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Parallel sequence and structure alignment tools have become
ubiquitous and invaluable at all levels in the study of biological
systems. We demonstrate the application and utility of this same
parallel search paradigm to the process of protein structure deter-
mination, benefitting from the large and growing corpus of known
structures. Such searches were previously computationally intract-
able. Through the method of Wide Search Molecular Replacement,
developed here, they can be completed in a few hours with the
aide of national-scale federated cyberinfrastructure. By dramati-
cally expanding the range of models considered for structure
determination, we show that small (less than 12% structural cover-
age) and low sequence identity (less than 20% identity) template
structures can be identified through multidimensional template
scoring metrics and used for structure determination. Many new
macromolecular complexes can benefit significantly from such a
technique due to the lack of known homologous protein folds
or sequences. We demonstrate the effectiveness of the method
by determining the structure of a full-length p97 homologue from
Trichoplusia ni. Example caseswith theMHC/T-cell receptor complex
and the EmoB protein provide systematic estimates of minimum
sequence identity, structure coverage, and structural similarity
required for this method to succeed. We describe how this struc-
ture-search approach and other novel computationally intensive
workflows are made tractable through integration with the US
national computational cyberinfrastructure, allowing, for example,
rapid processing of the entire Structural Classification of Proteins
protein fragment database.
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Can access to vast quantities of computational power be lever-
aged to advance the study of biological systems in previously

unexplored ways? Whereas many domains have driven demand
for computational power and novel computational techniques
in the process of scientific investigation, there remain areas where
the opportunities provided by the most advanced computational
infrastructures and tools have not been fully explored. The last
decade has quietly seen the development of significant national
and international federated cyberinfrastructures, established
primarily to support the half dozen globally distributed particle
physics collaborations. In the same way this community estab-
lished the World Wide Web as a simple, standards-based system
for information sharing, the particle physics community has also
facilitated sharing of data and computing through development
of what is known as “grid computing.” An area within the field of
macromolecular structural biology that can leverage grid comput-
ing is harnessing the large and growing set of known protein struc-
tures to accelerate protein structure determination. The question
of how to benefit from known structures was posed even as
the earliest protein structures emerged, following observation
of the similarity of the hemoglobin subunits to each other and
to the structure of myoglobin.

The method now known as molecular replacement (MR) was
first proposed for macromolecular crystallography by Rossmann
and Blow (1), based on ideas developed by Hoppe in the context
of small molecule crystallography (2). This was in response to the

observation of evident family resemblances among different
proteins and to the realization that it would be necessary to de-
termine the structure of a particular protein in multiple states and
with multiple ligands. The MR approach bootstraps the process
of X-ray crystallographic phase determination by placing a known
protein structure template in an orientation and position that
aligns with that of the unknown protein. MR has now become
the most commonly used method in protein structure determina-
tion by X-ray crystallography. It accounts for roughly half of all
structures recorded in the Protein Data Bank (PDB) (3), which
currently contains almost 70,000 depositions. In traditional MR, a
suitable template model is selected based on sequence similarity.
Other similar methods in structural biology rely on small data-
bases of short protein fragments [e.g., the “lego” feature in O
(4), and molecular fragment replacement in NMR (5)], or homo-
logous structures [e.g., low-resolution refinement in crystallogra-
phy (6)]. The selection of a suitable candidate template model
remains a primary limiting factor in all of these methods.
Although several approaches have been proposed for automating
the selection of MR template models, either based on sequence
information (7–9), or adapting MR algorithms to run in parallel
on a specialized cluster (10), none have attempted molecular
replacement searches using a complete, PDB-derived database
of all available macromolecular domains, or considered the
new insights provided by examining the aggregated results from
large template model sets. Improved template selection would be
expected to accelerate the structure determination process, mini-
mize bias, and extend the range of suitable template models to
proteins with negligible sequence identity.

