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L-dopa–induced dyskinesia (LID) is a common debilitating compli-
cation of dopamine replacement therapy in Parkinson’s disease.
Recent evidence suggests that LID may be linked causally to
a hyperactivation of the Ras–ERK signaling cascade in the basal
ganglia. We set out to determine whether specific targeting of
Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a brain-spe-
cific activator of the Ras–ERK pathway, may provide a therapy for
LID. On the rodent abnormal involuntary movements scale, Ras-
GRF1–deficient mice were significantly resistant to the develop-
ment of dyskinesia during chronic L-dopa treatment. Furthermore,
in a nonhuman primate model of LID, lentiviral vectors expressing
dominant negative forms of Ras-GRF1 caused a dramatic reversion
of dyskinesia severity leaving intact the therapeutic effect of L-
dopa. These data reveal the central role of Ras-GRF1 in governing
striatal adaptations to dopamine replacement therapy and vali-
date a viable treatment for LID based on intracellular signaling
modulation.

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by a loss of dopaminergic neurons in the sub-

stantia nigra pars compacta (SNc) causing dopamine depletion
in the striatum, the main input nucleus of the basal ganglia.
Dopamine replacement therapy with L-dopa remains the most
effective treatment for PD, but its use is associated with motor
fluctuations and abnormal involuntary movements (AIMs),
termed “L-dopa–induced dyskinesia” (LID), which are dose-
limiting and potentially disabling (1–3).
A key objective for the future treatment of PD is to avoid

dyskinesia altogether, but doing so will require an understanding
of the molecular mechanisms that are involved. LID is attributed
to a sequence of events, largely occurring in the striatum, that
include pulsatile stimulation of dopamine D1 receptors, down-
stream changes in proteins and genes, dendritic alterations, and
functional abnormalities in nondopaminergic transmitter sys-
tems, all of which concur to modify neuronal firing patterns in
the basal ganglia–thalamocortical networks (1–4). Once symp-
toms have appeared, LID can be triggered easily by a single dose
of L-dopa even after several weeks of treatment washout (4).
Regulation of striatal gene expression is the likely mechanism
underlying neuronal plasticity in LID. The ERK signaling cas-
cade is a key regulator of striatal plasticity and an interesting
candidate for drug targeting (5–8). Stimulation of dopamine and
glutamate receptors on striatal neurons can switch on the small
GTPases of the Ras family, which in turn activate the Raf/Mek/
Erk protein kinase cascade (5–8). Sustained activation of these
biochemical pathways leads to synaptic rearrangements requiring
de novo gene expression and protein synthesis. Importantly, in
neurotoxic models of PD, such as the unilaterally 6-hydrox-
ydopamine (6-OHDA)-lesioned rodent and the 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman
primate (NHP), a supersensitivity of striatal D1 receptors leads
to ERK hyperactivation in response to L-dopa, and this response

correlates positively with LID severity (9–11). Moreover, in-
hibition of this pathway with systemically active drugs has been
proposed recently as a treatment for LID (10, 12).
However, this evolutionarily conserved signaling cassette is

involved in a number of important cellular responses, including
memory formation and synaptic plasticity in the CNS and cell
proliferation and survival in most cell types (5, 13–17). This in-
volvement raises concerns about the validity of therapeutic
interventions based on systemic inhibition of the Ras–ERK
pathway. However, such concerns could be overcome by re-
ducing, rather than blocking, Ras–ERK activation exclusively in
the motor part of the striatum, the region of the brain most di-
rectly implicated in LID. In addition, a safe therapy for LID
would have to target components of the Ras–ERK pathway that
are not implicated in cell survival. To achieve such goals, we
have addressed the potential involvement in LID of the neuron-
specific Ras–guanine nucleotide-releasing factor 1 (Ras-GRF1),
which catalyzes the conversion of Ras from an inactive GDP-
bound form to an active GTP-bound form (5). We recently
demonstrated that this molecule plays a crucial role in the reg-
ulation of ERK-mediated cellular and behavioral responses to
psychostimulants by sensing and integrating dopamine and glu-
tamate signals in striatal neurons (18). Ablation of Ras-GRF1 in
the mouse abrogates the ability of glutamate and D1 receptor
agonists to activate the ERK pathway, leaving intact the
responses to survival factors such as BDNF. Accordingly, the loss
of Ras-GRF1 reduces the rewarding and locomotion-inducing
properties of cocaine, along with the activation of ERK in
striatal neurons (18).
Because the behavioral and cellular responses to psychosti-

