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Introduction
Microtubules (MTs) are dynamic, polar polymers of -tubulin  
heterodimers. Their polymerization is driven by GTP and they 
are selectively stabilized or destabilized by MT-associated pro-
teins (MAPs) in different cell contexts (Desai and Mitchison, 
1997). However, the mechanisms by which MAPs stabilize 
MTs remain poorly understood because of the lack of detailed 
structural information. -tubulin heterodimers associate head 
to tail to form protofilaments (pfs) and laterally to form the  
cylindrical MT wall. In vivo, most MTs are built from 13 par-
allel pfs (Tilney et al., 1973). The dimers form a left-handed 
pseudo-helix, in which  lies next to  and  lies next to  
-tubulin. The geometry of this so-called B lattice necessi-
tates a single discontinuity called the seam, observed in vivo, 
where - and -tubulin lie next to each other and form A lattice 
contacts (Kikkawa et al., 1994; McIntosh et al., 2009). It has 
been proposed that some MAPs modify this canonical structure  

and thereby modulate MT dynamics in vivo (des Georges  
et al., 2008). Thus, detailed insight about MAP MT stabiliza-
tion is essential for a general understanding of MT dynamics  
and regulation.

Doublecortin (DCX) is the best-described member of a 
growing family of stabilizing MAPs, with multiple homologues 
identified in eukaryotes (Reiner et al., 2006). Family members 
are involved in cell division, migration, and differentiation. 
Their MT binding region is built from a tandem repeat of  
so-called DC (DoubleCortin-like) domains with no homology 
to other MAPs. Mutations in DCX, often in its N- and C-DC 
domains, cause severe neuronal migration disorders in humans 
(des Portes et al., 1998; Gleeson et al., 1998). DCX binds be-
tween pfs on the MT lattice, which likely contributes to its un-
usual ability to preferentially nucleate and stabilize homogenous 
populations of 13-pf MTs (Moores et al., 2004). This contrasts 

Microtubule-associated proteins (MAPs) are es-
sential for regulating and organizing cellular 
microtubules (MTs). However, our mechanistic 

understanding of MAP function is limited by a lack of de-
tailed structural information. Using cryo-electron micros-
copy and single particle algorithms, we solved the 8 Å 
structure of doublecortin (DCX)-stabilized MTs. Because 
of DCX’s unusual ability to specifically nucleate and sta-
bilize 13-protofilament MTs, our reconstruction provides 
unprecedented insight into the structure of MTs with an  

in vivo architecture, and in the absence of a stabilizing 
drug. DCX specifically recognizes the corner of four tubulin 
dimers, a binding mode ideally suited to stabilizing both 
lateral and longitudinal lattice contacts. A striking conse-
quence of this is that DCX does not bind the MT seam. DCX 
binding on the MT surface indirectly stabilizes conserved  
tubulin–tubulin lateral contacts in the MT lumen, operating 
independently of the nucleotide bound to tubulin. DCX’s 
exquisite binding selectivity uncovers important insights 
into regulation of cellular MTs.
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assembly visualized at 8 Å resolution
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it can stabilize both longitudinal and lateral interactions in the 
MT lattice (Fig. 1 A).

The specificity with which DCX binds to MTs was further 
revealed in our asymmetric reconstruction by the observation 
that DCX does not bind at the MT seam (Fig. 1 B). Thus, the 
geometry of a 13-pf B-lattice MT nucleated by DCX preserves 
the A lattice seam. It was suggested that the fission yeast EB1 
homologue, Mal3, binds specifically at MT seams (Sandblad  
et al., 2006). Our reconstruction will help to define more pre-
cisely how EB family members recognize an A lattice configu-
ration, and emphasizes that EB and DCX family members could 
bind MTs simultaneously.

Molecular mechanism of DCX  
MT stabilization
To gain further structural insight into the molecular mechanism 
of MT stabilization by DCX, we averaged together the B lattice 
contacts around the MT. This yielded an 8.2 Å resolution re-
construction of the DCX–tubulin interface in which secondary 
structures and several stable loops are clearly defined (Fig. 2,  
A and B; Fig. S2 A; and Video 1).