In this paper, we ask three questions. First, can we compare
results from independent molecular replacement runs and use
these results to discriminate and rank solutions, thereby justifying
the use of large template model databases? Second, can we de-
velop improved criteria for recognizing correct solutions, in order
ultimately to improve the convergence and speed of MR and
further automatic structure determination? Third, can existing
applications be scaled, deployed, and executed in a grid comput-
ing environment to enable new avenues of investigation, rather
than merely faster computation? To answer the first question,
we evaluated three diverse structure determination scenarios:
(i) optimal selection in cases with several template model candi-
dates; e.g., an MHC–TCR complex with 5,000 potential peptide
binding or Ig domains that could be used as a template models in
theMR search; (ii) structural homolog searches in cases for which
sequence-based searches fail to identify usableMR templatemod-
els; and (iii) “blind” cases in which the sequence of the crystallized
sample is unknown. By adapting the widely used Phaser (11) MR
application to the format of grid computing, we demonstrate the
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power of this unique wide search molecular replacement
(WS-MR) approach, which can be used to search up to
100,000 domains in a few hours and to provide the range of results
necessary to answer the questions posed above. WS-MR success-
fully identifies the closest structural homologues from a large
family of candidates and does so more reliably than traditional,
sequence-based approaches. The approach is also successful in
identification of domains with marginal sequence identity or
coverage. We use the WS-MR method to determine a structure
of the full-length insect homologue of p97, a mammalian
AAAþ ATPase (12–14) that was crystallized as a contaminant
and reveals a previously unobserved D1 ADP-free conformation.
Based on the extensive collection of results from the completed
cases we demonstrate that incorporating multivariate scoring
metrics [e.g., Phaser’s log likelihood gain (LLG) and translation
function Z-score (TFZ)], or classification and clustering [e.g.,
Structural Classification of Proteins (SCOP) class and domain
size], significantly improves discrimination to identify the best
solutions. The computations for WS-MR were performed using
the federated computing environment of the Open Science Grid
(OSG) (15), illustrating how the national distributed cyberinfras-
tructure can be effectively used to develop and support unique
computational workflows in research areas outside of physics.

Results
1. Comparison of Results from Independent Molecular Replacement
Runs. a. Selecting the Best Model from a Large Library of Homologous
Structures. We selected the MHC–TCR complex as the first sys-
tem to validate theWS-MR approach. The structure contains one
peptide binding domain (MHC–PBD) and six immunoglobulin
(Ig) domains (Fig. 1A). There are over 5,100 candidate domains
out of the 95,000 domains found in the Structural Classification
of Proteins (SCOP) database (16) (Methods) that could map to
parts of this structure, thus providing a useful spectrum of results
to correlate the degree of structure coverage, sequence identity,

and structural similarity with the quality of the initial phases.
WS-MR, using the full SCOP database with the MHC–TCR
reflection data [PDB code 2VLJ (17)], was used to determine
whether structurally similar models rank best (in terms of various
MR scoring metrics) and whether these models can be identified
from incorrectly placed domains and from other structures in
the database. This case is representative of using WS-MR for
an unknown structure with many homologues, where it could
be used to select the best model. This would be especially useful
in cases where model coverage or sequence identity are low.

