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Abstract

Background: A number of studies have previously demonstrated that ‘‘goodness of fit’’ is insufficient in reliably classifying
the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method
for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular
parameter set tested, yet many parameter values for biological models are uncertain.

Results: Here, we propose a novel robustness analysis that aims to determine the ‘‘common robustness’’ of the model with
multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is
applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results
reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in
the circadian network.

Conclusions: Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the
critical components and processes controlling each model.
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Introduction

Mathematical modelling has established itself as a complemen-

tary means to study the complexity of biological systems. Through

its capacity to integrate extensive data from diverse sources [3-5],

modelling has contributed greatly to our understanding of the

mechanisms governing organismal behaviour [1,2,6–10], as

exemplified by the JWS online (http://jjj.biochem.sun.ac.za/)

[11] and BioModels (http://www.ebi.ac.uk/biomodels-main/)

[12] databases.

The fitting of models to data necessitates the determination of

parameters describing processes of the biological system [13–15].

However, parameters obtained through experimental measure-

ment are condition-dependent, while the measuring process itself

is costly with respect to technique, expense, and time. Optimisa-

tion provides an alternative and increasingly popular method to

estimate the model parameters [16]. Implementing the optimisa-

tion requires an appropriate measure to compare the experimental

data with simulated results and the first test of a model’s suitability

lies in its capacity to ‘‘fit’’ the biological data. However, a

considerable drawback in using optimisation to estimate param-

eters for complex models is that multiple parameter sets may ‘‘fit’’

the data equally [1,17].

An analysis of the robustness of the system is the logical next

step to address the uncertainties arising from considering only

‘‘goodness of fit’’. While the notion of model robustness is

interpreted broadly in the literature, the robustness of a biological

system is mainly defined as a property of a biological function

[15,18]. Measurement of the robustness of a biological system

therefore relates to the determination of the effect of certain

perturbations on the biological function. In this context, the

biological function is inferred by ‘‘the behaviour of a dynamical

system’’- such as a gene expression waveform or the period of a

sustained oscillation. These behaviours could be among the targets

used in the optimisation process. Hence, the reference to model

robustness here is specifically defined as the persistence of the

model behaviour against perturbations, as reflected in the

deviations of simulations from biological data. The results of

robustness analysis can be used as outlined, for example, in

Morohashi et al (2002) [19], where it is suggested that robustness

should be an essential property for any biological system and can

therefore be considered as a decisive factor for selecting a credible
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model or pinpointing the weaknesses of a failed model. Bifurcation

analysis applied to two published models for the Xenopus cell cycle

oscillator [20,21] indicated that the later model is more robust,

thus cementing its position as the more realistic model than based

on biological evidence alone. In a similar manner, Zeilinger et al

(2006) [17] demonstrated that three distinct models for the

Arabidopsis circadian clock could be distinguished through

robustness analysis.

Robustness/sensitivity analysis can also be used to pinpoint the

specific factors or processes affecting a system, indicating how the

system maintains functionality in spite of internal or environmen-

tal perturbations [22,23]. Furthermore, robustness analysis reveals

insight into the importance of model parameters on the model

behaviours [24]. A variety of techniques have been developed to

determine the robustness of a system, for example bifurcation

analysis [25–27], control analysis (CA) [28–31] and Infinitesimal

Response Curve (IRC) [32]. To summarise such analyses and

compare across the systems, Kitano (2007) [33] proposed a

method to quantify the robustness through a single factor. The

above methods reveal different insights into the robustness of

distinct system properties, for example bifurcation analysis can

determine the exact space of the parameters giving desired system

performance (e.g. periodic solution for oscillator) [25–27], while

CA and IRC can quantify the dynamic changes of the system in

applied differentiated perturbations [9,34–36]. Although CA and

IRC provide precise analytical measurements, these methods

evaluate the robustness around a fixed point in parameter space

and the subsequent results are therefore potentially biased to a

specific parameter set. The inherent impact of parameters to

model robustness is hard to separate [13–15] and it becomes

exaggerated in mechanistic modelling, where the focus is on

correct interactions rather than the used parameters.