mulants and L-dopa share some molecular similarities, we set out
to investigate the role of Ras-GRF1 in LID.

Results
Ras-GRF1 Ablation Reduces AIMs in the Murine Model of LID.We first
generated a 6-OHDA–basedmodel of PDandLID inRas-GRF1–
deficientmice (Ras-GRF1–KO) (19). Theneurotoxinwas injected
into the right medial forebrain bundle in both Ras-GRF1–KO
mice and WT littermates. A test of spontaneous ipsilateral rota-
tion 2 wk after surgery showed a similar degree of rotational
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asymmetry in the two genotypes, suggesting an equivalent sensi-
tivity to the neurotoxic damage (Fig. 1A). This evidence was later
confirmed using tyrosine hydroxylase (TH) immunohistochemis-
try, which revealed more than 90% depletion of striatal dopamine
fiber terminals and nigral dopamine cell bodies in both groups
(Fig. S1 A–H).
To elicit axial, limb, and orolingual AIMs, we applied an as-

cending-dose regimen of L-dopa (1.5, 3, 6 mg/kg, twice daily for 9
consecutive days) to both 6-OHDA–lesioned WT and Ras-
GRF1 mutant animals. We set up this protocol to detect subtle
differences between genotypes in the sensitivity to L-dopa that
may have been masked by the use of higher drug doses (20, 21).
Daily scoring of AIMs revealed a gradual development of dys-
kinesia in both genotypes. However, for all doses of L-dopa, the
AIMs scores were significantly lower in Ras-GRF1–KO mice
than in their littermate controls (Fig. 1B). Remarkably, Ras-
GRF1 ablation did not affect locomotive AIMs (Fig. 1C). These
results demonstrate that the absence of Ras-GRF1 strongly
attenuates LID induction in mice without compromising the
motor stimulant effect of L-dopa. Consistently with previous
experimental evidence (9–11, 22), we observed abnormally high
levels of ERK1/2 phosphorylation and FosB/ΔFosB immunore-
activity in the dorsolateral lesioned striatum of WT mice. In
marked contrast, much lower levels of ERK1/2 phosphorylation
and FosB/ΔFosB expression were observed in the Ras-GRF1
mutants (Fig. 1 D and E and Fig. S2 A and B).

Pharmacogenetic Interaction Between Ras-GRF1 and ERK1/2
Blockade. Because AIMs expression in Ras-GRF1 mutant mice
was only attenuated, not completely abolished, we next explored
the possibility of a pharmacogenetic interaction between Ras-
GRF1 loss and a direct chemical inhibition of the core compo-
nent of the ERK signaling pathway. Systemic administration of
high doses (>50 mg/kg) of SL327, a specific chemical inhibitor of
the ERK upstream kinase MEK1/2, already has been shown to
inhibit ERK signaling in the striatum efficiently (10, 23). Using 6-
OHDA–lesioned drug-naive mice, we first evaluated the effects
of three different doses of SL327 (10, 30, and 50 mg/kg, i.p.) on
the cellular and behavioral responses to an acute L-dopa chal-
lenge. Only the lowest dose of SL327 (10 mg/kg) was found to
alter neither L-dopa–induced contralateral turning behavior nor
the striatal expression of phosphorylated ERK1/2 and FosB/