TheWS-MR search was completed in 12 hours of elapsed time
(800 processor-days of computing time) utilizing a small subset of
idle computers in the otherwise highly subscribed resources in
OSG. This level of performance was typical of all the WS-MR
iterations described here. Collected results allowed quick identi-
fication of a group of distinct, viable, MR models. Whereas sev-
eral scoring functions were used to evaluate the quality of Phaser
placement results (see section 2), a two-dimensional quality mea-
sure based on the LLG and the TFZ provides the best discrimi-
nation of results, producing a cluster of approximately 300
candidate domains from the search set of 95,000 (the “top clus-
ter,” Fig. 1B). Domains in the top cluster all belong to SCOP class
d.19.1.1, the MHC–PBD domain that represents 20% of the full
model, and are all placed correctly by Phaser, in reference to the
actual structure (SI Text). Three Ig domains are also identified in
the top cluster (12% of search model), and no false positives are
observed. The above results provide the boundary for the mole-
cular replacement search to produce correct and identifiable
placements for the MHC–TCR example with a model complete-
ness between 12% (in case of the Ig domains) and 20% (for the
MHC–PBD). The likelihood of obtaining the correct and identi-
fiable placement with high quality models is very small when
searching with 12% of the target (3 in 4,500 Ig domains, Fig. 1B)
and dramatically increases for a search with 20% of the target
(300 in 550 MHC–PBD domains, Fig. 1B).

WS-MR not only discriminates correctly placed models but, in
this case, also orders them by the similarity of the structure and
the target molecule (Fig. 1C). For the correctly placed MHC–
PBD models, LLG/TFZ is highly correlated to RMSD between
the model and the reference structure. For example, the lowest
RMSD model also scores the highest on the LLG/TFZ scale. In
comparison, selecting models based exclusively on sequence iden-
tity results in a wide range of LLG/TFZ values, even for the sub-
set with identities >90% (Fig. S1B). In this test case LLG-based
selection provides superior distinction of correct solutions
compared to sequence similarity and would therefore provide
an advantage for MR model selection.

As expected, placement of the best first domain identified
by WS-MR (an MHC–PBD) facilitated completion of structure
determination. Repeating WS-MR with the MHC–PBD domain
fixed placed over 1,000 Ig domains in the top cluster result from
the second WS-MR iteration, and further analysis confirmed that
all six MHC–TCR Ig domains are found in this set (Fig. 1D).
Here the LLG scores correlate strongly with the structural simi-
larity (see linear fit lines in Fig. 2A). Whereas the search for the
first MHC–TCR fragment required a minimum 60% sequence
identity to obtain identifiable solutions, in the secondary search
individual Ig domains with as little as 11.6% sequence identity
produced identifiable results (see Section 1b), a noteworthy suc-
cess of the partially phased MR approach with 20% placed, a
12% search fragment and 68% of the structure still missing.

b. Identifying Good MR Models with Marginal Sequence Identity. Per-
haps the most intriguing opportunity for the WS-MR structure
determination technique is the application of a blind search in
cases where traditional MR techniques fail, and before attempt-
ing further experimental phasing methods. Blind WS-MR, where
no template filtering is applied and the full template database is

Fig. 1. Validation of the WS-MR approach. (A) MHC–TCR complex, central
peptide binding α12 domain in red (MHC–PBD), α3 domain of the MHC in
orange, β2-microglobulin in blue, and four Ig domains in the TCR (yellow,
cyan, green purple). Figure generated in CCP4MG (37). (B) Phaser LLG vs.
TFZ from WS-MR for MHC–TCR complex. First round search, 300 correctly
placed MHC–PBDs (green), 270 incorrectly placed MHC–PBDs (red), three
identifiable and correctly placed Ig domains (yellow), and all other SCOP do-
mains with MR results (gray). (C) Structure alignment RMSD vs. Phaser LLG
score for MHC–PBDs. Correctly placed domains in green, incorrectly placed
domains in red. Note that domains with RMSD as high as 2.2 Å were correctly
placed by Phaser. Correlation coefficient of −0.9 for correctly placed domains
(highly anticorrelated). (D) Phaser LLG vs. TFZ from WS-MR for MHC–TCR
complex. Second round search, with MHC–PDB from first round fixed,
1,212 correctly placed Ig domains (green), 3,393 incorrectly placed Ig domains
(red), all other SCOP domains with MR results (gray). Arrows indicate best
result for each Ig domain.
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searched, can reveal structures that would not otherwise be iden-
tified by sequence alignment algorithms [which generally provide
poor results when the best sequence-based homologues have an
identity of less than 30% (9)]. Such searches make no a priori
assumptions about the target structure and can utilize large
databases of PDB-derived models. The infrastructure described
in section 3 makes this approach feasible, and the trend of de-
creasing cost per unit of processing power is such that in the next
few years such a workflow could be executed solely by the internal
computational resources of a single laboratory.