The circadian clock is a fundamental biological process of

organisms ranging from unicellular (e.g. Synechococcus cyanobacte-

rium) to multi-cellular [37–39]. Its network is believed to be

composed of a negative feedback loop structure which generates a

robust 24h-period oscillation. While the molecular mechanism of

the circadian clock has been extensively studied in the cyanobac-

terium [37,38,40], fungi (Neurospora crassa) [37,38,41,42], insects

(Drosophila melanogaster) [37,38,43] and mouse [37,39], for plants

(Arabidopsis thaliana) the network has recently been established

[38,44–46]. A series of Arabidopsis circadian clock models were

constructed following the proposal of its molecular network. Locke

et al (2005) [1] created an initial ‘‘one-loop’’ model based on the

hypothesis of Alabadi et al (2001) [44], which proposed a negative

feedback loop of three genes (Figure S1a): two redundant gene

encoding MYB transcription factors, LATE ELONGATED HYPO-

COTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1),

and a gene encoding the pseudo-response regulator protein,

TIMING OF CAB EXPRESSION 1 (TOC1). A system of seven

ordinary differential equations (ODEs) containing 25 parameters

was proposed to describe the regulation of the circadian clock for

the one-loop model. While the simulated results of this model

fitted experimental data from the wild-type (see Figure S1a), it

failed to match mutant data, for example short period oscillations

observed in the lhy;cca1 double mutant plant [1,2]. To match these

data, Locke et al (2005b) [2] derived a second model (the two-loop

model) through addition of hypothetical genes ‘X’ and ‘Y’. The

hypothetical gene ‘X’ was added to extend the time-delay in the

model and incorporate an indirect activation of LHY/CCA1 by

TOC1 (whose mechanism is unclear) [44,47]. An additional loop

connects with TOC1 in the original loop in an interlocking fashion

as illustrated in Figure S1b. The extensions resulted in a system of

13 ODEs and 58 parameters. Simulations of the two-loop model

match additional experimental data, including the lhy;cca1 double

mutant.

Parameter optimisation to fit such data can reveal multiple

parameter sets spanning large tracts of parameter space. Until the

parameters are measured experimentally, it is desirable to

determine the sensitivity/robustness of a model circuit independent

of the chosen parameter set and here we propose a strategy that

determines this intrinsic robustness of a model. The method is

applied to the one- and two-loop models for the Arabidopsis

circadian clock, where we take advantage of the previously

globally-optimised parameter sets produced by Locke et al

(unpublished data) as an initial input for the method. We

demonstrate that robustness corroborates the perceived greater

credibility of the two-loop model, which is more robust, as well as

matching more data than the one-loop model. Our analysis leads

to biological inference on the core processes governing this

network.

Results

Analysis of Arabidopsis circadian clock models
The proposed method, Consistent Robustness Analysis (CRA),

was applied to analyse two published models of the Arabidopsis

circadian clock. The circadian clock in Arabidopsis is appropriate

for a number of reasons. Firstly, circadian clocks are believed to be

highly robust in comparison to other cellular processes (for

example, calcium or glycolytic oscillations) [48]. Secondly,

previous studies have demonstrated that the one-loop model failed

to capture a critical behaviour of the Arabidopsis circadian clock

that was replicated in the two-loop model. A critical test of the

procedure introduced here is to determine whether it can extend

understanding beyond the better fit of the two-loop model. We

describe the analysis of the two-loop model in detail, summarise

the main results from a similar analysis of the one loop model and

interpret the results biologically.

1. Robustness analysis of the two-loop Arabidopsis
circadian clock model

(1) Reference parameter set selection. The input to our

analysis exploits earlier work by Locke et al (unpublished data), in

which 50 low cost-of-fit parameter sets were generated following

global optimisation to the semi-quantitative cost function (see [1]

for details). One of these, set 0, was described previously [2]. A set

of reference parameter sets was selected as described in Methods

(see also Figure 1a). Hierarchical Clustering (HCL) and Principal

Component Analysis (PCA) were employed to measure the

distances between the parameter sets. Figure S2a plots the HCL

results for the full 50 parameter sets and the asterisks mark those

selected for the second phase of the analysis. We note that, among

the seven selected parameter sets, four (sets 9, 12, 13, and 14) are

distant from set 0, while the others (sets 27 and 39) are located close

to set 0. Re-optimisation of each of the selected parameter sets to

the fully-quantitative cost function (fitting to data) was performed

through a simulated annealing algorithm (5000 steps) to yield the

locally optimised parameter sets, termed L0, L9, L12, L13, L14,

L27 and L39, to be used in the later sensitivity analysis. The

simulations given from L0 match the data very well (Figure S1b)

compared to those from the rest whose simulated oscillations

showed low amplitude (L12 and L13; Figure S3), abnormal shape

(L12 and L27; Figure S3), and short period in continuous darkness

(all of parameter sets; Figure S3). The unequal fit quality of the

selected parameter sets indicated that the re-optimisation to

quantitative cost function is required to refine the initial results

obtained from exhaustive search against the semi-quantitative

Consistent Robustness Analysis (CRA)
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criteria of Locke et al (unpublished data). To illustrate the span of

the selected parameter sets used in the analysis, the re-optimised

parameter values are plotted in Figure S2b.

