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Abstract: Productive replication of DNA viruses elicits
host cell DNA damage responses, which cause both
beneficial and detrimental effects on viral replication. In
response to the viral productive replication, host cells
attempt to attenuate the S-phase cyclin-dependent kinase
(CDK) activities to inhibit viral replication. However,
accumulating evidence regarding interactions between
viral factors and cellular signaling molecules indicate that
viruses utilize them and selectively block the downstream
signaling pathways that lead to attenuation of the high S-
phase CDK activities required for viral replication. In this
review, we describe the sophisticated strategy of Epstein-
Barr virus to cancel such ‘‘noisy’’ host defense signals in
order to hijack the cellular environment.

Introduction

Cellular DNA damage responses initiate with activation and

rapid recruitment of repair proteins to DNA damage sites [1,2].

Until the damage is repaired, cells are prevented from transition-

ing to the next stage of the cell cycle. The tumor suppressor p53 is

phosphorylated by DNA damage–responsive kinases, resulting in

stabilization of p53 and an increase in its protein level. This leads

to activation of target gene transcription including p53 itself,

which subsequently causes cell cycle arrest or apoptosis [3,4]. The

replicated viral genomes of DNA viruses, including adenoviruses,

the polyomavirus, and herpesviruses, are recognized by cellular

DNA damage sensors, triggering activation of DNA damage

responses [5,6,7,8,9]. Several lines of evidence revealed viral

approaches to create an optimal environment for viral replication

by manipulating the host defense systems. In this review, we

describe the elegant strategies used by Epstein-Barr virus (EBV) to

cancel ‘‘noisy’’ cellular signaling in order to manipulate the

cellular environment for its own genome replication.

Life Cycle of the Epstein-Barr Virus

EBV, a human lymphotropic herpesvirus, infects more than

90% of world’s population and is now known to contribute to a

variety of human disorders, including infectious mononucleosis,

nasopharyngeal carcinoma, Burkitt’s lymphoma, and lymphopro-

liferative diseases occurring in immune-compromised individuals

[10]. The lifecycle of EBV is quite distinctive, featuring two

alternative infection cycles: ‘‘latent’’ and ‘‘lytic.’’ Primary EBV

infection targets resting B lymphocytes, inducing their continuous

proliferation. In the resultant B lymphoblastoid cell lines that

express a limited number of EBV gene products, the viral genomes

are maintained as circular plasmids forming nucleosomal

structures with histones [11], and there is no production of virus

particles, this being called ‘‘latent’’ infection. In the latent state,

viral DNA is replicated only once during S phase, just as host

chromosomal DNA [11]. Only a small percentage of infected cells

switch their states from the latent stage into the ‘‘lytic’’ cycle to

produce progeny viruses. EBV DNA replication occurs at discrete

sites in nuclei called ‘‘replication compartments,’’ where all of the

viral replication proteins are assembled [12]. During lytic

replication, the circular genome becomes a ready template for

amplification by the viral replication machinery, generating

thousands of copies per cell. This reactivation is correlated with

the emergence of human cancers [13,14]. The switch from latent

to lytic replication is triggered by expression of the EBV BZLF1

gene product (also called Zta or ZEBRA) [15]. The BZLF1 protein

is a lytic replication origin binding protein and acts to transactivate

various viral promoters [16], leading to an ordered cascade of viral

gene expression: activation of early genes followed by viral genome

replication and late gene expression. Using the EBV system, the

alteration in cellular conditions, from latent to virus-productive

infection without overlapping signals triggered by virus entry, can

be monitored [17,18].

Regulation of p53 during the Latent Phase of EBV
Infection

In uninfected cells, p53 is hypophosphorylated [9] and its level

is regulated by cellular E3 ubiquitin ligase MDM2 and cellular

ubiquitin–specific protease USP7 (Figure 1A) [19]. The EBV

latent protein, EBNA1, contributes to repression of p53-dependent

DNA damage signaling by competition of the USP7 binding site

with p53 (Figure 1A) [20] (Figure 1A). Furthermore, this

interaction between EBNA1 and USP7 leads to the disruption of

PML bodies, the nuclear structures important for p53 activation

and DNA repair [21]. These findings suggest that EBNA1

expression protects cells from DNA damage–induced apoptosis

by destabilizing p53 protein. This possible mechanism points to an

important role of EBNA1 in cancer development by allowing
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uncontrolled cellular proliferation without inducing apoptosis in

latent EBV-infected cells.