The density attributable to DCX at each binding site in 
our reconstruction represents only 1/4 of the protein, cor-
responding to a DC domain (also seen previously, Moores 
et al., 2004). The available atomic structure of a DC domain  
(N-DC, Leu46-Thr139) matches the visible DCX density in our 
reconstruction very well (Fig. 2, A and B; Kim et al., 2003). 
Our reconstruction also contains density for an extended chain 
of at least 5 aa upstream of the DC domain, running along  
the MT interdimer interface. We are unsure of the DC do-
main arrangement in our reconstruction, and it is possible that 
N-DC and C-DC of DCX bind at adjacent sites (ie 1:2 DCX/
tubulin dimer). The 38-aa linker between the DC domains, the 
length of which is well-conserved, is long enough for this to 
be feasible, and although we find no corresponding density in 
our reconstruction, it might be averaged away during process-
ing. Equivalent residues in N-DC and a homology-modeled 
C-DC that map to <5 Å from tubulin are compared in Fig. S2 C. 
Conversely, biochemical evidence suggests that MT binding 

with the heterogeneous MTs (typically 11–17 pfs) that are in  
in vitro preparations of tubulin alone (Chrétien et al., 1992).

To study the native structure of MAP-bound MTs, we 
exploited DCX’s selective polymerization and stabilization of 
13-pf MTs and used cryo-EM and single particle algorithms to 
generate reconstructions of DCX–MTs. Because DCX–MTs 
support kinesin motility (Moores et al., 2006), we also added 
a kinesin-1 motor domain to the DCX–MTs (DCX-K-MTs)  
to facilitate image analysis. Single particle approaches have 
proven very successful in studying kinesin bound to 13-pf MTs, 
and kinesin provides a clear landmark to define the DCX bind-
ing site (Sindelar and Downing, 2007, 2010). Our cryo-EM map 
at sub-nanometer resolution brings new insights into the precise 
structural mechanism by which DCX binds to the B lattice and 
specifically stabilizes 13-pf MTs. Importantly, our work reveals 
the structure of MTs bound and stabilized exclusively by cel-
lular ligands.

Results and discussion
DCX stabilizes lateral and longitudinal  
B lattice contacts between four  
tubulin dimers but does not bind the  
A lattice seam
Our previous low-resolution reconstruction of DCX-bound  
paclitaxel-stabilized MTs was calculated using B lattice heli-
cal parameters (Moores et al., 2004). We verified that our 13-pf 
DCX-nucleated MTs were also built from a B lattice using cryo-
electron tomography (Fig. S1); we collected low-dose images 
of DCX-K-MTs, and calculated an asymmetric reconstruction 
of the complex (Figs. 1 A and S1 C). This structure shows that 
density corresponding to DCX is wedged in the inter-pf valleys,  
with a spacing of 8 nm along the MT axis, as seen previously  
(Moores et al., 2004). Thus, despite the experimental differ-
ences, the DCX binding sites in both structures are the same.  
In addition, the presence of kinesin in our current reconstruc-
tion, with its known binding site on the -tubulin dimer (Sindelar 
and Downing, 2007, 2010), enabled us to unambiguously locate 
the DCX binding site at the corner of four tubulin dimers, where 

Figure 1.  DCX stabilizes lateral and longitudinal B lattice contacts between four tubulin dimers but does not bind the MT seam. (A) 13.5 Å reconstruction of 
DCX–MTs decorated with a kinesin-1 motor domain, low-pass filtered with a 13 Å cut-off, and thresholded at 3 (Fig. S1). The reconstruction is displayed, 
with the MT +end oriented up. Each kinesin motor domain (red, K) binds one -tubulin heterodimer (sky blue). DCX (yellow) binds at the corner between 
four tubulin dimers making B lattice contacts. (B) The same structure rotated 180°, revealing the seam of DCX–MTs (arrow). Density for DCX is found in the 
B lattice inter-pf valleys all around the 13-pf MT map (up to a density threshold of 5), but is absent at the seam where pfs make A lattice contacts.