(2) One-dimensional sensitivity analysis. One-dimen-

sional analysis was performed through six-fold (plus and minus)

perturbations of each parameter in each of the reference sets.

Figure 2a displays the sensitivity for the two-loop model for L0:

results for each of the other parameter sets can be found in Figure

S4. Sensitivity/robustness is determined first by calculating the

change to the cost-of-fit due to each parameter perturbation and

then normalising within the parameter set according to Equation

(2). The sensitivity coefficients are determined from Equations (3-

4) and summarised in Figure 2b (scales from highest in white to

lowest in black). The normalisation is required because the

unperturbed cost-of-fit and the maximum perturbed cost-of-fit are

different for each parameter set. This means that absolute values

for sensitivity coefficients can only be compared within a column

(i.e. across the parameters within a particular parameter set).

Nevertheless, there are similar trends with respect to the sensitivity

of a particular parameter across the different sets. Distinct sets of

sensitive parameters are calculated for each parameter set

(according to the classification criterion in Equation (5) with m

= 1) and listed in Table 1. Between five and thirteen sensitive

parameters were determined for each set, resulting in a pool of 27/

58 parameters being identified as sensitive at least once (Table 1).

The discrepancy in which parameters are identified as sensitive for

the various parameter sets highlights the fact that model sensitivity

depends on the parameter set as well as the network circuit. On

the other hand, certain parameters were repeatedly classified as

sensitive across the diverse parameter sets. The frequency with

which the parameters are identified as sensitive is tabulated in

Figure 3 (see also Figure S5) and, stipulating that a particular

parameter must be identified as sensitive in at least 50% of sets, we

determine the eight ‘‘consistently-sensitive’’ parameters listed in

the final column of Table 1. These eight consistently sensitive

parameters are P2 (n1: max. light-dependent LHY transcription),

P13 (n2: max. TOC1 transcription rate), P15 (n3: constant of LHY

inhibiting TOC1 transcription), P16 (g3: constant for TOC1

transcription), P40 (n6: constant for Y transcription), P42 (m12:

max. degradation rate of Y mRNA), P52 (g6: constant for Y

transcription), and P54 (b: Hill coefficient for TOC1 transcription)

(see also in Data S1). Since the classification of a sensitive

parameters is subject to the strictness of the classification criterion

(m in Equation (5); see also Figures S5-S6), we varied m to test the

appropriateness of the employed value. For m = 0.5 (Figure S6a)

or m = 2 (Figure S6b), we obtained respectively too many and too

few sensitive parameters, suggesting that the applied criterion of m

= 1 is relatively more sensible.

Figure 1. Consistent robustness analysis scheme. (a) Schematic demonstrating the proposed consistent robustness analysis method which
aims to acquire the universal robustness property of a model producing similar results in wide regions of reasonable parameter space, illustrated in
(b).
doi:10.1371/journal.pone.0015589.g001
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The sensitivity analysis pinpoints the influence of specific

molecular processes, entities or parts of the genetic network: 7/8

of the consistently sensitive parameters describe transcription

processes, 4/8 relate to the TOC1 gene while 7/8 relate to

evening-phase genes, TOC1 and Y. Ranking the sensitivity

coefficients, the most sensitive parameters correspond to TOC1

transcription.

Further insight arises through the distribution of the parameter

sensitivities. The distribution curves for sensitivity coefficient (Ssize)

are plotted for the individual reference sets and presented in

Figure 4. Comparing with Figure S2a, parameter sets located close

to each other in parameter space show similar parameter

sensitivity distributions, e.g. L0, L27, and L39 show a comparable

pattern of the distribution curve (left-skewed with a small divided

peak) while others demonstrate a seemingly random shape. The

distribution of parameter sensitivity probably therefore reflects the

relative position of the parameter set in parameter space. In the

reverse direction, the distribution of parameter sensitivity for a

new parameter set might be predicted from knowing its relative

location within the parameter space.