The Important Role of p53 in the Early Stages of
EBV Lytic Replication

We propose that, during the course of lytic replication, BZLF1

protein plays two distinct roles in the regulation of p53-mediated

transactivation, which depend on the progression of lytic

replication: the early stage and the middle to late stages (described

below) (Figure 1B). Previous studies demonstrated that the EBV

immediate-early protein BZLF1, which was either conditionally

expressed [22,23] or overexpressed by a recombinant adenovirus

[24,25], could induce G1 arrest in some cell lines. The BZLF1

protein causes the accumulation of both mRNA and protein of

CDK inhibitor p21Cip1/Waf1 [23], a well-known p53-target gene

product. BZLF1 protein accelerates the rate of p53-DNA complex

formation through physical interaction with p53 [26]. In the early

phases of lytic replication, p53 is hypophosphorylated and

therefore exhibits weak DNA binding ability to its recognition

sequences [9]. The BZLF1 protein helps the hypophosphorylated

p53 to bind to its recognition sequences, leading to the

enhancement of p53-dependent transcription [26]. Levels of p53

and p21Cip1/Waf1 are transiently elevated in the early stages of lytic

replication, and then decline with the progression of lytic infection

[26], probably reflecting the effects of BZLF1 expression.

Recently, we and other groups have shown that p53 is involved

in reactivation of EBV [26,27]. Tsai and his colleagues have

reported that induction of viral lytic proteins by a chemical

inducer, sodium butylate, does not occur in p53-negative H1299A

and Saos2A cells [27], although the ability of BZLF1 or BRLF1

protein to transactivate its downstream genes is not notably

affected by the lack of p53 [28,29]. This implies that p53 might

instead be required for a switch from the latent to the lytic cycle.

Indeed, we found that overexpression of p53 in the early stages of

lytic replication enhances subsequent viral genome replication

[26].

In the case of human cytomegalovirus (HCMV), the level of p53

is elevated upon viral infection, but its downstream transcriptional

targets remain inactivated [30,31]. It has been reported that cells

infected with HCMV in the absence of p53 produce fewer

infectious viral particles and cause delays in viral protein

production and trafficking [30]. The HCMV genome has 21

potential p53-responsive sites [32]. HCMV gene expression is

thought to be influenced by p53 molecules bound to HCMV

genome at immediate-early and early stages of the infection, which

Figure 1. Stage-specific regulation of p53 during EBV infection. (A) The ubiquitination of p53 is regulated by both MDM2 E3 ligase and USP7
deubiquitinase in uninfected cells. During EBV latent infection, EBV latent EBNA1 protein inhibits USP7 and thereby drives the ubiquitination of p53.
Phosphorylated p53 is ubiquitinated by BZLF1 protein-associated E3 ligase independently of MDM2 during lytic infection. (B) During the latent phase
of EBV infection, p53 is quantitatively regulated by MDM2 ubiquitin ligase via the ubiquitin-proteasome pathway [36], serving as a guardian of
genome stability. Expression of BZLF1 protein induces virus-productive (lytic) replication through the ordered cascades of viral gene expression, and
concomitantly host DNA damage responses [9], leading to p53 phosphorylation and release of p53 from the MDM2-dependent regulation [36]. In the
early stages of lytic infection, the inactive (hypophosphorylated) form of p53 cooperates with viral factors including BZLF1 protein to stimulate virus
replication [26,27]. In the middle and late stages of infection, active (hyperphosphorylated) p53 is ubiquitinated by BZLF1 protein–associated ECS
ubiquitin ligase complexes and is degraded in a proteasome-dependent manner to inhibit apoptosis [37].
doi:10.1371/journal.ppat.1001158.g001
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could explain the mechanism for reduced and delayed production

of virions in p53-negative cells. Similarly, potential p53 recogni-

tion sequences are present on the EBV genome (T. Murata et al.,

unpublished results). Indeed, we have found that p53 is associated

with EBV replication compartments [9]. Thus, in the early stages

of EBV lytic infection, p53 could be recruited to the EBV genomic

regions through its direct binding to the recognition sequences.

The BZLF1-mediated enhancement of p53-DNA binding may

therefore contribute to the expression of viral genes (Figure 1B).

Newly Synthesized Viral DNA Elicits Host DNA
Damage Responses

Herpesviruses such as HSV, HCMV, and EBV modulate the

cell cycle to promote a transition through G1-S phase and achieve

the cellular environment with high S-phase CDK activities, called

the S-phase-like condition, for virus-productive replication (re-

viewed in [18]). During the EBV lytic replication, the levels of

cyclin E and cyclin A continue to be elevated, and cyclin E- and

cyclin A-associated CDK activities actually increase [9]. More-

over, this elevation of S-phase CDK activities drives accumulation

of the hyperphosphorylated form of retinoblastoma protein (Rb)