http://www.jcb.org/cgi/content/full/jcb.201007081/DC1
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Figure 2.  The molecular basis of DCX selective stabilization of B-lattice 13-pf MTs. (A) Front view and schematic of the 8.2 Å resolution cryo-EM map of 
DCX–MTs fitted with structures of -tubulin and -tubulin (map, violet surface; 1JFF.pdb,  in blue,  in cyan ribbons; Löwe et al., 2001) and the solution 
structure of the N-DC domain of DCX (map, yellow surface; 1MJD.pdb, model 11, residues 46–140, orange; Kim et al., 2003). See also Fig. S2 and 
Video 1. The four dimers forming the DCX binding site are labeled 1–4. Tubulin helices 1-H10, 2-H4,H12, 3-H3,H11,H12, and tubulin strand 2-S7 
are labeled, as are the aa numbers of the boundaries of N-DC and 1 and 4 C termini. (B) View from inside toward the outside of the MT, illustrating the 
quality of the fit of N-DC in the density. (C) Front view of tubulin aa <5 Å away from DCX displayed as a molecular surface colored by heteroatom in which 
four major binding patches can be identified. (D) Sections of a sequence alignment of the main isoforms of bovine tubulin used in our structure (1JFF-A and 
1JFF-B), and of other human tubulin isoforms (TUBA1A, GenBank/EMBL/DDBJ accession no. 7846; TUBA3D, accession no. 113457; TUBB2B, accession 
no. 347733; TUBB3, accession no. 10381). DCX contacts are boxed in red. -tubulins are highlighted in blue and -tubulins in cyan; sequence identities 
are highlighted in black; secondary structures of 1JFF-A are depicted below. (E and F) Location of side chains of surface residues whose mutations cause 
neuronal migration disorders: S47R, Y64N, R76S, R78H/L, D86H, R89G, R102S in N-DC of DCX (orange text); P263T and R264C in TUBA1A, a human 
-tubulin isoform (blue text).

http://www.jcb.org/cgi/content/full/jcb.201007081/DC1
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Figure 3.  Structural basis of MAP stabilization of the MT lattice. (A and B) View of the inside surface of the 8.2 Å cryo-EM map (violet surface) of  
B-lattice contacts between four dimers in DCX–MTs. The paclitaxel binding pocket in -tubulin is empty (dotted circle; Fig. S3 A), whereas the equivalent 
area in -tubulin is occupied by loop S9-S10 (density labeled with an asterisk; Fig. S3 A). The structures of - and -tubulin from zinc-induced sheets are 
fitted in the map (1JFF.pdb,  in blue and  in cyan). However, for -tubulin, the N and M loops from a tubulin–stathmin complex match the reconstruction 
better (3HKE.pdb, pink; Dorléans et al., 2009). Arrows in A indicate equivalent H10-H7 contacts at the intradimer interfaces. (C) The reconstruction is well  
defined around the nucleotide (ball and stick) bound to -tubulin, particularly loop T7. There is continuous density between 1-H10 and 4-H7 at the interdimer 

http://www.jcb.org/cgi/content/full/jcb.201007081/DC1
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saturates at 1:1 DCX/tubulin dimer (Moores et al., 2006), 
which supports the idea that 3/4 of the DCX molecule  
(a DC domain, Ser-Pro rich C terminus, and connecting linkers) 
in our reconstruction is flexible and thus not visible. This 
would also be consistent with DCX’s ability to bundle MTs 
(Kim et al., 2003). However, these binding modes for DCX 
are not mutually exclusive and more data are needed to probe 
this question.