(3) Two-dimensional sensitivity analysis. Greater insight

into the robustness of the parameter space is obtained through

two-dimensional sensitivity analysis. The long numerical time

required to perturb across two dimensions in parameter space

prevents an exhaustive analysis: the focus here is therefore on the

most sensitive parameters as revealed in Step 2 (Figure 1).

Insensitive parameters are expected to give rise to flat

and smooth distributions (for example, see Figure 5f). The

Figure 2. Sensitivity of the two-loop model of Arabidopsis circadian clock. The (a) sensitivity with respect to the parameters in the two-loop
Arabidopsis circadian clock model using L0 (the reoptimised parameter set from set 0). The heatmap plots the sensitivity (white = sensitive, black =
robust) of the model at all parameters (rows) and perturbations (columns). Similar plots for other reference parameter set shown in Figure S4 for
sensitivity. (b) The sensitivity coefficients (Ssize - left panel and Schoppy – right panel) of the two-loop model for all reference parameter sets are plotted
as a heatmap in which high sensitivity is shown in white, scaling to low sensitivities in black. The sensitivity coefficients of a parameter (row) in each
reference parameter set (column) were independently determined from the cost function normalised within the reference set. Note that Ssize and
Schoppy (Figure S5) are broadly consistent, indicating that either method is reasonable.
doi:10.1371/journal.pone.0015589.g002
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characteristics of the parameter surface can be inferred through

limited investigations in ‘‘meaningful areas’’ of the most sensitive

parameter space. A pair of highly sensitive parameters within a

set were chosen and perturbed pair-wise. Examples of the

parameter space surface of set L0 are plotted in Figures 5a–5e:

the surface in highly sensitive regions is coarse, with a deep hole

corresponding to where the optimal solution (red star) lies.

Similar results for the other six reference sets are illustrated in

Figure S7.

The parameter surface is an atlas of model sensitivity on the

parameter coordinates, its nature demonstrating the range of

model behaviours tested by the cost function at any given

parameter set. Besides the main information, the efficiency of the

optimisation procedure is also illustrated in these 3D maps, where

the reference parameter sets were always located at the lowest

point of the surfaces.

2. Robustness analysis of the one-loop Arabidopsis
circadian clock model

A similar analysis was performed for the one-loop model and we

state the main results for brevity. Again, the initiating globally-

optimised parameter sets are provided by Locked et al (unpub-

lished data). In contrast to the two-loop model, the robustness

analysis demonstrated that the model is extremely sensitive to a

specific minor group of parameters, which are generally conserved

across all reference parameter sets. Overall, 7/25 sensitive

parameters were identified, all of which relate to molecular

processes of TOC1 (transcription, translation, transportation and

degradation). With the same consistency cut off (50%), three

consistently sensitive parameters were defined as followed: P13

(n2: max. TOC1 transcription rate), P14 (g2: Constant of activation

by TOC1), and P15 (m4: constant Max. rate of TOC1 mRNA

degradation). The results indicate that TOC1 transcription is the

crucial process within the one-loop model. The sensitivity to TOC1

in both the one-loop and two-loop models highlights its

importance at the heart of the Arabidopsis circadian clock

network.

3. Robustness analysis and Model plausibility
The two Arabidopsis clock models both express similar patterns

with respect to sensitivity of the specific molecular components/

processes, yet the degree of their sensitivity diverges. The

robustness of the two models was compared through the DOR

according to Equation (7). Figures 6a and 6b compare robustness

between the one-loop and the two-loop models across all

parameters at the largest perturbations. Robustness of the most

sensitive parameters in each model (suggested by Figure 2b and

marked by an arrow in Figure 6b), is graphed across its full

perturbation range in Figure 6c. The robustness difference

between the one-loop and two-loop models (determined through

the most sensitive parameter pointed by arrows in Figure6c)

demonstrates that the two-loop model is far more robust than the

one-loop model for all parameters and across the perturbation

range. Robustness can be considered as an essential property for

most biological systems (particularly circadian clocks) and our

analysis indicates the two-loop model is much more plausible as a

model for the Arabidopsis circadian clock, reinforcing similar

suggestions based on biological evidence [45,47,49–51]. Further-

more, it indicates that the analytical process developed here gives a

reasonable measure for determining the robustness of the system,

rather than its robustness at a particular point in parameter space.

Discussion

Simple robustness analyses have limited relevance in systems

biology. The measured robustness of a model to local parameter

changes can vary according to the starting parameter set,

exemplified by the distinct sets of sensitive parameters (SP)

identified for each reference parameter set (Table 1), and in most

biological systems only a minority of parameter values have been

fixed by experimental measurements. ‘‘Global’’ analysis methods

Table 1. Summary of the sensitivity analysis of the one-loop and two-loop Arabidopsis circadian clock models.

