratios were log2-nor-
mally distributed for the preselected genes as well as for
the genes used as input for the ANOVA. Considering
the corresponding preselected gene expression ratios 3
of 387 tests showed p < 0.1% with a maximum FDR of
10% while regarding the whole data set used in the two-
way ANOVA for feature preselection 175 of 11647 tests
resulted in p < 0.1% and a maximum FDR of 6.6%.

GA/MLHD
The general application of the maximum likelihood
(MLHD) classifier implemented in a genetic algorithm
to microarray datasets was demonstrated by Trevino
and Ooi [25,26]. In addition it was shown that for a

chromosome size of five variables as used in the present
study the classification error resulting from MLHD is
similar compared to other classifiers (e.g. KNN, SVM,
NC) (see Table three (Appendix) of [25]).
Additional File 2 shows the complete list of 110 tran-

scripts derived from four independent GALGO analyses
based on the preselected genes including all genes
occurring at least once within the top 50 ranks. The fre-
quency rank of each gene was determined by counting
the chromosomes with the respective gene reaching a
classification accuracy of 100% (goal fitness). In total,
there are 15 genes that occur in all four runs among the
topmost 50 ranked genes. Excluding those genes that
were not fully annotated, a total of 10 genes remained
in four runs among the topmost ranked genes. One
exception is the addition of Hmgcs1 because it was
detected twice (Spot ID 6705 and 16977) in at least
three GALGO analysis results. Hence, 11 unique candi-
date genes, which contributed strongly to the discrimi-
nation between groups (time points) were selected for
further validation by qRT-PCR.
With multivariate selection procedures variables (i.e.

gene expression ratios) are tested in combination to
identify interactions between them. Detailed inspection
of the chromosomes (subsets of 5 genes) revealed that
often combinations of candidate genes with complete
discrimination occurred in the GALGO analysis results
(e.g. 4 candidates out of 11 in 224 unique chromosomes
of analysis 1). Therefore, the selected genes are expected
to be highly correlated with each other in terms of gene
interaction networks. The dependency of top ranked GA
(GALGO) selected feature components with each other
(i.e. interaction networks) was also investigated by meta-
bolic profiling studies with help of mass spectrometry
[38]. The authors conclude that preliminary hypothesis
can be generated based on GA selected features (genes)
however it is also important to consider more complete
knowledge of biological pathways from e.g. public data-
bases or text mining tools.

Reliability of candidate genes
Feature selection is critical when LDA is applied to
microarray datasets where the number of genes (p) is dis-
tinctly larger than the number of samples (n) because
overfitting can easily occur. To solve this problem we
investigated several optimization algorithms for feature
selection based on MLHD or LDA considering subsets of
variables in which the number of genes is smaller than
the sample size (p < n). The minimum sample size sug-
gested is five observations per independent variable ([39]
p. 258). Each chromosome of the GA/MLHD and
SANN/LDA approach has a 6:1 ratio of observations to
predictor variables, which meets the 5:1 ratio recom-
mended. Furthermore, generalization curves based on the
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preselected expression ratios showed that a chromosome
size of five is far away from a situation of overfitting
because for a number of variables greater than 20 the test
error (red curve) increases while the training error (black
curve) do not change much (Additional file 3).
We also took random forest classification into account,

which is suited for datasets where the number of vari-
ables is larger than the number of samples (p > > n).

Greedy/LDA
We performed the greedy feature selection and applied
LDA to the selected gene expression ratios. Each
leave-one-out training set consisted of 5 to 10 genes
and was achieved by repeating the F-test as long as the
difference between two statistical models was signifi-
cantly low. The LOOCV classification error was 23%,
which is in the same range as shown by Wang et al.
[30] using greedy-LDA selection methods. A ranked
list was generated based on the frequency of each gene
in the training sets of the samples. The selected genes
were compared to the extracted features from the GA/
MLHD procedure, and an overlap of 59% (10/17) was
determined (Table 1). In case of the 11 candidates 7
genes of the greedy feature selection procedure coin-
cide and in case of the top 6 validated candidates 5
genes overlapped, only Acsl4 is missing. In summary,
both feature selection methods resulted in a clear over-
lap of the selected genes. The advantage of a greedy
algorithm is the requirement of much less computa-
tional resources and that it is faster to execute. On the
other hand, the greedy algorithm does not reach
always a global optimal solution [40]. To address this
limitation we tested also simulated annealing, another
optimization search algorithm, for the validation of the
GA/MLHD results.

SANN/LDA
In contrast to a greedy algorithm which often leads to a
local optimum, simulated annealing (SA) derived from
statistical mechanics converges to global optimum solu-
tion. In this SA approach a fitness function (generalized
energy) was applied evaluating the classification error by
using LOOCV and LDA instead of the physical energy.
SA operates as a probabilistic hill-climbing procedure