ΔFosB (Fig. S3 A–C). We next asked whether this normally in-
effective dose of SL327 may cause a further reduction of the
AIMs in a Ras-GRF1–deficient genetic background.
Hemiparkinsonian Ras-GRF1–KO and control mice were

pretreated with 10 mg/kg of SL327 and injected 30 min later with
L-dopa (1.5, 3, and 6 mg/kg, the same escalating regimen as
above). As expected, SL327 did not change the dyskinesia profile
in control animals but greatly attenuated the AIMs scores in
Ras-GRF1 mutants (Fig. 2A). Importantly, Ras-GRF1 ablation
and SL327 treatment did not affect locomotive AIMs or con-
tralateral turning behavior, indicating that L-dopa–induced mo-
tor activation is not diminished by the pharmacogenetic
intervention (Fig. 2 B and C). The reduction in AIM scores was
paralleled by a significant inhibition of phosphorylated ERK1/2
(pERK1/2) and FosB/ΔFosB expression by SL327 in the Ras-
GRF1–KO group (Fig. 2 D–F).
Postsynaptic changes in striatal medium spiny neurons (MSNs)

following dopamine depletion and chronic L-dopa administration
play a key role in the development of LID. In particular, recent
evidence indicates that LID results from a supersensitivity of D1
receptors, which are expressed preferentially in the striatonigral
MSN population, leading to a selective hyperactivation of ERK
signaling in these cells (24). By using two types of BAC-transgenic
mice expressing EGFP specifically in striatonigral or striatopalli-
dal MSN [namely, M4-EGFP mice (striatonigral neurons, direct
pathway) and adenosine receptor A2A-EGFP mice (striatopalli-
dal neurons, indirect pathway)], we addressed the cellular local-
ization of Ras-GRF1 in the striatum. ARas-GRF1–positive signal
was found in EGFP-labeled neurons in both mouse lines (Fig. 3 A
and C). Quantitative dual-fluorescence confocal analysis in-
dicated that Ras-GRF1 was expressed equally in both pathways
(53.6% in the direct pathway; 46.4% in the indirect pathway) (Fig.
3E). As expected, Ras-GRF1 expression was absent in both M4-
EGFP/Ras-GRF1–KO and A2A-EGFP/Ras-GRF1–KO double
mutants (Fig. 3 B and D). These data indicate that the specific
involvement of Ras-GRF1 in LID is not caused by a selective
expression of this factor in striatonigralMSN but rather reflects its
specific engagement by D1 receptors.
In addition to D1 receptors, other key signaling molecules

show altered levels of expression in LID (25, 26). Interestingly,
a recent study has shown that two striatally enriched regulators
of Ras–ERK signaling, CalDAG-GEF 1 and 2, are inversely
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CFig. 1. Attenuated AIMs and striatal cellular responses in
Ras-GRF1–KOmice after L-dopa treatment. (A) The success of
the lesion was evaluated 2 wk after 6-OHDA injection by
counting spontaneous ipsilateral rotations in a squared
open arena over a 10-min session. WT (n = 16) and mutants
(n = 16) displayed an equivalent turning score. (B) Temporal
profile of axial, limb, and orolingual AIMs induced by an
increasing L-dopa regimen (1.5, 3, and 6 mg/kg, twice a day)
administered for 9 consecutive days. The AIM scores were
reduced significantly in Ras-GRF1–KO mice (Ras-GRF1–KO L-
dopa, dashed line, open circles, n = 9) in comparison with
their littermate controls (WT L-dopa, solid line, closed circles,
n=9). Saline treatment (dashed anddotted linemarked “x”)
did not induce involuntarymovements (Ras-GRF1–KO saline,
n = 7; WT saline, n = 7). Repeated measures and post hoc
Tukey’s honestly significant difference (HSD) tests showed
a genotype effect (#P < 0.001) and a genotype–time in-
teraction effect (P < 0.001). (C) No difference in the loco-
motive AIMs inWT and Ras-GRF1–KO animals were found in
response to L-dopa. (D) Abnormal levels of pERK activation
were observed in dyskinetic WT animals, whereas a pro-
nounced reduction was seen in Ras-GRF1–KO animals. The
total number of pERK-immunopositive cells/mm2 was
counted in the dorsolateral striatum (intact and lesion sides) in saline- and L-dopa–treated groups. Two-way ANOVA followed by a Tukey’s HSD test indicated
a significant genotype difference betweenWT and Ras-GRF1–KO lesioned lateral striatum (★P < 0.0001). (E) FosB/ΔFosB expression is severely attenuated in the
lesioned striata of Ras-GRF1–KO animals (black bars) in comparisonwith littermate controls (white bars). The total number of FosB/ΔFosB-positive cells/mm2was
counted in the dorsolateral striatum of all experimental groups. Two-way ANOVA followed by Tukey’s HSD test showed a significant genotype difference be-
tween WT mice and Ras-GRF1–KO mice treated with L-dopa (★P < 0.0001 difference).
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affected in a rat model of LID (27). To determine whether Ras-
GRF1 and its close homolog Ras-GRF2 show similar alterations,
we examined the levels of these proteins (p140Ras-GRF1 and
p135Ras-GRF2) in themouse striatabyWesternblot analysis (Fig. 3F).
Unlike what was reported for CalDAG-GEFs, the striatal levels
of Ras-GRF1/2 did not change in L-dopa–treated dyskinetic ani-
mals relative to saline-treated controls, although, as expected,
ERK1/2 phosphorylation was significantly up-regulated in the
former group (Fig. 3 G–I). These data are important because
they indicate that Ras-GRF1/2 levels are not regulated by the
pathophysiological process at the basis of LID; such regulation
could have posed significant problems for a potential therapy
targeting this molecule.