One-loop Arabidopsis Circadian clock model (25 parameters)

Description L2 L26 L31 L32 L37 L41 L50 Pool of SP CSP

Number of SP 4 2 3 7 4 3 5 7 3

SP n2
g2
m4
k4

m4
k4

n2
g2
m4

n2
g2
m4, m5, m6
k4
p2

n2
g2
m4, m5

n2
g2
m4

n2
g2
m4, m5
k4

n2
g2
m4, m5, m6
k4
p2

n2
g2
m4

Two-loop Arabidopsis Circadian clock model (58 parameters)

Description L0 L9 L12 L13 L14 L27 L39 Pool of SP CSP

Number of SP 11 8 13 6 13 9 5 27 8

SP n2, n3, n4, n6
g3
m4
k4, k7
p2, p3

b

n1, n4
g5
m12
k9
p2
r8
b

n2, n3, n6
g3, g5, g6
m1, m12, m14
k1
p4

b, d

n1

m1

a, b, d, e

n2, n3, n7
g3, g6
m4, m6,
m12,m14
k4, k12
p2

b

n1, n2,n3, n6, n7
g3, g5
m12

p4

n1, n6,
n7
g6
m12

a, b

n1, n2,n3, n4, n6, n7
g3, g5, g6
m1, m4, m6, m12, m14
k1, k4, k7, k9, k12
p2, p3, p4
r8
a, b, d, e

n1, n2, n3,n6
g3, g6
m12

b

*SP = sensitive parameter, CSP = consistently sensitive parameterSupporting Information Legends
doi:10.1371/journal.pone.0015589.t001
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avoid this limitation by testing many starting parameter sets, to

derive broader conclusions about the circuit of the model rather

than the particular dynamics of one parameter set. These are often

the most relevant to guide experimental work, because molecular

and genetic studies commonly manipulate the model circuit rather

than modulating parameter values.

The Consistent Robustness Analysis (CRA) developed here aims

to identify a set of consistently sensitive parameters, for a range of

biologically-reasonable parameter sets, which we term reference

parameter sets. The method is more strategic than previous

robustness analysis [52], as it focuses on parameter sets that best

allow the model to match a full set of training data, avoiding time-

consuming sensitivity analysis of parameter sets that cannot

describe the biology of interest. It is still computationally costly,

because multiple parameter sets that match the data must first be

identified [1,2]. Parameter sets that represented different dynamics

(different parts of parameter space) were then manually selected,

though this could in principle be automated.

The CRA approach has identified a subset of parameters for the

Arabidopsis clock models that prove to be consistently sensitive for

Figure 4. Distribution of sensitivity coefficients of parameters
in two-loop Arabidopsis circadian clock model. The histograms
demonstrate the distribution of the sensitivity coefficient (Ssize) within
each reference parameter set of the two-loop model. This shows the
frequency distribution of parameters of the model displaying similar
magnitudes of sensitivity.
doi:10.1371/journal.pone.0015589.g004

Figure 3. Percent consistency of sensitive parameters in the two-loop Arabidopsis circadian clock model. The percent consistency of
the sensitive parameters (using m = 1) among the reference parameter sets was plotted according to (a) the genes and (b) molecular processes (TL =
translation and T = Transportation). The consistently sensitive parameters, marked by black bars, were classified based on a 50 percent consistency
cut-off.
doi:10.1371/journal.pone.0015589.g003

Consistent Robustness Analysis (CRA)
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Figure 5. Two-dimensional sensitivity analysis of the two-loop Arabidopsis circadian clock model. The parameter surface obtained from
a 2D sensitivity analysis of the two-loop model according to the (a–e) highly and (f) lowly sensitive parameters in set L0: P8 (r2)-TOC1 protein
transportation to cytosol, P13 (n2)-max. TOC1 transcription rate, P19 (p2)-rate constant of TOC1 mRNA translation, P23 (m6)-max. rate of light
independent cytoplasmic TOC1 degradation, P48 (k11)-Y protein in cytosol degradation, and P54 (b)-Hill coefficient of activation by protein Y. The red
star illustrates the position of the reference parameter set which is always coincident with the minimum cost on the parameter surface. X and Y axis
represent the perturbation of sensitive parameters while Z axis is the cost function corresponding to the parameter perturbation.
doi:10.1371/journal.pone.0015589.g005