searching for the global optimum of the fitness (target)
function. Simulated annealing has previously been
demonstrated to be suitable for classification of gene
expression data from microarrays by training of an arti-
ficial neural network [41]. To select gene expression
ratios for the calculation of fitness values in the optimi-
zation process and to constrain the search space we
developed an algorithm for input selection of subsets of
variables (INSEL). A similar approach with the purpose
of aggregating an ideally minimal subset of inputs with
strong discriminative capability was described by Filip-
pone et al. [28,29]. Details about our R-code for input
selection can be found in the Additional File 4. Alto-
gether 65 transcripts resulted from four separate SANN/
LDA analyses including all genes occurring at least once
within the top 50 genes ranked by their frequency in
chromosomes, which reached a classification accuracy of
100%. 52 out of these 65 transcripts were in accordance
with the 110 transcripts from four GALGO runs repre-
senting an overlap of 80%. Further comparison of the
results of both feature selection methods SANN/LDA
and GA/MLHD revealed identical selected genes (17/17)
including all candidates (11/11) as well as the validated
candidate genes (6/6) (Table 1). With SANN/LDA we
reached a better overlap than in case of greedy/LDA
and GA/MLHD. We ascribe this higher accordance of
selected features by SANN/LDA and GA/MLHD to a
more extensive variable combination caused by a similar
evolutionary algorithm of both methods compared to
greedy/LDA. For SANN/LDA we chose the same input
parameters i.e. chromosome size, amount of solution
chromosomes and fitness score just as for GA/MLHD.
One of the main differences of simulated annealing
compared to genetic algorithm is the use of only muta-
tions in chromosomes whereas the genetic algorithm in
addition takes the combination of two parent chromo-
somes (crossover) into account. In summary, despite of
the more sophisticated search procedure in the genetic
algorithm we obtained a high overlap between the
respective top 50 selected genes of SANN/LDA as well
as GA/MLHD and therefore validated the GALGO
results. A further SANN/LDA analysis using a chromo-
some size of three instead of five revealed also a high
agreement of selected genes (15/17, LOOCV < 15%)

Table 1 Comparison of RF, Greedy/LDA and SANN/LDA with GA/MLHD (from GALGO)

Gene set Overlap with GA/MLHD1) Overlap with 11 candidates Overlap with the top 6 validated candidates

RF 387 12/17 8/11 5/62)

Greedy/LDA 5 -10 10/17 7/11 5/63)

SANN/LDA 5 17/17 11/11 6/6
1) Based on 17 genes from 4 GALGO runs among the top 50.
2) Pex13 missing.
3) Acsl4 missing.
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with GA/MLHD confirming the stability of the results
(data not shown).
Similar to the discriminant vector in classical LDA a

supported vector machine (SVM)-based approach per-
forms gene selection using a weight vector. One
approach for gene selection using SVM is the Recursive
Feature Elimination (RFE) introduced by Guyon et al.
[42]. Filippone et al. implemented the classification
method SVM in their input selection algorithm [28,29].
We also tested SVM in our feature selection algorithm
but the SANN/SVM method showed distinctly more
chromosomes used for classification with a higher
LOOCV error rate than SANN/LDA (data not shown).
Another advantage of LDA compared to SVM imple-
mented in the SA based gene selection method (INSEL)
is that it requires much less computational resources
and it is faster.

Random forest
To contrast the outcome of the GA/MLHD feature
selection procedure with classification methods pro-
posed to be not affected by the dimensional problem
(p > > n), which is the case for microarray data analysis
we applied also tree classifiers. Random forest (RF)
represents an algorithm for classification which uses an
ensemble of classification trees [43]. Each classification
tree is generated by selecting a bootstrap sample of the
data, and at each split predictor variables are randomly
selected. Therefore, random forest includes bagging
[43,44], i.e. bootstrap aggregating, as well as random
variable selection for tree building. Gene selection and
classification of microarray data via RF has been suc-
cessfully applied by Díaz-Uriarte and Alvarez de Andrés
[45]. In RF feature selection procedures both the permu-
tation and the Gini importance can be used to deter-
mine the relevance of each variable [46]. The mean
decrease in Gini criterion was computed for each vari-
able (gene) obtained by RF analysis using the 387
expression ratios of the preselected genes. The resulting
list was sorted according to the Gini index in descend-
ing order and the top most 50 genes were compared to
the selected genes by GA/MLHD. A considerable over-
lap of the top ranked genes of the RF analysis with the
selected genes by GALGO of up to 71% (12/17) was
determined (Table 1) and a similar overlap of up to 65%
(11/17) by utilization of the permutation importance
(data not shown). Furthermore, we found 8 of the 11
candidate and 5 of the 6 validated candidate genes
(Pex13 is missing) by the Gini importance ranked lists
with an out of bag (OOB) classification error of 13.3%.
We conclude from the good agreement of the selected
genes in both feature selection methods that classical
LDA or MLHD in combination with genetic search
algorithms delivers comparable results with algorithms

using tree classifiers like RF. In this context, it is impor-
tant to mention that the training data sets used for the
evaluation of the linear discriminant coefficients were
always based on small subsets of gene expression ratios
(in chromosomes). In other words, the number of genes
considered for LDA or MLHD classification (p = 5) was
set to be smaller than the smallest group size (n = 6)
technical replicates per time point) [39,47,48] which is a
strong criterion to reduce overfitting [30].
The candidate genes identified with GA/MLHD are

reliable because we were able to confirm the resulting
list of the most discriminative features by two other
optimization algorithms greedy as well as SA and by the
tree classifier method random forest. We performed
data preprocessing (including preselection) which is
important for further analysis and took care of para-
meter optimization which is essential to avoid the ten-
dency of overfitting in a multivariate approach.