and an increase in the level of E2F-1 transcription factor [9]. The

observation that chemical CDK inhibitors, such as purvalanol A

and roscovitine, block viral lytic replication through prevention of

viral immediate-early and early gene expression [33] suggests that

a cellular environment featuring high CDK activities is required

for efficient viral replication. It is conceivable that expression of

proteins involved in DNA metabolism may be promoted under S-

phase conditions, when energy generation and other resources

support viral replication [18]. However, cellular DNA synthesis is

almost entirely blocked during the lytic phase of EBV DNA

replication, despite S-phase-like cellular conditions with high CDK

activities [17]. The EBV-encoding protein kinase (PK) BGLF4

phosphorylates MCM complex to inhibit its replicative helicase

activity (Figure 2) [34]. Although the precise mechanism remains

unclear, it might be one of the reasons for inhibition of

chromosomal DNA replication and for the blockage of the cell-

cycle progression from S to G2 phase.

The host cell DNA damage-sensing machinery recognizes the

newly synthesized viral DNA in the lytic phase as ‘‘abnormal’’

DNA, activating ATM-dependent DNA damage signaling [9]

(Figure 2). ATM phosphorylates histone H2AX (H2AX), which

initiates the DNA damage response. The EBV BGLF4 PK might

further amplify this response through phosphorylation of H2AX

[35]. ATM phosphorylates p53 at Ser-15, which liberates p53

from MDM2-mediated degradation. The downstream kinases of

ATM, Chk1, and Chk2 also phosphorylate p53 at various sites.

Therefore, elicitation of DNA damage responses in general

activates the transcriptional functions of p53.

Ubiquitin-Mediated Degradation of p53 in the
Middle and Late Stages of Lytic Infection

Paradoxically, reactivation of EBV induces cellular DNA

damage responses that causes phosphorylation of p53, which

could lead to accumulation of p53 and subsequent activation of

p53 downstream signaling (Figure 1), at the same time it

establishes the S-phase-like cellular environment. At the middle

to late stages of the lytic replication, the p53 target gene products

are indeed maintained at low levels [9,17,26,36]. An explanation

for this comes from the observation that p53 is degraded via the

ubiquitin-proteasome pathway in the middle and late stages of

lytic infection, allowing EBV to exploit cellular environments with

high CDK activities for efficient viral replication (Figure 2).

A series of recent studies have shown that induction of the EBV

lytic program leads to degradation of p53 via a ubiquitin-

proteasome pathway independently of MDM2 [36]. The BZLF1

protein functions as an adaptor component of the ECS (Elongin

B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex that

targets both unphosphorylated and hyperphosphorylated p53 for

degradation (Figure 2) [37]. The BZLF1 M3 mutant, which lacks

the ability to bind to Cullin 2 and 5, degrades p53 very little in

EBV-positive cells, and the yield of infectious viruses is poorer than

in wild-type BZLF1-expressing cells [37]. The BZLF1 M3 mutant

includes a mutation at residue E54, previously reported to prevent

activation of the EBV lytic cycle, but the underlying mechanism

was unknown [38]. These findings suggest that the deficiency of

viral replication is due to the failure of p53 degradation.

Chk2 is known to mediate phosphorylation of p53 at Ser-366

and Ser-378 in response to genotoxic stresses [39]. Indeed, p53 is

phosphorylated at least at Ser-15, Ser-20, Ser-366, and Ser-378

with progression of EBV lytic infection [37]. Intriguingly, C-

terminal phosphorylation of p53 at both Ser-366 and Ser-378

enhances the association with BZLF1 protein and subsequent

ubiquitination of p53 [37], possibly through the phosphorylation-

induced conformational change of p53. These results suggest that

DNA damage responses play a pivotal role in lytic infection.

In addition, inhibition of p53 degradation by the BZLF1 M3

mutant induces apoptotic cellular changes [37]. The maintenance

of p53 at very low levels, therefore, is required not only for

establishing S-phase-like conditions [9,17,36], but also for

inhibiting apoptosis for efficient viral propagation. In fact, caspase

activity is not induced during lytic infection [40]. Similarly, a body

of evidence in the herpesvirus family shows that p53 is inactivated

in lytic replication, although its molecular mechanism is

controversial [41,42,43].

Thus, studies on the relationship between p53 alteration and

viral DNA replication have demonstrated that BZLF1 enables

hypophosphorylated p53 to transactivate the p53 target genes in

the initial phase of lytic replication. In the middle and late stages,

activated p53 is subjected to BZLF1-dependent degradation to

maintain an S-phase-like environment for efficient viral propaga-

tion (Figure 1B).

Several groups have reported that BZLF1 is transiently

expressed as an immediate-early gene following EBV primary

infection of resting B lymphocytes, although early and late lytic

gene expression is very low or undetectable [44,45,46]. A transient

BZLF1 expression at the primary infection may contribute to

establishing a latent infection, as speculated by Wen and

colleagues [44]. This could be driven by degradation of p53,

which blocks reprogramming of B lymphocyte proliferation.