Reversion of LID in an NHP Model by a Combined Genetic Inhibition of
Ras-GRF1 and ERK. The data above indicate that the absence of
Ras-GRF1 in the brain significantly attenuates LID and the as-
sociated molecular and cellular abnormalities in the mouse. In an
effort to translate these findings into a clinically relevant therapy,
we set out to determine (i) whether a partial inhibition of Ras-

GRF1 in the striatum can revert already established dyskinesias
and (ii) whether the therapeutic effect also can be seen in an
animal model that better recapitulates the human condition.
Thus, we generated lentiviral vectors (LV) that express two

dominant-negative constructs for Ras-GRF1 under the control
of the strong and ubiquitous human phosphoglycerol kinase
(PGK) promoter in addition to the GFP marker (28, 29). These
two constructs were designed using the human sequence of Ras-
GRF1 and were tested in the mouse striatum (Fig. S4 A and B).
The first construct expresses the binding domain of Ras-GRF1
on the NR2B subunit of the NMDA receptor (Ras-GRF1-
NR2B-BD), thus specifically blocking glutamate-mediated acti-
vation of Ras-GRF1 but not other Ras exchange factors such
as the closely related homolog Ras-GRF2 (30). The second
dominant-negative construct is a point mutation in the catalytic
domain of Ras-GRF1 (Ras-GRF1-CDW1056E), which sequesters
Ras proteins and thus blocks the activity of the endogenous
Ras-GRF1 without affecting Ras-GRF1–independent ERK ac-
tivation (31). Expression of both constructs at a high level [∼5 ×
1010 transforming units (TU)/mL, 1-μL injection per striatum]
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showed a significant inhibitory effect on the ability of 20 mg/kg
cocaine to activate ERK1/2. We next investigated whether the
effect mediated by Ras-GRF1 inhibition can be enhanced fur-
ther by a concomitant suboptimal manipulation of the core
MEK–ERK component of the pathway. To this end we tested
the ability of a dominant-negative mutant of ERK2, ERK2K52R,
to attenuate ERK activation in this system (32). A high titer of
LV-ERK2K52R (∼5 × 1010 TU/mL) was capable of reducing
ERK1/2 phosphorylation in response to cocaine, whereas a lower
titer (<1 × 1010 TU/mL) was ineffective. Interestingly, a signifi-
cant reduction of pERK1/2 levels was obtained using a mix of the
three LV containing high titers of the two LV-Ras-GRF1 con-
structs and a low titer of LV-ERK2K52R (LV-Mix-GFP; 1:1:1).
We next investigated the effectiveness of the LV-Mix-GFP in