Prediction of gene-gene interactions
PCA
In order to test whether a separation of the expression
profiles of the candidate genes into time points (after
CRH treatment) can be achieved using unsupervised
clustering methods, a principal component analysis
(PCA) was performed. The underlying data matrix con-
sisted of 11 rows for the genes and 30 columns for 5
time points including 6 technical replicates. The result-
ing scores and loadings from PCA for the objects (i.e.
genes in terms of expression ratios) and variables (i.e.
time points), respectively, were visualized by a biplot
(Figure 2A) allowing for interpretation of relationships
between them. Similar negative gene scores on the
x-axis (PC1) of Pex13, Cd3e and Nf2, which are in the
same region as the 24 h time point vectors, are well cor-
related with each other. Fosl2 and Crem, which show
positive scores on PC1 and are located in the vicinity of
the 1 h vectors, are also correlated. If the vectors point
at the same region as the data points of the objects the
gene expression is increased, otherwise it is decreased.
Time points close to each other in Figure 2A have simi-
lar gene expression patterns. This is supported by the
heatmap in Figure 2B, showing e.g. Fosl2 and Crem
(with positive scores on the y-axis; PC2, Figure 2A)
upregulated after 1 h and downregulated after 24 h of
CRH treatment, whereas Pex13, Cd3e and Nf2 were
downregulated after 1 h and upregulated after 24 h.
Examples for poor correlation in their differential
expression according to Figure 2A are Pex13 and Fosl2
as well as Nf2 and Acsl4 which have negative and posi-
tive scores on PC1, respectively. Furthermore, Figure 2A
and 2B show that the expression patterns of the 11 can-
didate genes are able to clearly discriminate the time
point groups 1 and 3 h, 6 and 12 h as well as the time
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point 24 h. Within the first 3 h CRH is known to regu-
late immediate early genes such as c-Fos [20]. Therefore,
the PCA analysis reflects common transcriptional
changes within the first 3 h of treatment including sig-
naling molecules. Moreover, the correlation of the time
points 6 and 12 h mirror similar processes on transcrip-
tional level regulated by a late CRH response repre-
sented by genes involved in metabolic processes. Long-
term effects of CRH were clearly discriminated at 24 h
where the regulation of primary signaling molecules is
no longer needed but specific downstream cellular pro-
cesses are activated.
GeneNet
The subset of 11 candidate genes with high frequency
ranks derived from the supervised variable selection pro-
cedure and investigated by PCA was further analyzed by
constructing a gene association network with help of the
R package GeneNet [49], another unsupervised correla-
tion method. Primarily, GeneNet was developed for ana-
lyzing gene expression (time series) data with focus on
the interference of gene networks [31,50]. The resulting
undirected graph from the GeneNet program is shown
in Figure 3. We considered gene pairs with |pcor| > 0.35
and corresponding p-values < 0.05 at their edges and

Figure 3 Undirected graph computed by GeneNet for genes
revealed by GALGO analyses. GeneNet analysis was based on the
expression ratios from the microarray of 11 genes. Solid lines in
black depict positive partial correlation between genes. For the
genes Pebp1 and Mat2a relations with other genes were not found
by GeneNet whereas the dotted line between Hmgcs1 and Loxl3
represents a negative partial correlation.

Figure 2 Results of PCA analysis. (A) Biplot of 11 candidate genes (scores) and time points after CRH treatment (loadings). The first two
principal components (PC1 and PC2) were used to generate the biplot. In particular, correlations between the gene data points Pex13, Cd3e
and Nf2 on the one hand as well as Crem and Fosl2 on the other hand are conspicuous. (B) The heat map represents the grouping of genes
and time points by PCA. 24 h-replicates are completely separated whereas 1 h-and 3 h-replicates as well as 6 h-and 12 h replicates differentiate
only partly based on the expression data. Positive and negative values of log2 expression ratios are colored in red and green, respectively. Black
colored expression ratios illustrate no differential expression.
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additionally unconnected nodes. The association
network of putatively co-regulated genes consists of four
main subnetworks with the gene clusters Fosl2-Crem,
Cd3e-Pex13-Nf2, Acsl4-Hmgcs1 and Loxl3-Malat1
(Figure 3, where Hmgcs1 and Loxl3 are negatively par-
tially correlated). These findings are in agreement with
the above mentioned results of the PCA-an independent
unsupervised clustering method-where most of the gene
clusters were found to be correlated, in particular Fosl2-
Crem, Pex13-Cd3e-Nf2 and Acsl4-Hmgcs1 (Figure 2A
and 2B).
A complete discrimination (LOOCV = 1) into time