Interestingly, p53 serves as a negative regulator for reprogram-

ming of somatic cells into induced pluripotent stem (iPS) cells

[47,48,49,50,51]. Thus, it is possible that the degradation of p53

by BZLF1 protein-associated ECS ubiquitin ligases contributes to

the efficient transformation of B lymphocytes.

Regulation of CDK Inhibitors during Lytic
Replication

The large body of evidence implicating Cullin-based E3

ubiquitin ligase in the regulation of diverse cellular processes

[52,53] provides us with new insights into their significance as

potential targets of viruses manipulating the host cellular system.

Post-translational modifications, especially phosphorylation and

ubiquitination, play a crucial role in cell-cycle progression.
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Phosphorylation controls the activity of proteins involved in G1-S

and G2-M transitions. Ubiquitination and its mediated proteolysis

are commonly facilitated to maintain threshold levels of cell-cycle

regulators. Two distinct classes of E3 ubiquitin ligase regulate cell-

cycle progression [52], possessing an adaptor protein to determine

substrate specificity [54,55,56]. E3 ligase activity of the anaphase-

promoting complex is required for the G2-M transition [57]. The

SCF (Skp1-Cul1-F-box protein) family of E3 ligase promotes

ubiquitination of phosphorylated substrates and typically targets

the mediators of G1-S transition [58]. For instance, ubiquitin-

mediated degradation of p27Kip1 is regulated by the SCFSkp2

complex only when p27 Kip1 is phosphorylated at Thr-187 by the

cyclin E-CDK2 complex, which induces S phase conditions

[59,60,61].

The EBV lytic program promotes specific cell cycle–associated

activity involved in progression from G1 to S phase, since virus-

productive replication occurs under S-phase-like circumstances

[18]. Similar to p53, CDK inhibitors are also regulated during

lytic replication, contributing to establishment of an S-phase-like

cellular environment with high-CDK activities [9,33]. c-Herpes-

viruses possess their own strategies to degrade p27Kip1. For

example, Kaposi’s sarcoma-associated herpesvirus (KSHV)-

encoding cyclin (v-cyclin), a latent viral protein, forms a complex

with CDK6 to phosphorylate Thr-187 on p27Kip1, leading to

down-regulation at the protein level [62,63]. Also, the viral cyclin

encoded by murine herpesvirus 68 preferentially associates with

CDK2 to phosphorylate Thr-187 on p27Kip1 [64]. While EBV

does not encode any v-cyclin homologue in its genome, our recent

study revealed that the EBV protein kinase BGLF4 can

phosphorylate the Thr-187 residue of p27Kip1, resulting in its

ubiquitination and degradation in an SCFSkp2 ubiquitin ligase-

dependent manner [65] (Figure 2).

Manipulating the ubiquitin system by EBV involves two aspects

of its regulation: attachment of ubiquitin to a substrate and

removal from its substrate. As an EBV-encoding deubiquitinating

enzyme, BPLF1 deubiquitinates and reduces activity of EBV

Figure 2. Viral strategy to manipulate the cellular environment for its own genome replication. Induction of lytic replication elicits ATM-
dependent host cellular DNA damage responses, because newly synthesized viral DNA is sensed as ‘‘aberrant’’ [9]. The ATM signaling cascade, which
is modified by BGLF4 kinase-mediated c-H2AX induction [35], phosphorylates and activates downstream molecules including CHK2 and p53.
However, phosphorylated p53, which can transactivate p21Cip1/Waf1 CDK inhibitor, associates with high affinity to BZLF1 protein–formed ECS
ubiquitin E3 ligase complex and then is ubiquitinated [37]. On the other hand, EBV protein kinase phosphorylates p27Kip1 CDK inhibitor, thereby
leading to phosphorylation-mediated ubiquitination by the SCF complex [65]. Since these ubiquitinated proteins are degraded in a proteasome-
dependent manner, an S-phase-like environment with high CDK activity required for efficient viral replication is maintained during EBV lytic infection.
In parallel with this, replicative helicase activity of the MCM complex is inactivated by BGLF4-mediated phosphorylation of MCM4, causing the
inhibition of chromosomal DNA replication [34]. Phosphorylated RPA induced by the DNA damage response stimulates viral DNA replication through
homologous recombinational repair [40]. Taken together, EBV manipulates various signaling cascades and thereby achieves efficient viral replication.
doi:10.1371/journal.ppat.1001158.g002
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ribonucleotide reductase [66]. In this case, deubiquitination

influences the function of the protein rather than targeting it for

proteasomal degradation. A recent paper documented that BPLF1

also act as a deneddylase [67]. Neddylation, which is a conjugation

of ubiquitin-like modifier NEDD8 to its substrate, is an important

mechanism for regulating Cullin-based E3 ubiquitin ligase [68].