the “gold standard” experimental model of LID, the MPTP-
lesioned L-dopa–treated macaque monkey. The decision to use
LV-Mix-GFP instead of individual vectors was justified by both the
lack of knowledge about the effect of these constructs in the pri-
mate and a need tominimize the use of animals. Six L-dopa–treated
dyskinetic macaques received the control LV-GFP (n = 3) or the
therapeutic LV-Mix-GFP vectors (n = 3) in the motor striatum.
Upon completion of the behavioral experiments, all monkeys were
tested to determine the extent of the lesion (Fig. S5A) and trans-
duction efficacy (Fig. S5 B and C). Both groups had a similarly
extensive nigrostriatal cell loss, as evidencedby a dramatic decrease
in the number of TH-immunopositive neurons in the SNc.
Before LV administration, parkinsonian disability scores in

both the OFF (before L-dopa administration) and ON states
(after L-dopa administration), LID scores in the ON state, and
the time course of L-dopa–induced locomotor activity were in-
distinguishable between the two groups. Starting at 8 wk post-
surgery, when behavioral experiments resumed, the antipar-
kinsonian efficacy of L-dopa remained intact in the LV-Mix-GFP
group compared with LV-GFP animals (Fig. 4 A and B). How-
ever, monkeys expressing the LV-Mix-GFP had significantly less
severe LID (Fig. 4 C and D) and a significant decrease in
L-dopa–induced locomotor hyperactivity during the ON state
(Fig. 4 E and F). The latter effect is consistent with an anti-
dyskinetic action of the vector therapy, because high locomotor
counts ON L-dopa are associated with LID and reflect excessive
motor activation. Taken together, these results indicate that
striatal expression of the two dominant-negative Ras-GRF1 pro-

teins associated with a low titer of dominant-negative ERK2
construct diminishes LID severity without reducing the positive
effects of L-dopa on parkinsonian motor scores.
Because L-dopa therapy activates both D1 and D2 receptors, we

next investigated how the expression of the dominant-negative
constructs modifies responses to D1 and D2 agonists. Administra-
tion of a D1 agonist produced a similar amelioration of parkinso-
nian features in all animals (Fig. 4 G and H), but the severity and
duration of dyskinesia were reduced significantly in the LV-Mix-
GFP group compared with the LV-GFP controls (Fig. 4I). In con-
trast, the antiparkinsonian and prodyskinetic effects of aD2 agonist
did not differ between the two groups (Fig. 4 I and J). These data
suggest that the antidyskinetic action of the LV-Mix-GFP vectors is
mediated through striatal neurons expressing the D1 receptor.
A comparable extent of LV transduction, covering the entire

motor putamen, was observed in the LV-GFP and LV-Mix-GFP
groups. However, the LV-Mix-GFP group showed a dramatic re-
duction in the number of pERK- and FosB/ΔFosB-immunopositive
striatal neurons following L-dopa treatment (Fig. S5 D and G).