The atomic coordinates of the tubulin dimer calculated 
from zinc-induced 2D sheets (1JFF) fit very well into our struc-
ture (Fig. 2 A; Löwe et al., 2001). All the -helices have match-
ing tubes of density both on the MT surface (e.g., H11 and H12; 
Fig. 2 A) and in the MT lumen (e.g., H6 and H7; Fig. 3 A and 
Video 1). In addition, density corresponding to the -sheets and 
many of the loops are very clear. Mapping of residues <5 Å 
from DCX enabled us to identify the major binding contact on 
each of the four tubulin monomers (Fig. 2 and S2 C). Contacts 
1 (H10-S9 loop) and 2 (H4-S5 loop) on adjacent -tubulins  
(11 and 22) are conserved in and specific for -tubulins 
(Fig. 2 D), and the overall surface charge is different between  
 and  at these sites (Fig. S2 C). In contrast, contacts 3 (H11-H12  
loop) and 4 (H9-S8 loop) on -tubulins on the dimers below 
(33 and 44) are conserved between  and , as is the 2-
H8-S7 loop, where the N-terminal extension of the DC domain 
binds. The precision with which DCX makes these contacts 
with tubulin further reinforces the selectivity of DCX for a  
B lattice architecture and explains why DCX cannot bind to the 
seam (Fig. S2 B).

Mutations in DCX and 1a-, 8-, and 2B-tubulin cause 
different forms of neuronal migration disorders in humans 
(des Portes et al., 1998; Gleeson et al., 1998; Keays et al., 
2007; Jaglin et al., 2009), and mutations in 3-tubulin have 
been associated with axonal growth defects (Tischfield et al., 
2010). Several disease-causing mutations fall precisely at the 
four DCX–tubulin contacts, which suggests that these dis-
eases arise because of disruption of their interaction (Fig. 2,  
E and F). In tubulin, Pro263 and Arg264 are in the H8-S7 loop 
of 2-tubulin (contact 3 extension; Fig. 2 A), and mutations of 
both these residues in the human isoform TUBA1A cause lis-
sencephaly (Fig. 2, E and F; Keays et al., 2007; Poirier et al., 
2007). Strikingly, DCX Ser47 (<5 Å from -tubulin Arg264) is 
also mutated in patients with lissencephaly and is likely to be a 
site of phospho-regulation (Gleeson et al., 1998; Schaar et al., 
2004). In DCX contact 1, the N-DC lissencephaly-linked mu-
tation Arg78His is close to tubulin (Fig. 2, E and F), whereas 
the equivalent residue in C-DC is itself a histidine (His205; 
Fig. S2 C). In addition, the overall charge distribution at the 
four DCX–tubulin contacts suggests that N-DC matches the 
tubulin surface better than C-DC. However, the involvement 
of C-DC in MT binding (Kim et al., 2003) suggests that ad-
ditional work is needed to precisely address the roles of each 
DC domain.

Tubulin–tubulin contacts in the MT lumen
Although no DCX density penetrates to the MT lumen, extensive 
lateral contacts are present at low radius between pairs of - and  
-tubulins, each centered 30 Å from the DCX density (Fig. 3 A). 
DCX contact 1 is located at the C terminus of 1-H10, which 
runs through the MT wall, with its N terminus emerging in the 
MT lumen (Fig. 2, C and D). Here, in our reconstruction, density 
for 1-H10 at the interdimer interface is continuous with 4-H7 
(Fig. 3 A). The piston-like movement of H7 in tubulin, coupled 
to displacement of the preceding H6-H7 loop, has been shown to 
mediate curved-to-straight transitions and is thought to be sensi-
tive to the nucleotide bound to -tubulin (Ravelli et al., 2004). 
4-H7 is clearly in a straight conformation in our reconstruction 
(Video 1), and docking of the curved tubulin conformation results 
in clashes between 1-H10 and the 4-H6-H7 loop (Fig. S3 B). 
Crucially, and as previously observed, the straight conformation 
of tubulin facilitates stabilization of the inter-pf contacts that  
define the MT polymer (Li et al., 2002; Ravelli et al., 2004). 
Accordingly, in our reconstruction, the 4 microtubule loop  
(M loop; aa 272–287) reaches across to the adjacent pf, to the  
3-H2-S3 loop (aa 81–91) and 3-N loop (aa 28–64). 3-H3 binds 
against these lateral contact loops and also contacts 3-H11-H12. 
Together, these form the external contact 3 for DCX, emphasiz-
ing the cooperative network of interactions in the straight tubulin 
conformation that is stabilized by DCX (Fig. 2 A).