EBV BPLF1 binds to Cullins and attenuates the activity of the

Cullin-RING ligases, resulting in accumulation of the licensing

factor Cdt1 and induction of DNA re-replication. Inhibition of

BPLF1 during the lytic infection prevents viral replication in the

cells that carries a recombinant EBV [67]. These findings support

the idea that manipulating ubiquitin system by virus promotes

viral productive replication. Furthermore, two lytic proteins

(BSLF1 and BXLF1) are found as deubiquitinases by a bioinfor-

matic search on the EBV genome [69], although their functions in

viral replication remain obscure. Further investigations are needed

to determine the exact role of deubiquitination in the context of

EBV lytic infection.

The level of another CDK inhibitor protein p21Cip1/Waf1, of

course, becomes low during lytic replication [36]. Although the

detailed mechanisms remain unknown, one reason is that p53 is

actively degraded during lytic infection and another is that

the SCFSkp2 ubiquitin ligase complex directs p21Cip1/Waf1 for

degradation through S-phase CDK-mediated phosphoryration

[70]. Recent study showed that KSHV-encoding microRNA,

miR-K1 represses expression of p21Cip1/Waf in latent infection

[71]. As an additional mechanism, an EBV-encoding miRNA that

has yet to be discovered might regulate p21Cip1/Waf1 for

maintaining S-phase-like conditions.

On the other hand, maintaining low levels of CDK inhibitors

results in accumulation of the hyperphosphorylated Rb protein

due to high S-phase CDK activities and causes accumulation of

active E2F-1 as lytic replication progresses [9]. E2F-1 in turn

activates the transcription of many proteins involved in cellular

DNA synthesis and cell-cycle progression [72], and probably

transcription of the EBV DNA polymerase gene as well [73]. The

available data suggest that E2F activity is required for lytic viral

DNA replication. Alternatively, the EBV immediate-early trans-

activator BZLF1 and BRLF1 proteins are reported to increase the

level of E2F-1 [74,75]. Furthermore, since activated ATM or

Chk2 phosphorylates and activates E2F-1 in response to DNA

damage [76,77], the DNA damage response induced by EBV lytic

replication could activate E2F-1. To achieve effective viral lytic

replication, EBV therefore possesses a variety of strategies to

maintain the S-phase-like cellular environment.

Beneficial Aspects of DNA Damage Signaling on
EBV DNA Replication

During EBV lytic replication, phosphorylated ATM and

Mre11/Rad50/Nbs1 (MRN) complexes are targeted to replica-

tion compartments in nuclei. Simultaneously, homologous recom-

binational repair (HRR) factors such as replication protein A

(RPA), Rad51, and Rad52, as well as MRN complex, are recruited

and loaded onto the newly synthesized viral genome in replication

compartments [40]. The 32 kDa subunit of RPA is extensively

phosphorylated at sites in accordance with these events [40].

Hyperphosphorylation of RPA32 causes a change in RPA

conformation, resulting in a switch from catalysis of DNA

replication to participation in DNA repair. RNAi knockdown of

RPA32 and Rad51 prevents viral DNA synthesis, suggesting that

homologous recombination and/or repair of the viral DNA

genome might occur, coupled with viral DNA replication to

facilitate viral genome synthesis (Figure 2). Thus, the host DNA

damage response induced by productive viral replication is

essential for efficient EBV lytic genomic replication.

Conclusions

Replication of DNA viruses in host cells triggers a variety of

cellular signaling cascades, including the DNA damage response.

Recent studies indicate that such cellular responses to viral

genomic replication paradoxically play a crucial role in EBV lytic

replication by establishing cellular conditions appropriate for

efficient viral replication. To achieve these conditions, EBV

manipulates host ubiquitin-proteasome systems, and thereby

cancels host antivirus signals. During lytic infection, the interaction

between BZLF1 protein and ECS E3 ligase complexes leads to

p53 degradation, and the SCF E3 complex recognizes and

ubiquitinates phosphorylated p27Kip1 through viral protein kinase.

Therefore, by skipping the induction of checkpoint signaling and

apoptosis, virus-producing cells stay in a persistent S-phase-like

environment with high CDK activity.

Accession numbers
The Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) acces-

sion numbers for genes and gene products discussed in this study

are as follows: p53 (7157), p21Cip1/Waf1 (1026), p27Kip1 (1027),

USP7 (7874), MDM2 (4193), E2F-1 (1869), ATM (472), Chk2

(11200), H2AX (3014), PARP (142), Skp2 (6502), Cdt1 (81620),

ubiquitin (7314), NEDD8 (4738), Rb (5925), Cyclin E (898),

Cyclin A (890), CDK2 (1017), CDK6 (1021), RPA32 (6118),

Rad51 (5888), Rad52 (5893), KSHV v-cyclin (4961471), and EBV

EBNA1 (3783709), BGLF4 (3783704) BPLF1 (3783726), BSLF1

(3783730), BXLF1 (3783741), and BZLF1 (3783744).