Figure 6. Comparison of model robustness. The robustness of the one-loop and two-loop Arabidopsis circadian clock models is compared
through their best-fitting parameter set (L0 for two-loop and L26 for one-loop). The degree of robustness (DOR) of all parameters in both models at (a)
1/6 times perturbation, and (b) 6 times perturbation is plotted against the perturbed costs. The DOR of the most sensitive parameter in both models,
as pointed out by the arrow in (b), was selected to plot across its full perturbation range in (c).
doi:10.1371/journal.pone.0015589.g006

Consistent Robustness Analysis (CRA)
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multiple parameter sets. For the two-loop model, only eight

consistently sensitive parameter (CSP), mostly involved in TOC1

transcription, were identified from an overall pool of 27 locally

sensitive parameters (SP), suggesting wide variation between the

sets of sensitive parameters (or genes/molecular processes)

classified from each reference parameter set (Table 1). These

‘‘consistently sensitive parameters’’ (see Table 1) suggested two

features: (1) the importance of TOC1 transcriptional regulation in

both models, as the parameters involved were always more than

half of the whole set of sensitive parameters, and (2) the

importance of the evening feedback loop involving TOC1 and Y

in the two-loop model, compared to the loop involving LHY/CCA1

and TOC1, as the majority of consistently sensitive parameters

related to TOC1 or Y function, compared to only few of them

(,15%) relating to LHY/CCA1 or X. These traces are consistent

with the results of an independent study of the two-loop model,

which also inferred the dominance of TOC1 transcription in

controlling the model behaviours and properties [16].

In our relatively simple models, these results can be understood

relatively easily, as follows:

Multiple experimental results support the importance of TOC1

for circadian clock function. Manipulating TOC1, by loss-of-

function mutants and transgenic over-expression or constitutive

expression, severely alters circadian period and phase

[43,46,48,49] or may lead to arrhythmia [53]. Reflecting this

importance, TOC1 RNA and proteins are the components that

interlock the feedback loops of the two-loop model. The range of

available data may be biased, however, because TOC1 was the

earliest clock mutant described in Arabidopsis [54].

The relative importance of the evening loop in the two-loop

model may be related to rhythm generation or to the input of light

signals that regulate clock components. The two-loop model was

constructed to account for the short-period rhythms of lhy, cca1

double null mutant plants [2]. Accordingly, the evening feedback

loop between TOC1 and Y was required to sustain short-period

rhythms in the model in a simulated lhy, cca1 double null mutant:

the model is relatively robust to the abolition of LHY/CCA1

function. No such constraint was placed upon the simulated Y null

mutant, which becomes arrhythmic [2]. In the later, three-loop

model [8] the Y null mutant remains rhythmic. Robustness

analysis of the three-loop model might be expected to show greater

robustness to parameter changes in the evening feedback loop, in

contrast to the sensitivity of this loop in the two-loop model.

Many of the data sets used in our analysis reflect regulation

under constant light or in light:dark cycles, where the lights-on and

lights-off signals at dawn and dusk both participate in entraining

the Arabidopsis clock [55,56]. In the two-loop model, these signals

are mediated by the light-activated transcription of LHY/CCA1

and of Y, respectively. The importance of the TOC1-Y loop in our

results is consistent with simulations of the two-loop model under

different photoperiods, where entrainment by the Y-mediated

lights-off signal dominated the LHY/CCA1-mediated lights-on

signal [8].

Finally, parameters related to transcription were extremely

influential in both models. While the impact of transcription on

the circadian rhythms in plants is unclear, an experimental study

for the mammalian circadian clock has been undertaken by

Dibner et al, demonstrating that reduction in global transcriptional

rates resulted in resilient expression of core clock genes, for

instance short rhythmic period and low amplitude [57]. Post-

translational regulation is represented much less in the models

than in current data on the clock mechanisms of several organisms

[58–60]. The data available to construct these models, in contrast,

strongly emphasised transcriptional regulation. Our results

highlight the locations in the model where this emphasis should

be revisited and confirmed experimentally: in the processes

relating to the consistently sensitive TOC1 transcriptional param-

eters, for example, whereas there is less evidence from our analysis

that modelling of LHY/CCA1 transcription needs to be revisited.

The plausibility of models can be impartially distinguished

through comparing model-specific robustness using the parameter-

independent robustness analysis (CRA) proposed in this work.