In a limited number of completed searches we observe that
models with borderline sequence identity (between 10–20%) can
work well. For example, in the MHC–TCR example described
above, in the secondary search with the MHC–PBD placed, the
majority of Ig domains with sequence identity below 20% failed
to be correctly placed, but the placement of 244 domains was cor-
rect (gray vs. colored dots in Fig. 2). All but 17 of the correctly
placed domains could be readily identified based on LLG and
TFZ scores, indicating a false negative rate for this set (sequence
identity below 20%) of 7%, and a clear LLG cut-off of 130, above
which 100% of the results were correct, including domains with
sequence identity as low as 11.6%.

Further tests of WS-MR were carried out on structures that
had previously been determined by experimental phasing meth-
ods. A search with data for EmoB (18) (PDB code: 2VZF) was
performed with the SCOP database, and returned a clear cluster
of 14 solutions (Fig. 3A). All 14 models that belong to SCOP fla-
voprotein classes c.23.5.4 and c.23.5.8 are positioned properly,
while all remaining 182 flavoprotein domains in the bottom clus-
ter, except for 4, are incorrectly placed. The 14 correctly placed
and identifiable models have sequence identities of 13% to 21%,

and RMSD between 2.2 and 2.7 Å relative to the reference struc-
ture (Fig. S2 A and B). The top solution can be used to rapidly
refine the structure. In contrast, four iterations of a PSI-BLAST
search identified 313 candidates, of which two were in the group
of 14 identified by the WS-MR approach as suitable MR tem-
plates. These two were conformationally similar structures with
mutually identical sequence, but a sequence identity to the target
structure of only 17%. PSI-BLAST failed to identify any of the
other twelve structures, despite having sequence identities in the
same range (13–21%). Whereas in this particular case sequence-
based approaches should converge on a correct solution, the
unpredictability of successful molecular replacement results com-
bined with the difficulty of selecting models by sequence-based
searches explain why viable MR models may be missed in other
similar cases.

We have also recorded several cases, when performing full
SCOPWS-MR searches, where the identified solutions share sig-
nificant structural characteristics with the target but are too diver-
gent to produce the correct placement. For exampleWS-MRwith
experimental data for the kinase domain of Escherichia coli tyr-
osine kinase ETK (PDB code: 3CIO) retrieves no strong results,
but after closer inspection of the LLG/TFZ profile, we selected
two solutions with relatively high TFZ score (>6), and LLG
scores separated from other results. One of those peaks corre-
sponds to SCOP model 1Z0Fa1—a Rab GTPase (Fig. 3B). The
two structures have 12.5% pairwise sequence identity, a mislead-
ing metric given that the two proteins can only be superposed in a
sequence independent manner (Fig. S2C). In another case, a
structure of a four helix protein recently deposited by the Mid-
west Center for Structural Genomics (PDB code: 3CEX) can be
superposed on a SCOP domain from ferritin (1IESa_) (Fig. 3C).
The superposition of the four helical elements is sequence inde-

Fig. 2. Second round search for Ig domains with best first round MHC–PBD
template fixed. Colored points correspond to correctly placed Ig domains,
Whereas gray points indicate incorrectly placed domains. Domains with se-
quence identity as low as 11.6% are clearly identified by LLG and TFZ scores
and correctly placed. Note that both sequence identity and RMSD (to actual
structure) are poor indicators of successful MR placement. (A) RMSD vs. LLG
of Ig domains in second round WS-MR search. Data points for matching Ig
domains are fitted with linear regression. Domains with lower RMSD to
the target score higher. (B) Sequence Identity vs. LLG of Ig domains in second
round WS-MR search.