Lateral contacts between 1- and 2-tubulin are also visible 
(Fig. 3, A and B). In the Zn sheet structure, N loop residues 35–60 
are absent and the M loop (aa 272–287) is artificially stabilized 
by a Zn2+ ion (Löwe et al., 2001); thus, they do not match the lat-
eral - loops in our reconstruction as well as is seen for - 
(Fig. 3, A and B). Instead, we docked these loops from a tubulin-
stathmin structure, which does fit our structure remarkably well 
(pink loops, Fig. 3, A and B; Dorléans et al., 2009). In the tubulin-
stathmin structure, the N loop is more resolved, apart from aa 
38–46, which was also not visible in our MT structure, and the  
M loop forms an arch that clearly fits our density (Fig. 3, A and B).

The 1-M loop reaches across to the adjacent pf to the 
2-H2-S3 and 2-N-loop, forming very similar lateral contacts 
to those seen between 4 and 3. Although - and -tubulin 
share 40% sequence identity and a nearly identical fold, the se-
quences of the M and N loop are particularly divergent between 
 and  subunits. The observation that - and - lateral 
contacts are structurally similar is thus noteworthy, and consis-
tent with what has been observed in paclitaxel-stabilized MTs, 
both in the presence and absence of kinesin (Bodey et al., 2009;  
Sindelar and Downing, 2010; Sui and Downing, 2010). How-
ever, density corresponding to the -tubulin–specific insertion in 
loop 1-S9-S10 (residues 361–368; Fig. 3 A, asterisk) appears 
to collaborate with the 1-M loop region in providing additional 
stabilization for these lateral contacts, and in so doing, blocks 
the pocket on the -tubulin equivalent to the -tubulin paclitaxel-
binding site (Figs. 3 A and S3 A). 1-H7 also adopts a straight 

interface (also see Video 1), which is consistent with the straight conformation of 4-tubulin but is incompatible with a curved conformation (Fig. S3 B).  
(D and E) In the asymmetric reconstruction, these lateral contacts are present at both the B lattice (D) and A lattice (E) contacts, despite the absence of DCX 
on the outer surface of the seam (arrow).
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MAPs like DCX to maintain a constant architecture along MTs, 
an activity that might be particularly important in long neuronal 
processes devoid of -tubulin (Baas and Joshi, 1992). DCX is 
essential for neuronal migration and differentiation during devel-
opment, and although its exact role is unknown, it is enriched 
in neuronal processes (Moores et al., 2006; Bielas et al., 2007).  
It is tempting to speculate that binding by DCX to the corner 
of four tubulin dimers could represent a minimal oligomer for 
DCX-induced MT nucleation. With both longitudinal and lateral 
contacts being stabilized, DCX could act as an on switch for nu-
cleation independently of the bound nucleotide. The importance 
of noncentrosomal sites of MT nucleation is increasingly being 
highlighted, particularly in the extended processes of neurons 
(Stiess et al., 2010). The molecular properties of DCX suggest 
that it could play an important role in regulation of MT dynamics, 
nucleation, and architecture in these regions of the cell.

The specific effect of DCX on MTs highlights the impor-
tance of MT architecture, the in vivo significance of which is un-
clear. A distinctive property of 13-pf MTs is their straight pfs, 
and, although difficult to test, it is expected that such a pf trajec-
tory is optimized for cellular function. Non–13-pf architectures 
are also very precisely defined in a variety of systems (e.g., Chalfie 
and Thomson, 1982), and although the functional significance of 
the architecture of these MTs is poorly understood, it will be fas-
cinating to discover if there are molecular equivalents of DCX 
that can specify alternative MT architectures.

Materials and methods
Sample preparation
Human DCX (1–366) was expressed in Spodoptera frugiperda Sf9 cells 
and purified as described previously (Moores et al., 2004). DCX–MTs were 
polymerized by incubating 10 µM of bovine brain tubulin (Cytoskeleton, Inc.) 
and 10 µM DCX in 80 mM Pipes, pH 6.8, 1 mM EGTA, 3 mM MgCl2,  
1 mM TCEP, and 0.5 mM GTP for 1 h at 37°C. DCX–MTs were diluted 1:1 
in BRB20 (20 mM Pipes, pH 6.8, 1 mM EGTA, and 1 mM MgCl2) and  
2 mM TCEP, and adsorbed to glow-discharged copper grids with lacey car-
bon film (Agar). Grids were washed with 30 µM DCX and 5 µM monomeric 
rat kinesin (aa 1–340, P-loop mutant T93N-K340T93N, a generous gift from 
R. Cross and M. Alonso, University of Warwick, Coventry, England, UK) in 
BRB20 and 2 mM TCEP, and immediately transferred into a Vitrobot (FEI 
Company) at 37°C and 100% humidity, blotted for 2 s, and vitrified.