Discussion
Dyskinesia remains a major therapeutic problem in PD. Curren-
tly, the only marketed drug available to treat LID is amantadine,
a weak NMDA antagonist that can produce psychotic side effects
and usually provides a short-lasting benefit (33). Attempts to
control LID symptoms by targeting serotonergic or glutamatergic
systems have been successful at the experimental level but have
produced variable results in clinical trials (34). The recent un-
derstanding that LID is essentially caused by a dysregulation ofD1
receptor-mediated intracellular signaling in the striatum opens
perspectives for innovative treatments (9–11, 21, 35, 36). Phar-
macological antagonism of D1 receptors is not a viable option,
because it would compromise the therapeutic action of L-dopa. In
contrast, partial inhibition of hyperactive signaling pathways
downstream of the D1 receptor would target long-term malad-
aptive neuroplasticity specifically without reducing the positive
effects of dopamine replacement therapy. TheRas–ERKpathway
appears to be the target of choice for such an approach, because its
hyperactivity causes abnormal striatal plasticity in LID (37). Un-
fortunately, a global inhibition of the ubiquitously expressed Ras-
Raf-MEK-ERK cascade may interfere with cell-survival mecha-
nisms downstream of growth factor receptors (5). Restricting such
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Fig. 3. Expression of Ras-GRF1 in MSN sub-
populations and its protein levels in dyskinetic
animals. Immunofluorescence of Ras-GRF1
(red), EGFP (green), and nuclear labeling with
DAPI (blue) of striatonigral neurons (direct
pathway) of M4-EGFP mice (A) and striato-
pallidal neurons (indirect pathway) of A2A-
EGFPmice (C). (Scale bars inA andC: 20μm.) (E)
The graph shows the percentage of the total
Ras-GRF1–positive neurons that are GFP-posi-
tive, indicating that Ras-GRF1 is expressed
equally in each subpopulation. As expected,
Ras-GRF1wasnotexpressedeither in thedirect
pathway of M4-EGFP Ras-GRF1–KOmice (B) or
in the indirect pathway of A2A EGFP Ras-
GRF1–KO mice (D). (F) Protein levels of Ras-
GRF1, Ras-GRF2, and pERK1/2 in intact (I) and
lesioned (L) striata of WT mice after 9 d of L-
dopa treatment were determined by Western
blot analysis. p140 Ras-GRF1 (G) and p135 Ras-GRF2

(H) levels were not altered in dopamine-de-
nervated striata after saline or L-dopa treat-
ment, whereas phosphorylation of ERK1/2 is
enhanced only in L-dopa–treated striata (I)
(one-way ANOVA, #P < 0.01).
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a therapy to the brain would solve the problem only partially, be-
cause neuronal apoptosis may occur if the inhibition of the path-
way exceeds a critical value (16, 17).Our work paves the way for an
effective treatment of LID by targeting Ras-GRF1. This molecule
is expressed exclusively in neurons of the CNS, and, more impor-
tantly, it is not linked to cell-survival pathways because it operates
as a signaling integrator downstreamof glutamate- and dopamine-
mediated signals (18), which are dysregulated in LID (1–4). In
addition, unlike observations for other ERK regulators (27), the
absolute amount of the Ras-GRF1 proteins does not change in
dyskinetic animals, making this molecule an appealing drug target
because the efficacy of a Ras-GRF1–specific treatment would not
be diminished by a compensatory elevation of its expression.
Our proof-of-concept study in themouse shows that Ras-GRF1

deficiency can prevent the development of LID, possibly delaying
its onset. Considering that the large majority (>80%) of PD
patients will develop LID within 5–10 y from the initiation of do-
paminergic drug therapy, the possibility of coadministering drugs
acting on Ras-GRF1 as add-on agents appears to be a promising
approach. Importantly, our data suggest that the combined ad-
ministration of suboptimal doses of drugs acting on the MEK–
ERK core component (such as SL327) may further enhance the
antidyskinetic effect ofRas-GRF1 inhibition. This detail is a highly

relevant from a translational perspective. Indeed, many drugs
targeting ERK are being developed for cancer therapy, and, al-
though these drugs may have some systemic toxicity, they could be
used at low doses, together with interventions targeting Ras-
GRF1, to obtain an effective and safe treatment for LID.
Our data indicate that Ras-GRF1 is implicated not only in the

dyskinesia-priming process but also in the expression of dyskinetic
movements when LID is already established. Indeed, in the NHP
model of LID, striatal inhibition of Ras-GRF1 and ERK signaling
using viral vectors greatly ameliorated already established dyski-
netic symptoms without affecting the therapeutic action of L-dopa.
Our work opens the way for a possible indication of gene

therapy in PD, namely lentiviral-mediated delivery of signaling
modulators that can “rebalance” the response of striatal neurons
to L-dopa, thus controlling troublesome side effects without af-
fecting the treatment’s efficacy. A valid therapy based on Ras–
ERK inhibition ought not to block this signaling pathway com-
pletely but only should reduce its abnormally high activation.
Our results indicate that such a goal can be achieved by targeting
Ras-GRF1. In addition, our work suggests that a therapy com-
bining Ras-GRF1 partial inhibition with treatments affecting
other signaling pathways may provide a more effective anti-
dyskinetic approach with a low risk of untoward effects.