points was achieved with sets of five genes (chromo-
somes) in the case of Pebp1, Mat2a, Crem, Hmgcs1 and
Malat1 as well as in case of Mat2a, Crem, Cd3e, Fols2
and Malat1. The concordance of genes from these two
chromosomes with genes in every subnetwork derived
from GeneNet indicates that all four clusters including
the two unconnected nodes (Figure 3) play an important
role for the description of the overall time response.
Reconstruction of CRH signaling pathways by text mining
To validate candidate interactions revealed in PCA and
GeneNet analyses the literature mining software Path-
way Studio was used. Direct and indirect protein-protein
interactions, expression and promoter binding as well as
regulation such as common regulators or targets were
taken into account. Every connection found by Pathway
Studio was confirmed manually and incorrectly asso-
ciated interactions were excluded. No literature-based
interaction was found for the GeneNet-built connection
of Malat1 and Loxl3 (Figure 3), which is consistent with
the weak correlation in the PCA results. In addition, for
the negative partial correlation between Hmgcs1 and
Loxl3 no relation was found using the Pathway Studio
software, as was confirmed by PCA (Figure 2). Nf2,
Pex13 and Cd3e clustered together in the GeneNet algo-
rithm because of their regulation 24 hours following
CRH stimulation. Therefore, these molecules should not
be involved in acute signal transduction but in the mod-
ulation of CRH-dependent cellular processes such as
proliferation or immune response [51-53]. Along these
lines, all three genes have divergent functions. Nf2, a
tumor suppressor, plays a critical role in cell prolifera-
tion by blocking growth factor receptor-dependent
pathways [54]. Interestingly, a single nucleotide poly-
morphism in the Cd3e genes is associated with antide-
pressant treatment response [55]. The peroxisomal
biogenesis factor Pex13 functions as protein transporter
in peroxisomes and is related to fatty acid oxidation.
The verification of the interactions predicted by Gene-
Net with the Pathway Studio software resulted in an
indirect protein-protein interaction via SH3 domains.
Pex13 contains an SH3 domain itself, whereas Nf2 and
Cd3e can bind proteins, which in turn are capable of

binding SH3 domains [56-59]. Moreover, a putative
linkage of these three candidate genes to CRHR1-
cAMP-mediated signal transduction was found for Nf2
(Figure 4). PKA phosphorylates Nf2, which triggers the
dimerization with ezrin and causes cell growth [60]. As
CRH is known to regulate cell proliferation Nf2 could
be one of the responsible molecules mediating the CRH
effect on cell growth [51,52]. Additionally, Nf2 is able to
block MAP kinase signaling pathways [54] and thereby
possibly affects CRHR1-regulated transcription.
The next group of interacting candidate genes con-

taining Hmgcs1 and Acsl4 (Figure 4) is involved in lipid
metabolism. Both genes were found to be connected via
the peroxisomal proliferator-activated receptor a
(PPARA) which maintains fatty acid homeostasis by
induction of fatty acid oxidation and plays a role in con-
trolling peroxisomal proliferation. Hmgcs1 was also
found to be regulated on protein level after 100 nM
CRH treatment of AtT-20 cells [19]. The Hmgcs1 gene
contains a peroxisome proliferator response element
(PPRE) in its promoter that binds PPARA/RXR hetero-
dimers [61] and long-chain acyl-CoA synthetases (LC-
ACS), like Acsl4, inhibit PPARA-mediated transcription
[62]. Acsl4 transcription is activated by cAMP [63] and
PPARA is phosphorylated by this second messenger [64]
linking these genes with Gas protein-coupled receptor
signaling pathways.
The CRH/CRHR1-dependent regulation of genes

involved in lipid metabolism strengthens a potential role
of CRH as a modulator of metabolic function. Many

Figure 4 Result of shortest path searches between all
candidate genes investigated by GeneNet. After manual curation
of each interaction the resulting pathways were combined in this
picture. Experimentally with qRT-PCR validated genes are drawn by
rectangles and intermediates are indicated by circles. Lines with an
arrowhead reflect positive regulation, other lines indicate inhibition.
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psychiatric and neurological disorders share changes in
metabolism [65,66]. Hmgcs1, e.g., together with other
genes linked to fatty acid metabolism is upregulated by
antipsychotics in human glioma cells [67].
The putatively connected candidate genes Crem and

Fosl2 are both transcription factors. Crem is a modulator
of cAMP responsive element (CRE)-dependent transcrip-
tion [68] and is known to be regulated by CRH [20]. The
expression of numerous genes such as CRH or tyrosine
hydroxylase involved in psychiatric and neurodegenera-
tive disorders, respectively, is regulated by Crem [69].
Fosl2 is a transcription factor of the Fos family, of which
the immediate-early gene c-Fos is the most prominent
member. Becquet and colleagues (2001) showed that
upon CRH treatment transcription factors of the Fos-and
Jun-family bind to the Pomc promoter and regulate its
transcription [70]. Literature mining revealed cAMP as
the connecting molecule for both transcription factors
(Figure 4). cAMP-mediated induction of Crem leads to
transcription of its inducible form Icer which is driven by
an alternative intronic promoter [68]. In the case of
Fosl2, cAMP leads to Fosl2-dependent transcriptional
regulation of genes containing an AP1-binding site in
their promoter [71,72]. As it is well known that CRH
induces cAMP, and its downstream signaling cascades
via a GaS protein the GeneNet algorithm not only eluci-
dated an interaction between Crem and Fosl2, but the
result can be linked to CRHR1-dependent signaling path-
ways, especially since the Pomc promoter contains a
cAMP-responsive element as well as an AP-1 binding
site [73-75]. Crem and Fosl2 both showed an up-regula-
tion within the first hour of CRH stimulation. Early regu-
lated transcription factors Crem and Fosl2 may play an
important role in the regulation of CRHR1-dependent
signal transduction, probably by triggering or coordinat-
ing the transcription of secondary regulated genes.
Nf2, Acsl4, Crem and Fosl2 are known to be regulated

by cAMP and thus targets of GaS-protein-dependent
signaling mechanisms. As CRH/CRHR1 promotes the
synthesis of the second messenger cAMP the regulation
of these four candidate genes by cAMP is likely to
depend on direct CRH stimulation. As cAMP activates
different signaling cascades via PKA such as CREB, L-
type Ca2+channels and MAP kinase pathways, the dis-
tinct time-dependent differential regulation of candidate
genes is likely to be stimulated by those different down-
stream pathways. Additionally, secondary effects of
CRH-activated signaling such as expression and transac-
tivation of transcription factors, e.g. of the AP1 family,
lead to time-delayed changes in gene expression.
In summary, according to present knowledge, the

inter-gene connections identified by the GeneNet algo-
rithm were validated and additionally integrated into
known CRHR1 signaling pathways.