While we acknowledge that robustness has been variously defined

in the literature, the employment of the DOR definition here is a

convenient and simple mathematical measure to quantify changes

in model behaviours and compare differences between models. We

further note the plausibility of this particular definition is

strengthened by a number of recent publications using a similar

measurement [16,52]. While neither DOR, as defined in Equation

7, nor CRA can exclude the effect of redundancy (as described in

[61]) from the robustness, this factor is still usable as a means to

contrast robustness in diverse models: the redundancy effect is

trivial in a small genetic network model and can be avoided in

larger models by confining the degree of perturbation to a

relatively small range with respect to the null mutation.

The comparison of the DOR both at the most sensitive parameter

(Figure 6c) and across a full range of parameters within a parameter

set (Figures 6a and 6b) suggests the greater plausibility of the two-loop

model of Arabidopsis circadian clock, correlating with the previous

assertion that the one-loop model contains a number of weak points.

Circadian clock systems, in particular, require a degree of sensitivity

to external environmental signals, e.g. light, for entrainment purposes,

but should be highly robust to the internal (parameters) variations, as

found in the more plausible two-loop model. The accuracy in

determining model robustness here is expected to increase with the

number of analysed reference sets, however in practice this is

confined by the solutions of the optimisation.

As the CRA method has provided reasonable results for these

relatively simple models, it is likely to provide greater advantages

in analysing the larger models of more complex biological

regulators, including plant clock models that include additional

components known from the literature [45].

Conclusions
Recently, robustness has been proposed a validating property of

biological models: a reliable model should be highly robust. The

analytical approach to characterising the real robustness of a

model is therefore of the utmost importance. Herein, we created a

new robustness analysis method called ‘consistent robustness

analysis’ which intends to evaluate model robustness indepen-

dently of operating parameters. This novel method allows us new

comprehension into the given model: (1) the sensitive parameters

of the model at a given parameter set, (2) the ‘‘consistently sensitive

parameters’’ specific to the model, (3) the distribution of parameter

sensitivity within the model, and (4) the parameter surface. In

addition, we initiated a benchmark factor, (DOR or DOS), to

evaluate the plausibility of various models (of differing complexity)

by comparing the normalised magnitude of the model robustness.

The success of this new method was demonstrated through the

study of two Arabidopsis circadian clock models (one-loop and

two-loop) with its results conferring both physically and biologi-

cally reasonable outcomes. The consistently sensitive parameters

successfully pinpointed the TOC1 transcription as the sensitive

component and the molecular processes controlling the model

behaviours, whereas DOR indicated the much greater plausibility

of the two-loop model compared with the one-loop model,

supporting many biological findings.

Consistent Robustness Analysis (CRA)
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Methods

Modelling through fitting to the data
The optimisation process identifies parameter sets that minimise

an appropriate cost function: a set of criteria or desired properties

that a ‘‘good model’’ should satisfy. The cost function typically

compares or quantifies the mismatch between the behaviours of

the model and the real system, for example experimental data sets

and/or qualitative criteria from observed biological behaviour [1].

In the analysis performed in Results section, the cost function

compares simulated results with experimental data from various

sources/conditions (see also Table S3 in Data S2) [44,50,62,63]

using a least-square formula [64]. A low cost-of-fit is thus expected

to give a good representation of the system. However, for the large

parameter spaces typical of complex models, it is unlikely that a

unique minimising parameter set exists and similar fitting results

may be obtained from widely spaced parts of the parameter space.

Furthermore, experimental data is collected under various

conditions in different laboratories, thus altering specific param-

eters. Consequently, the extent to which robustness of a model can

validly be determined from a single parameter set is uncertain.

Consistent Robustness Analysis (CRA)
We propose a new analysis to address some of the limitations

highlighted above. The aim is to understand system robustness by

performing sensitivity analyses using multiple parameter sets that

yield reasonable model behaviour, as judged by the full cost

function. Figure 1a illustrates our algorithm, consisting of three

phases: (1) selection of the reference parameter sets, (2) one-

dimensional sensitivity analysis – determination of sensitive

parameters and (3) two-dimensional sensitivity analysis – investi-

gation of parameter surface.

(1) Selection of the reference parameter sets. The first

phase ensures model sensitivity is tested across wide regions of

parameter space rather than at a specific point. Initially, global

optimisation was performed to obtain a number of parameter sets

yielding a reasonable fit to the data while covering a broad region

of the parameter space [1,2]. From this larger set, a subset of

reference parameter sets was chosen according to three criteria:

low cost-of-fit, biologically sensible parameter values and a

significant distance between the reference parameter sets. The

distance was evaluated using standard techniques (e.g. clustering

methods) and the reference parameter sets were chosen at distant

locations to ensure broad coverage of parameter space. Finally,

following the selection of the parameter sets from the global

optimisation, local optimisation is performed on each selected set

to obtain the (locally) best-fitting reference parameter sets (see also

Figure 1b). The range of parameter space covered is displayed as

the span of parameter values (Figure S2b).