Fig. 3. WS-MR with distant homologues. (A) Phaser LLG vs. TFZ for EmoB
protein. 12 distinct flavoprotein (SCOP SCCS class c.23.5.4/8) MR templates
identified and correctly placed (green), and a further 200 (red) from the same
SCOP class incorrectly placed. All other SCOP domains in gray. Foreground:
actual oxidoreductase structure in gray, Phenix Autobuild structure in blue,
and top WS-MR result in green. Using density modification and automated
build procedures, with final R-factor/R-free statistics that are comparable
to the deposited structure (20.0%∕23.6% for the deposited EmoB vs.
22.1%∕25.5% for the WS-MR model). (B) Distant homologue search for
structure 3CIO returns structurally similar results. (C) Distant homologue
search for structure 3CEX returns structurally similar results.
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pendent (Fig. S2D). Clustalw fails to provide sufficient insight,
and produces a relatively high pairwise identity of 16.6%, but this
does not correspond to the actual sequence identity for the
aligned structures.

c. An Example of a Blind Search Without Prior Sequence Information:
Structure of ADP-Free p97 Homolog.We have also tested our meth-
od on five cases provided for evaluation by colleagues in response
to our solicitation for recalcitrant datasets—those that resisted
molecular replacement efforts with the most obvious models.
For each submitted dataset there was a concern that the crystal-
lized sample was a contaminant rather than the target protein, as
the identity of proteins could not be confirmed experimentally
due to the limited sample availability. In some cases dissolved
crystals had characteristics consistent with the target protein
(e.g., migration on SDS-PAGE or mass spectrometry profile).
For each dataset we performed WS-MR with the full SCOP
database. Four datasets were immediately confirmed as contami-
nants. The most striking was a homolog from Trichplusia ni (order
Lepidoptera, Hi-5 cells) of a mammalian p97, a hexameric AAAþ
ATPase, which is characterized by poorly diffracting crystals (6)
and multiple nucleotide binding states (19). The T.ni protein
remains unsequenced, but we expect it to be very similar to
the sequenced Bombyx mori transitional endoplasmic reticulum
ATPase TER94 (also order Lepidoptera, accession codes:
BAE54254 and NP_001037003), which in turn is 83% identical
to the full-length Mus musculus p97. WS-MR clearly identified
nine domains in a distinct high scoring cluster (Fig. 4A). The
overall architecture of T.ni p97 closely resembles the structure
ofM.musculus p97, and the space group matches the 1R7R struc-
ture. Inspection of fo-fc electron density maps suggests, however,
that in contrast to other p97 crystal structures (1E32; 1YQ0;
1YQ1; 1YPW) (Fig. 4B), the T.ni p97 is nucleotide-free in the
D1 binding pocket (Fig. 4C). Although spectroscopic analysis
of the protein sample will be required to confirm that indeed
all of the symmetry-related molecules in T.ni p97 are ADP-free,
the unexpected results of WS-MR in this case reveals another
potentially valuable utility of the method. Other contaminants
retrieved by WS-MR include carbonic anhydraze (1I6Oa_), inor-
ganic phosphatase (1MJWb_), and pyruvate kinase (1AQFg2). In
each case, WS-MR provided a quick, conclusive answer to

problems that could not be readily addressed using standard
biochemical tools.

2. Improved Criteria for Recognizing Correct Solutions. By collecting
a large number of data points in many dimensions for several
different target structures, we are able to consider techniques
beyond the traditional TFZ score to identify viable MR models.
We find that Phaser LLG and TFZ scores, in particular, combine
to provide good discrimination of templates when strong MR
models exist. When combined with LLG, TFZ scores as low as
3.5 are associated with positive results in the correctly placed
top cluster. High TFZ (greater than 7) indicates a good MR solu-
tion, but our findings show that a low TFZ can, in some cases, also
represent a usable MR solution. It is already well known that the
LLG scores for different template models are comparable for the
same set of reflection data, and this feature is used by Phaser
when presented simultaneously with multiple candidate models.
WS-MR greatly expands the number and efficiency of intermodel
comparisons by LLG that are possible, and thus, we hypothesized,
would improve the process of identifying good MR models.