Validation of CRH-regulated genes over time via qRT-PCR
To strengthen the biological relevance of the theoretical
findings based on multivariate GALGO and unsuper-
vised GeneNet algorithms the microarray data were
partly confirmed by quantitative real-time PCR on all
candidate genes that were analyzed by PCA and Gene-
Net, respectively, and subsequently verified by applying
the Pathway Studio software. Total RNA isolated from
two independent biological replicates at different time
points was reverse transcribed and cDNA was analyzed
in technical duplicates by qRT-PCR. As an internal stan-
dard the housekeeping genes Hprt and Gapdh were
used. Both genes were not differentially regulated in
AtT-20 cells by CRH stimulation.
We confirmed that after CRH stimulation the tran-

scription of Crem was increased in the first 12 hours.
The differential expression of Fosl2 was increased at the
time points 1, 6, 12 and 24 h in the microarray as well
as in the qRT-PCR. Acsl4 and Hmgcs1 showed
increased mRNA levels in both analysis at 6 and 12
hours whereas Nf2 and Pex13 were upregulated by CRH
after 12 and 24 hours (Figure 5). The expression level of
Cd3e was out of the linear detection range of the Light-
cycler instrument and thus not validated. With both
internal references, Hprt and Gapdh, similar results
were obtained. The microarray and qRT-PCR regulation
values correlated well confirming the validity of the
expression kinetics. Genes were defined as validated
when the direction of regulation as determined by qRT-
PCR was at least at one time point in agreement with
the microarray result. To reveal the significance of the
qRT-PCR in comparison to the microarray results
ANOVA was performed. For Crem, Fosl2 and Nf2 the
CRH-and time-dependent changes in expression are sig-
nificant in microarray and qRT-PCR data and for Acsl4
the p-value shows a trend showing the reproducibility of
the microarray results in independent material (Figure 5).
For Hmgcs1 and Pex13 no significance in the ANOVA
was obtained although the expression changes over time
are similar in the qRT-PCR and in the microarray data.
In the case of Hmgcs1 the variance between the samples
is high, thus the analysis of more samples would help to
get the results statistically significant. In the case of
Pex13 the differential expression in the microarray ana-
lysis is very low and therefore difficult to validate with
qRT-PCR although the regulation at 24 h was measured
in both experiments.
The validation of the expression dynamics supported

the clustering results of the GeneNet algorithm. Genes
similarly regulated over time were considered as putative
interaction partners. As the validated six candidate
genes showed differential expression over time in an
independent experiment, the co-regulated genes Crem
and Fosl2, Acsl4 and Hmgcs1, Nf2 and Pex13 can be
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regarded as important mediators of CRH/CRHR1-
dependent signaling pathway.

Conclusions
To dissect CRHR1-dependent signaling pathways in
detail, genome-wide expression profiling of CRH-stimu-
lated AtT-20 cells was performed at five different time
points. A combination of univariate preselection, multi-
variate discriminant analyses followed by unsupervised
graphical models was employed to find genes signifi-
cantly regulated by CRH/CRHR1-dependent mechan-
isms. Starting with more than 12000 expressed genes,
we isolated a small subset of genes connected to
CRHR1 signaling mechanisms. We focused on genes
that occurred multiple times in GALGO analyses and
contributed significantly to the discrimination of differ-
ent time points following CRH treatment. Additional
analyses using the state-of-the-art algorithm random
forest as well as further optimization methods such as
SANN and greedy, revealed similar results which
strengthened the reliability of the GALGO results. Con-
sequently, possible correlations between these genes
were determined by PCA and GeneNet. Moreover, the
differential expression of a subset of candidates was vali-
dated independently and determined interactions were
confirmed via Pathway Studio software. This approach
was able to condense the enormous dataset to a

manageable subset of discriminative genes, which can
now be subjected to detailed functional studies.

Methods
Cell culture
AtT-20 cells were obtained from the American Type Cul-
ture Collection (Manassas, VA) and cultured under stan-
dard conditions in Dulbecco’s modified eagle medium
(DMEM; Invitrogen, Karlsruhe, Germany) supplemented
with 10% fetal calf serum (FCS; Invitrogen) and antibio-
tics (Invitrogen). The cells were maintained in a humidi-
fied 5% CO2 atmosphere at 37°C. After FCS deprivation
for 18 hours cells in each experiment were treated with
human/rat CRH (100 nM) (Bachem, Heidelberg, Ger-
many) for 1, 3, 6, 12 and 24 h, respectively. In addition,
untreated control cells were harvested at the same time
points.