(2) One-dimensional sensitivity analysis. In the second

phase, for each of the locally-optimised reference parameter sets a

one-dimensional sensitivity analysis was performed through

stepwise alteration of each parameter across a 36-fold range of

values, centred on its value in the reference parameter set. The

sensitivity of the model to a particular parameter was measured

through the cost-of-fit (cost function).

In the following we denote by k = 1 …Ns the reference

parameter sets, j = 1 … Np to denote the parameters within each

set and i = -Na … +Na to denote the perturbation where - and +
respectively represent negative and positive perturbations. Thus,

Ci,j,k (xe, xmi,j,k
) is the least-square cost function (Equation 1)

calculated at the ith perturbation to the jth parameter in the kth

reference parameter set, where xe represents an experimental data

set to be compared with its counterpart xmi,j,k
calculated through

simulation of the model. The cost function is normalised within

each reference parameter set with respect to its maximum

computed across all parameters and perturbations, to allow

meaningful comparisons among parameters despite difference in

the cost-of-fit of each reference parameter set:

Ci,j,k(xe,xmi,j,k
)~

xmi,j,k
{xe

xe

� �2

ð1Þ

NCi,j,k~
Ci,j,k xe,xmi,j,k

� �

Max
i~{Na,Na,j~1,Ns

Ci,j,k xe,xmi,j,k

� �� � ð2Þ

For each parameter j in each reference parameter set we

determine two ‘‘sensitivity coefficients’’: Ssize representing the

magnitude and Schoppy inferring the smoothness/variation of the

calculated sensitivity.

Ssize
j,k ~

PNa

i~{Na

NCi,j,k{ Min
i~{Na ,Na,j~1,Ns

NCi,j,k

� �� 	

2Na

ð3Þ

S
choppy
j,k ~

PNa{1

i~{Na

NCiz1,j,k{NCi,j,k


 �
2Na

ð4Þ

The above sensitivity coefficients are used to determine

‘‘sensitive parameters’’ through their means and standard

deviations within each reference parameter set. For a kth parameter

set, the jth parameter is subsequently defined as sensitive if

Ssize
j,k § Mean

j~1,Np
Ssize

j,k

� �
zm: SD

j~1,Np
Ssize

j,k

� �
& S

choppy
j,k

§ Mean
j~1,Np

S
choppy
j,k

� �
zm: SD

j~1,Np
S

choppy
j,k

� � ð5Þ

where the parameter m indicates the strictness within which

sensitivity is defined.

To determine the consistently sensitive parameters, we calculate

the frequency for which a particular parameter is classified as

sensitive across Ns reference parameter sets. We denote by Nj the

number of parameter sets for which the jth parameter is classified as

sensitive according to Equation (5) and define PCj as the

percentage consistency for each parameter according to

PCj~
Nj

Ns

|100 ð6Þ

(3) Two-dimensional sensitivity analysis. The final phase

is a two-dimensional sensitivity analysis: two of the most sensitive

parameters determined by the previous analysis were chosen and

perturbed simultaneously using a similar procedure of parameter

perturbation and sensitivity measurement. Through variation of

two parameters, we can obtain greater understanding of the

surface structure of the sensitivity space via 3D plots of the cost-of-

fit.

Consistent Robustness Analysis (CRA)
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Model Robustness Comparison
Direct and unbiased comparison of the robustness between

models presents a number of challenges: models display varying

complexity with respect to both topology and the number of

parameters. For this study, the sensitivity between the models is

compared through the degree of robustness (DOR). For each model, we

compute DOR for whichever parameter j is the most sensitive

within the best-fit-simulation parameter set k. DOR is defined as

the inversion of the degree of sensitivity (DOS), defined as follows:

DOSi,J,k~
Ci,J,k xe,xmi,J,k

� �
{Ci~0,J,k xe,xm0,J,k

� �

Ci~0,J,k xe,xm0,J,k

� � ð7Þ

where i = 0 locates the zero perturbation point (at which

parameter values are identical to the reference parameter set) and

J denotes the most sensitive parameter according to Equation (5)

of the parameter set k.
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