We can further augment the sensitivity of the scoring function
by incorporating additional dimensions, such as rotation function
Z-score (Fig. S3A), domain length (Fig. S4), or domain class clus-
tering. Other measures such as R-factor improvement or contrast
as provided by Molrep (SI Text and Fig. S3B) (20) are less suitable
for cross-model comparison. For example we carried out Phenix
refinement protocols for several single domain MR solutions to
the MHC–TCR example. Only the best solution has an R-factor
that falls below 50.0, and for other cases R-free does not improve,
most likely because of the limited convergence of refinement with
partial model information.

3. Efficiency and Reliability of Molecular Replacement Computations
Executed on Grids. All computations in this project were carried
out on “opportunistic” resources of OSG. This required accessing
20–30 computing centers that participate in the OSG federation
and have allowed our scientific domain (structural biology) to
utilize the otherwise idle computing resources of their clusters.
To benefit fully from this national cyberinfrastructure, we estab-
lished a software and hardware environment that can manage and
support both general and specialized types of grid computations.
Unlike a desktop or cluster computing environment, where the
configuration of the system is fixed and well known, grid comput-
ing introduces complexities that require new approaches rather
than simple reconfiguration of existing programs. The dynamic
nature of grids with a high level of unpredictable faults, federa-
tion, geographic distribution, and system heterogeneity present
significant challenges. We have therefore developed unique stra-
tegies for the synchronization and flow of data and applications
at four grid levels: “static” (constantly available), “workflow” (a
related set of computations), “grid job” (a single instance of grid
resource utilization), and “atomic job” (the smallest computa-
tional unit that produces a distinct result as part of the workflow,
but may be too small to efficiently run as an independent grid job)
(Fig. 5). By tracking application and script versioning, and by
considering the permanence and relevance of data, we can reduce
the obstacles presented by network congestion andmultiple levels
of caching to maximally localize data and computations while
minimizing data movement. We have combined these efforts with
fault management techniques at the workflow, grid, and atomic
job level to detect unfavorable conditions for computation in ad-
vance of execution or to track failures post execution. In all cases,
the grid job manager can correct the situation and retry the com-
putations where possible. Our mechanisms for moving data and
initiating executions on remote systems have relied heavily on the
OSGVirtual Data Toolkit (21), Globus Toolkit (22), Condor (23),
and GridSite (24), with an underlying security layer provided by
X.509-based public-key cryptography and higher layer workflow

Fig. 4. WS-MR discovery of the insect analogue of mammalian AAAþ p97
structure from crystallized T. ni protein contaminant. (A) LLG vs. TFZ for
p97 WS-MR search. Green points correspond to domains from known struc-
ture of mouse p97 protein (SCOP SCCS class c.37.1.20), showing 9 domains
that form a distinct cluster, and 2 that are “buried.” Red points correspond
to all other SCOP domains that produced MR results (45,700 in total). (B) Fo −
Fc difference map calculated using p97 coordinates (PDB accession code
3CF2), with ADPmolecule omitted and contoured at 3 sigma level shows clear
density for the ADP. (C) Fo − Fc difference map calculated using the refined T.
ni model with a side chain of His 385 omitted and contoured at 3 sigma level
shows a clear density for Histidine side chain, and no density for the ADP.
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scheduling decisions managed through a combination of Condor
DAGMan (25) and the OSGMatchMaker, or GlideinWMS (26).
We have tuned these various systems to maximize correct sche-
duling and successful completion of computations (e.g., setting an
execution timeout suitable to capture all viable results; Fig. S5).
We can reach computing levels of over 50,000 CPU hours in a
single day, and concurrent execution in excess of 7,000 grid jobs
at dozens of computing centers. We have created a Web portal,
which acts as the hub and clearing house for these computations.
It enables secure access to create, run, analyze, visualize, and
share workflows and data.