RNA isolation and microarray hybridization
AtT-20 cells were harvested and total RNA was isolated
with TRIzol® reagent (Invitrogen) according to the man-
ufacturer’s protocol. RNA integrity was tested by gel
electrophoresis. Amplified RNA (aRNA) synthesis and
aRNA labeling were performed with the Amino Allyl
MessageAmp™ aRNA Kit (Ambion, Austin, Texas) fol-
lowing the manufacturer’s protocol. To exclude dye bias
a dye-swap approach was chosen, i.e. one half of control
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Figure 5 qRT-PCR validation of the differential expression of six candidate genes at different time points. Filled circles located on solid
lines represent differential expression values from the microarray whereas filled squares on dashed lines show qRT-PCR expression values of AtT-
20 cells independently treated with CRH related to their untreated controls and normalized to the house keeping gene Hprt. p-values were
evaluated by ANOVA analyses.
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AtT-20 aRNA and treated AtT-20 aRNA, respectively,
was coupled to mono-reactive Cy3 and the other half to
Cy5 N-hydroxysuccinimid (NHS) esters (Amersham).
The labeled control and treated aRNA samples were
mixed (Cy3-labeled control with Cy5-labeled treated
samples and vice versa) and hybridized onto MPIP 24 k
mouse cDNA arrays (Max Planck Institute of Psychiatry,
Munich, Germany) [21]. In total, six technical replicates
(three for each dye-coupling combination) were per-
formed and scanned on a PerkinElmer Life Sciences
ScanArray 4000 laser scanner (Rodgau-Jügesheim,
Germany).

Quantitative real-time PCR
The identity of selected candidate genes was verified by
sequencing of the corresponding array clones (Sequi-
serve, Vaterstetten, Germany).
cDNA of independently treated AtT-20 cells was

synthesized with SuperScript II-reverse transcriptase
(Invitrogen) primed with oligo(dT) primers using 1 μg
of total RNA according to the manufacturer’s instruc-
tions. cDNA of untreated and 100 nM CRH-treated
AtT-20 cells was analyzed by quantitative real-time PCR
(qRT-PCR) using the LightCycler® FastStart DNA Mas-
terPLUS SYBR Green I reagent (Roche Diagnostics
GmbH, Mannheim, Germany) according to manufac-
turer’s instructions and different oligonucleotide primers
(see Table 2). The experiments were performed in dupli-
cates in the LightCycler®2.0 instrument (Roche Diagnos-
tics, Mannheim, Germany) with the following PCR
settings: initial denaturation at 95°C for 10 min; 40
cycles of denaturation (95°C for tD = 10 sec), annealing
(TA = 56-65°C for tA = 4-5 sec) and elongation (72°C, tE
= 7-13 sec). At the end of every run a melting curve

(50-95°C with 0.1°C/sec) was measured to ensure the
quality of PCR products. Crossing points (Cp) were cal-
culated by the LightCycler®Software 4.0 (Roche Diagnos-
tics, Mannheim, Germany) using the absolute
quantification fit points method. Threshold and noise
band were set manually in all compared runs at the
same level. Relative gene expression was determined by
the 2-ΔΔCT method [76] using the real PCR efficiency
calculated from an external standard curve, normalized
to the housekeeping genes Hprt and Gapdh, respec-
tively, and related to the data of untreated AtT-20 cells.
For validation we compared the expression ratios of six

selected genes measured via qRT-PCR at each time point
after CRH stimulation with the corresponding expression
profiles from the microarray using statistical tests. One-
way ANOVA on the log2-transformed expression ratios
(treated versus control) with the factor time was applied
using the aov function in the statistical software R utiliz-
ing partitioned error for replicates. Altogether four mea-
surements of qRT-PCR normalized to Hprt, i.e. two
biological and two technical replicates were considered in
the ANOVA for each time point to determine statistical
significance. In the case of the microarray data a two-way
ANOVA with the factors time and dye-swap for six tech-
nical replicates was performed as described for the prese-
lection process in preparation for supervised variable
selection. In addition to the ANOVAs calculated sepa-
rately for the qRT-PCR and microarray expression ratios
the overall time response was considered if up-or down-
regulation of the corresponding gene was measured
equally in both analyses by visual inspection of the plots
of the expression ratios against time points.

Data normalization and preprocessing
Intensity extraction from the microarray scan images
was accomplished by the fixed circle quantification
method using QuantArray (PerkinElmer Life Sciences).
The bottom 10% of the scan intensity values were
defined as background and erased. Raw data were nor-
malized using a lowess-based MA-smoother with print-
tip correction implemented after Yang et al. [33] where
M denotes the intensity ratio log2I(Cy3) -log2I(Cy5) or
log2I(Cy5) -log2I(Cy3) and A the average intensity (log2I
(Cy3) + log2I(Cy5))/2 or (log2I(Cy5) + log2I(Cy3))/2 of a
spot signal. MA-plots are helpful to identify spot arti-
facts and to detect intensity-dependent patterns in the
log ratios M. For the within-array normalization we
used the robust scatter plot smoother loess (with the
parameter span = 0.75) implemented in R statistical
software [77] to perform a fit with a polynomial surface
to the MA-plots of the raw data. The fitting procedure
was done locally. The normalized intensity ratio were
computed by the difference between the measured M-
ratio and the predicted ratio from the loess regression.