Acknowledgments

We thank Dr. Y. Nishiyama (Nagoya University) and Dr. S. Seino (Kobe

University) for encouragement, and Dr. T. Igaki (Kobe University) for

critical reading of the manuscript. We especially thank Dr. T. Murata

(Aichi Cancer Center) for helpful comments on the manuscript and for

sharing unpublished data.

References

1. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular
mechanisms of mammalian DNA repair and the DNA damage checkpoints.

Annu Rev Biochem 73: 39–85.
2. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and

repair of DNA damage. Science 297: 547–551.
3. Haffner R, Oren M (1995) Biochemical properties and biological effects of p53.

Curr Opin Genet Dev 5: 84–90.

4. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10: 1054–1072.
5. Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins

inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418: 348–
352.

6. Dahl J, You J, Benjamin TL (2005) Induction and utilization of an ATM

signaling pathway by polyomavirus. J Virol 79: 13007–13017.

7. Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, et al. (2005) Activation of
ataxia telangiectasia-mutated DNA damage checkpoint signal transduction

elicited by herpes simplex virus infection. J Biol Chem 280: 30336–30341.
8. Gaspar M, Shenk T (2006) Human cytomegalovirus inhibits a DNA damage

response by mislocalizing checkpoint proteins. Proc Natl Acad Sci U S A 103:
2821–2826.

9. Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T, et al. (2005) Epstein-Barr

virus lytic replication elicits ATM checkpoint signal transduction while providing
an S-phase-like cellular environment. J Biol Chem 280: 8156–8163.

10. Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev
Cancer 4: 757–768.

11. Adams A (1987) Replication of latent Epstein-Barr virus genomes in Raji cells.

J Virol 61: 1743–1746.

PLoS Pathogens | www.plospathogens.org 5 December 2010 | Volume 6 | Issue 12 | e1001158



12. Daikoku T, Kudoh A, Fujita M, Sugaya Y, Isomura H, et al. (2005) Architecture

of replication compartments formed during Epstein-Barr virus lytic replication.

J Virol 79: 3409–3418.

13. Joab I, Nicolas JC, Schwaab G, de-The G, Clausse B, et al. (1991) Detection of

anti-Epstein-Barr-virus transactivator (ZEBRA) antibodies in sera from patients

with nasopharyngeal carcinoma. Int J Cancer 48: 647–649.

14. Feng WH, Cohen JI, Fischer S, Li L, Sneller M, et al. (2004) Reactivation of

latent Epstein-Barr virus by methotrexate: a potential contributor to metho-

trexate-associated lymphomas. J Natl Cancer Inst 96: 1691–1702.

15. Hammerschmidt W, Sugden B (1988) Identification and characterization of

oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55: 427–433.

16. Flemington EK, Goldfeld AE, Speck SH (1991) Efficient transcription of the

Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein

synthesis. J Virol 65: 7073–7077.

17. Kudoh A, Fujita M, Kiyono T, Kuzushima K, Sugaya Y, et al. (2003)

Reactivation of lytic replication from B cells latently infected with Epstein-Barr

virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting

cellular DNA replication. J Virol 77: 851–861.

18. Tsurumi T, Fujita M, Kudoh A (2005) Latent and lytic Epstein-Barr virus

replication strategies. Rev Med Virol 15: 3–15.

19. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, et al. (2002) Deubiquitination of

p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:

648–653.

20. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, et al. (2005) Structure

of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear

antigen 1 implications for EBV-mediated immortalization. Mol Cell 18: 25–36.

21. Sivachandran N, Sarkari F, Frappier L (2008) Epstein-Barr nuclear antigen 1

contributes to nasopharyngeal carcinoma through disruption of PML nuclear

bodies. PLoS Pathog 4: e1000170.

22. Cayrol C, Flemington E (1996) G0/G1 growth arrest mediated by a region

encompassing the basic leucine zipper (bZIP) domain of the Epstein-Barr virus

transactivator Zta. J Biol Chem 271: 31799–31802.

23. Cayrol C, Flemington EK (1996) The Epstein-Barr virus bZIP transcription

factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent

kinase inhibitors. EMBO J 15: 2748–2759.

24. Mauser A, Holley-Guthrie E, Simpson D, Kaufmann W, Kenney S (2002) The

Epstein-Barr virus immediate-early protein BZLF1 induces both a G(2) and a

mitotic block. J Virol 76: 10030–10037.