Cryo-EM data collection and image processing
Low-dose images were collected on a microscope (Tecnai F20 FEG; FEI 
Company) operating at 200 kV, 50,000×, and 0.8–2.9 µm defocus.  
Micrographs were recorded on films (SO-163; Kodak) and digitized 
(SCAI scanner; Carl Zeiss, Inc.) to a final sampling of 1.4 Å/pixel.  
63 films containing 172 MTs (186,000 tubulin dimers) were selected. 3D 
reconstructions were generated using a previously described custom single 
particle procedure (Sindelar and Downing, 2007, 2010). For each MT, 
the orientation of the seam was determined by projection matching using 
a B lattice 13-pf MT decorated with kinesin-1 motor domain, lacking DCX, 
as the reference. Two rounds of reference alignment and reconstruction 
using custom SPIDER scripts and five refinement rounds using FREALIGN 
(Grigorieff, 2007) were performed. 168,000 tubulin dimers (90% of the 
data) went into the final reconstruction. 3D reconstruction yielded an asym-
metric map with a resolution of 13.5 Å according to the Fourier shell cor-
relation (FSC) 0.5 criterion (Fig. S1 C) calculated from half-dataset models 
(van Heel, 1987). Subsequently, the 12 B lattice contacts around the MT 
were averaged during 3D reconstruction. The resolution was determined 
by two methods: 8.2 Å from the FSC between the half dataset (Fig. S2 A), 
and 8.3 Å from Rmeasure (Sousa and Grigorieff, 2007). This map was 
sharpened using a band-pass filter (8–20 Å). The asymmetric map and the 
8.2 Å map were deposited in the EMDB with accession nos. 1787 and 
1788, respectively.

conformation, and in structural parallel to the contacts observed 
at the interdimer interface, forms continuous density with  
1-H10 in the same dimer (Fig. 3 A, arrows), further reinforcing 
its straight conformation.

The symmetry-breaking A lattice seam is built from mis-
matches of these lateral contacts, - with -tubulin and - with 
-tubulin. The roles of these seams have been the subject of much 
speculation, and some evidence has suggested that they are the 
weakest point in in vitro polymerized MTs (Sandblad et al., 2006). 
One hypothesis is that the seam must be specifically stabilized for 
effective MT polymerization. However our DCX–MT structure, 
where DCX density is absent at the seam, suggests instead an in
direct mechanism of stabilization. At the resolution of our 13.5 Å 
asymmetric reconstruction, the heterotypic lateral contacts at the 
seam appear as well-defined and stabilized as the rest of the MT 
lattice (Fig. 3, D and E), which is in agreement with recent mod-
eling experiments (Sui and Downing, 2010).

Our structure reveals that the lateral contacts formed in 
DCX-stabilized MTs are very similar to those seen in paclitaxel-
stabilized MTs, underlining the fundamental nature of these con-
tacts for MT formation and stabilization (Sindelar and Downing, 
2010; Sui and Downing, 2010). Remarkably, this is despite the 
fact that DCX acts at a distance on the outer MT surface, whereas 
paclitaxel directly contacts the -tubulin lateral loops. Paclitaxel  
is a promiscuous stabilizer of tubulin polymers and can stabilize  
MTs built from a variety of pf numbers as well as the anti
parallel pfs of Zn-induced sheets (Nogales et al., 1998; Sui and 
Downing, 2010). The triangular paclitaxel binding site formed by 
-H7, H6, H1, and M loop is visible in our structure (Fig. 3, 
A, D, and E; and Fig. S3 A). The existence of this binding site 
in the absence of drugs suggests that paclitaxel-like compounds 
recognize and stabilize the native configuration of -H7, H6, 
and M loop in polymerized tubulin, presumably with either  
A or B lattice architectures.