Table 2 Primers used for qRT-PCR validation

gene 5’ ® 3’

Acsl4 fwd GGAGCCAAGCCAGAAAAC

Acsl4 rev GCCTGTCATTCCAGCAATC

Crem fwd ACATGCCAACTTACCAGATCC

Crem rev TTTTCAAGCACAGCCACAC

Fosl2 fwd GGTAGATATGCCTGGCTCGG

Fosl2 rev TCATCTCTCCTTCTGCGGCC

Gapdh fwd CCATCACCATCTTCCAGGAGCGAG

Gapdh rev GATGGCATGGACTGTGGTCATGAG

Hprt fwd ACCTCTCGAAGTGTTGGATACAGG

Hprt rev CTTGCGCTCATCTTAGGCTTTG

Hmgcs1 fwd AATGCCGTGAACTGGGTCG

Hmgcs1 rev TGAGGTAGCACTGTATGGAGAGC

Nf2 fwd TTCAAGAGATCACGCAACAC

Nf2 rev TTCTCTCCTCCCACATTTCC

Pex13 fwd TCCTGTTCTTTGCTGTTATCC

Pex13 rev TCATCCTCACCACTTGCC
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To reduce dye-biased effects on gene expression data a
linear model (two-way ANOVA) considering the factors
time and dye-swap was applied. The dye-swap is repre-
sented by the two levels [CRH-treated(Cy3)]/[control
(Cy5)] and [CRH-treated(Cy5)]/[control(Cy3)]. A differ-
ent effect of the dye combinations on the expression
ratios of the six technical replicates will result in a sig-
nificant interaction term of the ANOVA. Thus, by
excluding gene expression ratios corresponding to a sig-
nificant interaction between both factors the bias intro-
duced by the different properties of the dyes was
removed. Only spot signals which were detected at each
point in time for a total of 30 two-colour arrays were
taken into consideration. Factorial ANOVA was per-
formed on log2-transformed data using the lm function
in the statistical software R. The p-values from the
ANOVA were adjusted for multiple testing using the
false discovery rate (FDR) correction of Benjamini and
Hochberg [78] implemented in the R-function p.adjust.

Supervised variable selection
Before applying multivariate analysis a feature preselec-
tion was performed to eliminate not differentially
expressed genes over time. We used a two-way linear
model without interaction of the factors time and dye-
swap. Genes were ranked according to their p-value
after FDR-adjustment for multiple testing. To check if
the expression ratios used in the two-way ANOVA are
log2-normal distributed as well as if equal variances
across groups exist, we performed Shapiro-Wilk’s tests
(with the R-function shapiro.test) and Levene’s tests
(using the R-function levene.test), respectively. In case of
the Levene’s test the factor variable group was set to five
time points having six replicates each and the para-
meters option = trim.mean as well as trim.alpha = 0.25
were utilized.
A prerequisite for correct application of linear dis-

criminant analysis (LDA) is the normality in the vari-
ables. Therefore, it was tested how many of the gene
expression ratios used within the covariance matrix
are log2-normal distributed (with the R-function
shapiro.test). For verification which numbers of vari-
ables are suitable to avoid overfitting the classification
error specifically the training error by resubstitution
and test error by leave-one out cross-validation was
plotted against the number of variables used in the
LDA. Sets of variables (i.e. expression ratios) in the
range of 2 to 30 were randomly drawn one thousand
times each from the preselected data set and the aver-
aged classification errors were calculated. Numbers of
variables in the LDA should be avoided if the test
error increases while the training error steadily
decreases or don’t change because then overfitting
may have occurred.

GA/MLHD
Genetic algorithm (GA) is a heuristic search procedure
based on natural selection according to the following
stages (for details see [26,79]):
1. Creation of chromosomes that are subsets of

variables
2. A fitness function is used to evaluate the ability to

predict the group membership of each sample for each
chromosome
3. Selection of chromosomes with a fitness higher than

a predefined value and stop of the procedure otherwise
continuation with stage 4
4. Reproduction of chromosomes relatively to its fit-

ness; crossover between two randomly selected parent
chromosomes; random insertion of mutations (new
genes) in chromosomes; repetition from stage 2 until an
accurate chromosome is determined.
GALGO, an R package based on genetic algorithm

search procedure was applied for supervised multivariate
variable selection [25]. Starting point of the GA is the
random creation of chromosomes with a size of five fea-
tures (stage 1). For the fitness function the leave-one
out cross-validation (LOOCV) procedure in combination
with the classifier from discriminant analysis was chosen
to evaluate the fitness value, which is defined as the
classification accuracy of a selected chromosome. The
fitness function controls chromosome selection in the
genetic algorithm (stage 2). We utilized the maximum
likelihood (MLHD) method for classification which is
equivalent to linear discriminant analysis (LDA) [26,79].
To minimize overfitting the maximum likelihood
method implemented in GALGO was restricted to sub-
sets of five variables (chromosome size).
In addition, a gene ranking was based on the fre-

quency of each feature in chromosomes satisfying the
goal fitness (stage 3). The search parameters in the
genetic algorithm included up to 2500 iterations (maxi-
mum solutions) to collect a large number of variable
combinations and an estimated classification accuracy
with optimizing criteria of 100% (goal fitness). The max-
imum number of generations (stage 4) was set to 200
because thousands of generations would end up in over-
fitting. Finally, the topmost 50 genes were selected. In
order to validate gene rank stability and to isolate genes
occurring in several analyses, the feature selection algo-
rithm was repeated separately four times with the same
input data and parameter settings.