25. Mauser A, Saito S, Appella E, Anderson CW, Seaman WT, et al. (2002) The

Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function

through multiple mechanisms. J Virol 76: 12503–12512.

26. Sato Y, Shirata N, Murata T, Nakasu S, Kudoh A, et al. (2010) Transient

increases in p53-responsible gene expression at early stages of Epstein-Barr virus

productive replication. Cell Cycle 9: 807–814.

27. Chang SS, Lo YC, Chua HH, Chiu HY, Tsai SC, et al. (2008) Critical role of

p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression.

J Virol 82: 7745–7751.

28. Chevallier-Greco A, Manet E, Chavrier P, Mosnier C, Daillie J, et al. (1986)

Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are

required to activate transcription from an EBV early promoter. EMBO J 5:

3243–3249.

29. Hardwick JM, Lieberman PM, Hayward SD (1988) A new Epstein-Barr virus

transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62:

2274–2284.

30. Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, et al. (2006)

Potential role for p53 in the permissive life cycle of human cytomegalovirus.

J Virol 80: 8390–8401.

31. Jault FM, Jault JM, Ruchti F, Fortunato EA, Clark C, et al. (1995)

Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb,

and p53, leading to cell cycle arrest. J Virol 69: 6697–6704.

32. Rosenke K, Samuel MA, McDowell ET, Toerne MA, Fortunato EA (2006) An

intact sequence-specific DNA-binding domain is required for human cytomeg-

alovirus-mediated sequestration of p53 and may promote in vivo binding to the

viral genome during infection. Virology 348: 19–34.

33. Kudoh A, Daikoku T, Sugaya Y, Isomura H, Fujita M, et al. (2004) Inhibition of

S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus

immediate-early and early genes, preventing viral lytic replication. J Virol 78:

104–115.

34. Kudoh A, Daikoku T, Ishimi Y, Kawaguchi Y, Shirata N, et al. (2006)

Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the

MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replica-

tion. J Virol 80: 10064–10072.

35. Tarakanova VL, Leung-Pineda V, Hwang S, Yang CW, Matatall K, et al.

(2007) Gamma-herpesvirus kinase actively initiates a DNA damage response by

inducing phosphorylation of H2AX to foster viral replication. Cell Host Microbe

1: 275–286.

36. Sato Y, Shirata N, Kudoh A, Iwahori S, Nakayama S, et al. (2009) Expression of

Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation

independent of MDM2, leading to repression of p53-mediated transcription.

Virology 388: 204–211.

37. Sato Y, Kamura T, Shirata N, Murata T, Kudoh A, et al. (2009) Degradation of

Phosphorylated p53 by Viral Protein-ECS E3 Ligase Complex. PLoS Pathog 5:

e1000530.

38. Deng Z, Chen CJ, Zerby D, Delecluse HJ, Lieberman PM (2001) Identification

of acidic and aromatic residues in the Zta activation domain essential for

Epstein-Barr virus reactivation. J Virol 75: 10334–10347.

39. Ou YH, Chung PH, Sun TP, Shieh SY (2005) p53 C-terminal phosphorylation

by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-

terminal acetylation. Mol Biol Cell 16: 1684–1695.

40. Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, et al. (2009)

Homologous recombinational repair factors are recruited and loaded onto the

viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83:

6641–6651.

41. Fortunato EA, Spector DH (1998) p53 and RPA are sequestered in viral

replication centers in the nuclei of cells infected with human cytomegalovirus.

J Virol 72: 2033–2039.

42. Hsu CH, Chang MD, Tai KY, Yang YT, Wang PS, et al. (2004) HCMV IE2-

mediated inhibition of HAT activity downregulates p53 function. EMBO J 23:

2269–2280.

43. Wilcock D, Lane DP (1991) Localization of p53, retinoblastoma and host

replication proteins at sites of viral replication in herpes-infected cells. Nature

349: 429–431.

44. Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, et al. (2007) Epstein-Barr

virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an

immediate-early gene after primary infection of B lymphocytes. J Virol 81:

1037–1042.

45. Halder S, Murakami M, Verma SC, Kumar P, Yi F, et al. (2009) Early events

associated with infection of Epstein-Barr virus infection of primary B-cells. PLoS

One 4: e7214.

46. Kalla M, Schmeinck A, Bergbauer M, Pich D, Hammerschmidt W (2010) AP-1

homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on

the epigenetic state of the viral genome. Proc Natl Acad Sci U S A 107:

850–855.

47. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, et al. (2009)

Suppression of induced pluripotent stem cell generation by the p53-p21

pathway. Nature 460: 1132–1135.