DCX binds at the interdimer longitudinal junction between 
- and -tubulin, which forms the exchangeable GTP site (Fig. 3 C;  
Nogales et al., 1998). We previously showed that DCX overrides 
the nucleotide dependence of MT polymerization and architec-
ture, inducing GTP-, GDP-, and GMPCPP-tubulin, to form 13-pf 
MTs (Moores et al., 2006). GTP is hydrolyzed in DCX–MTs 
(Fig. S3 C) but our data also show that DCX–MTs can accommo
date a range of tubulin dimer lengths, which is characteristic of  
the bound nucleotide (Fig. S3 D; Vale et al., 1994; Hyman et al., 
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Atomic model building
UCSF Chimera (Pettersen et al., 2004) was used for visualization of 3D mod-
els and rigid-body fitting of atomic structures in the cryo-EM volumes. Crystal 
structures of - and -tubulin (1JFF.pdb, Löwe et al., 2001; 3HKE.pdb, Dorléans 
et al., 2009) were fitted separately. The quality of the fit was assessed by 
cross-correlation between our structure and simulated 8 Å maps for each PDB: 
1JFF -tubulin gave the best score of 0.651 in our -tubulin density (3HKE 
-tubulin chain B gave 0.599); -tubulin from 1JFF and 3HKE chain A scored 
similarly, 0.605 and 0.607, against 0.614 for a chimeric structure (3HKE 
chain A residues 31–61, 69–92, and 275–298 substituted to corresponding 
ones in 1JFF chain A). The DCX–MT atomic model was refined by multiple-
subunit fitting in Flex-EM (Topf et al., 2008) with four tubulin subunits and the 
N-DC domain of DCX (1MJD.pdb, model 11, residues 46–140). The best 
multiple-subunit fit had a cross-correlation value of 0.819. The atomic model 
was deposited in the Protein Data Bank (accession no. 2XRP).

Tubulin GTPase assay
Mixtures of proteins and nucleotides were prepared in polymerization  
buffer, on ice, in a final volume of 10 µl. Where present, tubulin and DCX 
were at 20 µM and 30 µM final concentrations, respectively. MgGTP was 
present at 0.5 mM along with 500,000 dpm [8-3H]GTP (GE Healthcare) 
per reaction. After incubating at 0°C or 37°C for 30 min, the reactions 
were stopped by returning the mixtures to ice. To ensure linearity, no more 
than 5% of the GTP was hydrolyzed. Excess carrier GDP and GTP was 
added in 1 µl to give 0.5 mM final concentration each, and protein was 
then precipitated with 11 µl of ice-cold formamide. Precipitated protein 
was removed by centrifugation, the supernatant was recovered, and the 
volume was reduced under vacuum. Final samples were spotted onto PEI-
cellulose TLC plates, which were then dried under vacuum and developed 
in 1.5 M LiCl. After drying and marking the positions of the authentic nucleo-
tides under UV illumination, the radioactivity in GTP and GDP was mea-
sured by phosphorimaging.

Dimer axial repeat measurements
DCX–MTs were polymerized in the presence of GTP, GDP, or GMPCPP 
(Jena Biosciences), then supplemented by an excess of DCX (30 µM), vitri-
fied, and imaged at 68,000× on a 4,000 × 4,000 charge-coupled device 
(Gatan, Inc.) calibrated using tobacco mosaic virus. The dimer axial repeat 
was derived from the height of the 8-nm layer line in power spectra com-
puted using PHOELIX (Whittaker et al., 1995).

Online supplemental material
Fig. S1 shows data that DCX–MTs have a B lattice 13-pf architecture and 
the FSC of the asymmetric map. Fig. S2 shows the FSC of the symme-
trized structure and defines the specificity of the DCX–MT interface. Fig. S3 
provides further analysis of MT stabilization by DCX. Video 1 shows the 
DCX–MT interface. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201007081/DC1.
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