Greedy algorithm
We applied the greedy.wilks function from the klaR
package in R to the preselected microarray dataset and
used LOOCV in conjunction with LDA to obtain the
most frequently identified genes for setting up a predic-
tive model. Based on a small part of the data the greedy
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algorithm iteratively adds one locally optimal compo-
nent after another to extend the data structure until an
optimal solution is reached. The greedy.wilks method
performs a stepwise forward variable selection using the
Wilk’s Lambda criterion [80]. Starting point is the
choice of the gene with the lowest p-value from the
overall F-Statistic.
Leaving out one sample (technical replicate) at a time,

we applied the greedy.wilks method to select genes
showing p-values from F-statistic of the partial Wilk’s
Lambda (p.value.diff) smaller than a predefined signifi-
cance level (niveau = 0.001). Partial Wilk’s Lambda is
defined by the difference between two statistical models
in which the one model contains the new variable while
the other does not. A LDA classifier was trained with
the selected gene expression ratios and the group mem-
bership was predicted for the excluded test dataset. By
repeating the described procedure for all samples and
counting the number of times a gene was picked out,
we generated a ranked list with the most frequently
identified genes and evaluated the classification error.

Simulated annealing
We developed an algorithm for input selection of sub-
sets of variables (INSEL) which uses simulated annealing
(SA), LDA as well as LOOCV, and produces a ranked
list of variables (genes) with high discriminative power.
In our input selection algorithm we implemented the
optim function with method = SANN of the stats pack-
age in R. SANN is a variant of simulated annealing
given by Belisle [81] and uses the Metropolis function
for acceptance of probability. The method SANN
requires an initial set of variables (sq) to be optimized
over, a target function to be minimized (fn) and a func-
tion that generates a new candidate combination (gr) as
well as control parameters such as the maximum num-
ber of iterations (maxit) and the starting temperature
for the cooling schedule (temp). In our case sq repre-
sents the complete preselected gene set from the micro-
array by random selection of a small subset of genes
(chromosome size = 5). The fitness function fn evaluates
the classification error using LDA and LOOCV based
on the gene expression ratios in the subset whereas the
gr function introduces a mutation in the subset. A
mutation is defined as an exchange of one gene in a
chromosome against a randomly selected new gene
from the dataset. The control parameter maxit gives the
total number of function evaluations and was set to
1000. Following Press et al. [82] we calculated the mean
variation of the classification error (representing a gen-
eralized energy) over 10000 randomly selected chromo-
somes from the dataset in order to evaluate the starting
temperature temp. The temperature acts as a control
parameter for the search area and is gradually lowered

until no further improvement of the fitness function is
detected.
We applied the described procedure by collecting up

to 2500 solution chromosomes. Based on all solutions
we filtered the list for chromosomes that show an esti-
mated classification accuracy of 100% and ranked the
genes according to their frequency. Finally, the topmost
50 genes were selected. Altogether four runs were per-
formed with the same parameter settings.

Random forest
We applied the R-function randomForest according to
Breiman [83] to the whole preselected microarray data
using standard parameter settings, i.e. ntree = 500, mtry

= number of genes , and nodesize = 1. The argu-

ments ntree, mtry and nodesize are defined by the num-
ber of trees, the number of input variables tried at each
split and the minimum size of the terminal nodes,
respectively. It was reported that the default value for
mtry is often a good choice [84]. To produce a ranked
list of the variables (genes) according to the mean
decrease in Gini criterion the parameter importance was
set to TRUE. The analysis described was repeated sev-
eral times in order to examine the stability of the
results.

Modelling of gene-gene interactions
PCA
To reveal groups of genes that act together we first used
an unsupervised method-principal component analysis-
to describe the correlation structure of the selected
genes. Correlations between genes were derived from
PCA of gene expression patterns using the prcomp func-
tion with default settings in the R package stats. The
gene (row) by time point (column) matrix of expression
ratios was analyzed by PCA to determine the scores for
the objects (gene expression ratios) and the loadings for
the variables (time points). After mean centering of the
gene expression ratios the ratios as well as time points
were simultaneously plotted with help of a biplot
[85,86]. The PCR was applied on a small subset of can-
didate genes derived from the multivariate analysis by
GA/MLHD.
GeneNet
Additionally, a search for correlations, which cannot be
explained by other variables, was performed. These par-
tial correlations are used as a measure of conditional
independence and are the basis for graphical Gaussian
models (GGMs). For construction of a gene association
network-GGMs that represent multivariate dependen-
cies-the R package GeneNet (version 1.1.0) [49] was
used. GeneNet contains functions for calculating shrink-
age estimators (ggm.estimate.pcor) and for assigning
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statistical significance for the edges in a network (ggm.
test.edges). The undirected graph for a small subset of
genes from the feature selection procedure with GA/
MLHD was calculated with the parameter method =
dynamic in the function ggm.estimate.pcor by foregoing
mean centering of the expression ratios.
Text mining
To verify the predicted network from GeneNet the cor-
responding gene-gene interactions were searched for in
all PubMed abstracts with the help of a text mining pro-
gram (Pathway Studio 5.0, Ariadne Genomics) based on
the Natural Language Processing (NLP) Technology.
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Additional file 1: MA plots. MA-plots of the spot signals from 48 pins
of the raw and normalized microarray data including loess fit curves

Additional file 2: SupplementaryTable 1. Genes regulated by CRH in
murine corticotrope AtT-20 cells as identified by GALGO analyses

Additional file 3: Generalization curves. Training (resubstitution) and
test (leave-one out cross-validation) error as a function of the number of
variables used in the LDA

Additional file 4: R code. Implemented R code of the variable selection
algorithm INSEL based on simulated annealing and LDA (For download
of the R software: http://cran.r-project.org/).
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