48. Li H, Collado M, Villasante A, Strati K, Ortega S, et al. (2009) The Ink4/Arf

locus is a barrier for iPS cell reprogramming. Nature 460: 1136–1139.

49. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, et al. (2009)

Linking the p53 tumour suppressor pathway to somatic cell reprogramming.

Nature 460: 1140–1144.

50. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, et al. (2009)

Immortalization eliminates a roadblock during cellular reprogramming into iPS

cells. Nature 460: 1145–1148.

51. Marion RM, Strati K, Li H, Murga M, Blanco R, et al. (2009) A p53-mediated

DNA damage response limits reprogramming to ensure iPS cell genomic

integrity. Nature 460: 1149–1153.

52. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and

cancer. Nat Rev Cancer 6: 369–381.

53. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING

ubiquitin ligases. Nat Rev Mol Cell Biol 6: 9–20.

54. Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM (2005) The

WD40 propeller domain of Cdh1 functions as a destruction box receptor for

APC/C substrates. Mol Cell 18: 543–553.

55. Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, et al. (2001) A CDK-

independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK

inhibitor p27Kip1. Mol Cell 7: 639–650.

56. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, et al. (2005) Structural basis of

the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.

Mol Cell 20: 9–19.

57. Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex:

it’s not just for mitosis any more. Genes Dev 16: 2179–2206.

58. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins

are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase

complex. Cell 91: 209–219.

59. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for

ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:

193–199.

60. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, et al. (1999)

p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells.

Nat Cell Biol 1: 207–214.

61. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1)

ubiquitination and degradation is regulated by the SCF(Skp2) complex through

phosphorylated Thr187 in p27. Curr Biol 9: 661–664.

62. Mann DJ, Child ES, Swanton C, Laman H, Jones N (1999) Modulation of

p27(Kip1) levels by the cyclin encoded by Kaposi’s sarcoma-associated

herpesvirus. EMBO J 18: 654–663.

63. Ellis M, Chew YP, Fallis L, Freddersdorf S, Boshoff C, et al. (1999) Degradation

of p27(Kip) cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6

complex. EMBO J 18: 644–653.

64. Yarmishyn A, Child ES, Elphick LM, Mann DJ (2008) Differential regulation of

the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) by phosphor-

ylation directed by the cyclin encoded by Murine Herpesvirus 68. Exp Cell Res

314: 204–212.

65. Iwahori S, Murata T, Kudoh A, Sato Y, Nakayama S, et al. (2009)

Phosphorylation of p27Kip1 by Epstein-Barr Virus Protein Kinase Induces Its

PLoS Pathogens | www.plospathogens.org 6 December 2010 | Volume 6 | Issue 12 | e1001158



Degradation through SCFSkp2 Ubiquitin Ligase Actions during Viral Lytic

Replication. J Biol Chem 284: 18923–18931.
66. Whitehurst CB, Ning S, Bentz GL, Dufour F, Gershburg E, et al. (2009) The

Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV

ribonucleotide reductase activity. J Virol 83: 4345–4353.
67. Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, et al. (2010)

A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication
by regulating the activity of cullin-RING ligases. Nat Cell Biol 12: 351–361.

68. Rabut G, Peter M (2008) Function and regulation of protein neddylation.

‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:
969–976.

69. Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, et al. (2008)
Epstein-barr virus encodes three bona fide ubiquitin-specific proteases. J Virol

82: 10477–10486.
70. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, et al. (2003)

Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase.

J Biol Chem 278: 25752–25757.
71. Gottwein E, Cullen BR (2010) A human herpesvirus microRNA inhibits p21

expression and attenuates p21-mediated cell cycle arrest. J Virol 84: 5229–5237.

72. Adams PD, Kaelin WG, Jr. (1995) Transcriptional control by E2F. Semin

Cancer Biol 6: 99–108.

73. Liu C, Sista ND, Pagano JS (1996) Activation of the Epstein-Barr virus DNA

polymerase promoter by the BRLF1 immediate-early protein is mediated

through USF and E2F. J Virol 70: 2545–2555.

74. Mauser A, Holley-Guthrie E, Zanation A, Yarborough W, Kaufmann W, et al.

(2002) The Epstein-Barr virus immediate-early protein BZLF1 induces

expression of E2F-1 and other proteins involved in cell cycle progression in

primary keratinocytes and gastric carcinoma cells. J Virol 76: 12543–12552.

75. Swenson JJ, Mauser AE, Kaufmann WK, Kenney SC (1999) The Epstein-Barr

virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73:

6540–6550.

76. Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to

DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15:

1833–1844.

77. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to

DNA damage. Nat Cell Biol 5: 401–409.

PLoS Pathogens | www.plospathogens.org 7 December 2010 | Volume 6 | Issue 12 | e1001158