Fig. 4. LV-Mix-GFP expression in the macaque motor striatum reduces the dyskinesia elicited by L-dopa (A–F) and D1 and D2 agonists (G–O). Time-course
panels reporting clinical ratings feature median scores ± SEM, but those reporting activity counts are shown without SEM for readability. Administration of L-
dopa (levodopa/carbidopa 4:1, see Materials and Methods) or dopamine agonists starts at t = 0 min. (A) LV-Mix-GFP expression had no impact on the L-dopa–
induced PD score at any time point. (B) The analysis of the area under the curve (AUC) of PD scores confirms this lack of effect (mean ± SEM). (C) LV-Mix-GFP
expression reduced LID from t = 40 to t =160 min (but note peak at t = 50 min) in comparison with the LV-GFP animals (median scores; Mann–Whitney test,
*P < 0.05). (D) The overall positive effect on LID severity is demonstrated further by the AUC data (mean ± SEM; unpaired t test; *P < 0.05). (E and F)
Consequently, locomotor activity was lower in LV-Mix-GFP animals (mean ± SEM; unpaired t test; *P < 0.05). (G–O) Effects of D1 and D2 agonists in LV-Mix-
GFP and LV-GFP monkeys were analyzed separately. (G–I) As with L-dopa, the antiparkinsonian effect of both (G) SKF-38393 (D1 agonist; 1.5 mg/kg, s.c.) and
(H) quinpirole (D2 agonist; 1.5 mg/kg, s.c.) was comparable in both groups. (J and K) Although the severity of dyskinesia was comparable in both groups after
administration of the D2 agonist (K), the LV-Mix-GFP animals displayed a reduced severity of D1 agonist-induced dyskinesia from t = 40 min to t = 160 min (J)
(median scores; Mann–Whitney test; *P < 0.05). (l) AUC analysis supports this conclusion, showing that only the severity of dyskinesia induced by the D1
agonist is reduced more significantly in LV-Mix-GFP animals than in GFP animals (unpaired t test; *P < 0.05). (M–O) Analysis of the AUC of activity counts
further supports the D1 agonist-mediated reduction in dyskinesia severity, because activity counts are significantly reduced in the LV-Mix-GFP animals
compared with the GFP animals only after D1 agonist administration (unpaired t test; *P < 0.05).
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Materials and Methods
Adetaileddescriptionofallmaterials andmethods canbe found inSIMaterials
andMethods. Briefly, generation of Ras-GRF1–KOmice has been described in
refs. 18 and 19. Mice were injected with 1 μL of 6-OHDA-HCl (3 μg/μL) into the
right medial forebrain bundle. 6-OHDA lesion surgery and behavioral testing
were performed as previously described (22). Immunohistochemistry was
carried out according to published procedures (9, 18, 42). The lentiviral vector
expressing ERK2K52R mutant has been described already (32). The two domi-
nant-negative constructs, Ras-GRF1-NR2B-BD and Ras-GRF1-CDW1056E, have
been designed using the human Ras-GRF1 sequence and adapted from the
mouse and rat sequences (30, 31).

Inductionofparkinsonismanddyskinesia inNHPwasperformedasdescribed
in refs. 43and44. Lentiviraldelivery surgerywasperformedusinga convection-

enhanced delivery method (43, 45) with a 1:1:1 mixture of the three vectors
previously validated in the mouse. Starting at 8 wk postsurgery, animals were
examined every 2 d for behavioral responses to their tailored dose of L-dopa,
theD1 agonist SKF-38393 (1.5mg/kg, s.c.), or the D2/D3 agonist quinpirole (1.5
mg/kg, s.c.) (46). Postmortem processing was carried out as described (47).
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