Discussion
We have demonstrated that WS-MR is able to discriminate
strong molecular replacement template models with marginal
sequence identity and coverage, identifying top candidates for
subsequent density modification, model building, and refinement
steps. In rare cases templates comprising as little as 6% of the
scattering matter (27), or having sequence identity below 20%
(28), have been shown to produce correct MR placement results.
Validating or utilizing templates with such characteristics is
typically difficult. A routine evaluation of all marginal fragments
typically requires several cycles of model building and refine-
ment, can be time consuming, and it is not always clear if the
results are correct. Wide search comparison of several domains
based on multidimensional scoring metrics greatly accelerates the
validation process. Our results suggest that the limit of sequence
identity for successful WS-MR search is low enough to allow our
method to extend to models that would otherwise be missed by
methods that are based on sequence alignment for template se-
lection (29). Both remote homologues and structural analogs (30)
can be detected by WS-MR, with specific examples where models
with an identity of 11.6% and an RMSD under 3 Å can be
correctly placed and distinguished from negative results. We also
show that low completeness with structure coverage of as little as
12% can be sufficient for good WS-MR template models, how-
ever in these cases high sequence identity and structural similarity
for the covered area are required.

By using an approach in which no a priori knowledge or
primary sequence information is required for search model selec-
tion, we have expanded the probability of success for difficult
molecular replacement problems in X-ray crystal structure deter-
mination. Utilizing this system is straightforward, as the only

required input is the reflection data. Additionally, initial search
constraints (e.g., sequence, predicted secondary structure profile,
molecular weight, oligomerization state) can be provided to
optimize the search, or previously placed domains in the case of
subsequent domain searches for multidomain structures. The
output of WS-MR provides both graphical and tabular summary
representations of the results, allowing rapid identification of
the best candidate MR template models. The user would then
attempt to validate a few top scoring solutions using standard
approaches, such as packing analysis or interpretation of density
modified difference maps. If a particular solution looked plausi-
ble, a search for missing components of a given structure, or a
manual or automatic rebuilding process could be attempted.
To encourage rapid convergence to the best MR models (if they
exist), the WS-MR strategy can proceed iteratively, starting with
the most promising models based on the specified constraints, for
example using the top 100 sequence-similar models, and include a
small control set that is widely representative of known domains
(for contrasting expected negative results). If no promising mod-
els are returned from the initial constrained search, subsequent
iterations can relax the selection criteria to associated domain
classes, thus expanding the number of search models, eventually
considering all known domains. Although it is not possible to
predict whether a less-than-exhaustive WS-MR search is neces-
sary (if obvious models existed, conventional MR would suffice),
this iterative approach will avoid an exhaustive search if promis-
ing models are discovered from the constrained search set. The
WS-MR method is accessible and applicable to many crystallo-
graphic projects, as it allows the search of arbitrary structure da-
tabases, constructed dynamically from selection criteria or from
preexisting sets. The WS-MR approach becomes increasingly
powerful as more structures are determined and made publicly
available.

A benefit of the large result sets produced by WS-MR is the
ability to evaluate algorithmic improvements that should result in
better scoring and discrimination of search models, in particular a
reduction of false negatives. Our work on several WS-MR test
cases has provided unique insights leading to improved scoring
and model discrimination strategies. By using multiple scoring
metrics (such as LLG and TFZ) from the high quality maximum
likelihood algorithm in Phaser, it is possible to distinguish correct
solutions by cluster identification. In the case of weak (but still
valid) MR templates, we have shown that effective model discri-
mination is significantly aided by these additional metrics. Fig. S4
illustrates how the additional consideration of model size allows
for the clear identification of several correctly placed Ig domain
models for the MHC–TCR case that were not identifiable from
only the LLG and TFZ data. LLG led to the selection of several
correctly placed models in the EmoB case (Fig. 3A). Classifica-
tion (e.g., SCOP class) or MR placement clustering (similar
domains placed in the same orientation and location) can also
provide a mechanism to identify groups of viable MR models.
One important observation for the results of exhaustive WS-MR
is that small domains can lead to anomalously high TFZ scores
(greater than 10), due either to insufficient statistics or the ability
of very small fragments to match accurately to some region of a
large unknown structure. Nevertheless, these anomalous results
also benefit from the addition of LLG scoring, as they consis-
tently have LLG scores below 20 and can therefore be easily iden-
tified and discounted.

Without existing infrastructure, a transition to grid computing
requires a significant time investment and presents numerous
unexpected hurdles. The challenge in accessing and deploying
applications into a grid environment can be simplified for the
end user by the development of web-based portals, an approach
that has proved successful for many other grid environments [e.g.,
TeraGrid Science Gateways (31)]. The SBGrid Science Portal
(http://www.sbgrid.org) that we have developed will make the

Fig. 5. Process workflow, illustrating the inputs (search parameters and re-
flection data), the key grid components, and the division of computational
jobs with slices of the SCOP database. Results are aggregated, classified
and ranked, and then manually analyzed for further refinement or iterative
model building if appropriate.
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WS-MR technique described here widely available to the entire
community. Using OSG to perform WS-MR for the cases
described here, we typically accessed 2,000–5,000 computing
cores concurrently, thus completing what would otherwise have
required several years of computing within one day. Access to the
national cyberinfrastructure makes it possible for any individual
research group to develop novel computational workflows that
take advantage of large federated resources, in particular idle
cycles that would otherwise be wasted. Computers in a typical
scientific computing cluster spend around half their time lightly
utilized (less than 10% load), but even then they typically con-
sume more than 80% of the maximum power consumption at full
load (32). This presents a tremendous computational opportunity
with relatively minor cost overhead. With a transition to a new
resource access and scheduling mechanism, using GlideinWMS
(26), we have been able to execute up to 7,000 concurrent com-
putations using this pool of otherwise idle computers, well above
of what is currently available to a typical research group.

Arguably more important than the WS-MR technique itself
are the opportunities to reuse the framework that has been
developed for large scale data processing and computation.
We have started work on problems in NMR, electron microscopy
and in other areas of X-ray crystallography that use this founda-
tional infrastructure and the capacity provided by OSG. Any
scientific application that can run without active user interaction
can be deployed into a grid environment with a suitable workflow
management protocol for data staging, results aggregation, and
analysis. We have shown that it is not necessary to redesign ap-

plications and algorithms to benefit from these advances. Existing
applications can be used in new ways with statistical and data
visualization techniques applied to aggregate and filter orders
of magnitude higher data volumes than the application designers
intended, leading to new challenges for interpretation and dis-
covery.

Methods
The SCOP domains utilized for WS-MR were taken from the November 2007
(1.73) release (16, 33). Molecular replacement computations were performed
with Phaser (version 2.1.4), and Molrep (version 10.2.3). We used a modified
version of TM-Align (34) to perform structural alignment and combination of
TM-Align and Reforigin (CCP4, version 6.1.2) (35) to calculate placement qual-
ity and placement correctness. Scheduling of jobs to OSG sites was managed
through a combination of Condor DAGMan (25) and the OSG Match Maker.
Density modification and model building of the MHC–TCR and EmoB models
were performed in Phenix Autobuild (36) starting with Phaser Sigma(A)-type
weighted fourier maps (FWT/PHWT) (37) and amplitudes with standard de-
viations from the Protein Data Bank structure factor files. Detailed protocols
are described in SI Text.
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