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The classification of protein folds is necessarily based on
the structural elements that distinguish domains.
Classification of protein domains consists of two pro-
blems: the partition of structures into domains and the
classification of domains into sets of similar structures (or
folds). Although similar topologies may arise by conver-
gent evolution, the similarity of their respective folding
pathways is unknown. The discovery and the characteriz-
ation of the majority of protein folds will be followed by a
similar enumeration of available protein folding path-
ways. Consequently, understanding the intricacies of
structural domains is necessary to understanding their
collective folding pathways. We review the current state
of the art in the field of protein domain classification and
discuss methods for the systematic and comprehensive
study of protein folding across protein fold space via ato-
mistic molecular dynamics simulation. Finally, we discuss
our large-scale Dynameomics project, which includes
simulations of representatives of all autonomous protein
folds.
Keywords: protein folds/protein folding/structural
classification/molecular dynamics simulations

Introduction

Protein structure is inherently hierarchical. Proteins have
steric constraints due to the chemistry of their amino acids.
Secondary structure in proteins is formed due to the
hydrogen-bonding properties of the peptide backbone, the
interaction of the side-chain atoms with the backbone and
the chiral nature of amino acids. Secondary structure can be
identified from both the backbone torsion angles (F and C)
and the hydrogen-bonding patterns observed between carbo-
nyl and amide groups in the peptide backbone. Secondary
structure (generally a-helices and b-sheets) can be built up
into small repeating patterns in protein structures; these can
be called ‘motifs’ or ‘supersecondary structure’ (Levitt and
Chothia, 1976). Motifs are important in describing protein
structure because they can be repeated within many struc-
tures (Fig. 1).

Protein motifs assemble into larger subunits of structure
called ‘domains’. Although some proteins contain only a

single domain, it is often the case that proteins are composed
of multiple domains. The definition of a domain can depend
on multiple criteria and is not necessarily convergent.
Independent of (but not necessarily distinct from) structural
considerations, domains are often defined as a unit of con-
served sequence (Marchler-Bauer et al., 2007; Finn et al.,
2008). Domains can be defined as a unit of conserved func-
tional behavior (e.g. a serine protease). A domain can be
described as the smallest structural unit, without necessarily
taking the compactness or potential stability of that unit into
account. Finally, we prefer to think of domains as the smal-
lest cooperatively folding unit within a protein structure, or
as autonomous folded structures.

Classification of protein structures into domains and folds
Proteins can share similarity, in both sequence and/or struc-
ture. Although the methodologies for comparison and quanti-
fication of sequence similarity are generally agreed upon, the
conventions for quantifying and classifying structural simi-
larity are still up for debate (Sippl, 2009; Sadowski and
Taylor, 2010). To classify and compare a new protein struc-
ture with existing examples, two difficult problems must be
addressed: (i) identification and partitioning of multiple
domains in a protein structure and (ii) comparison of those
domains with existing characterized domains. The clustering
of those comparisons into discrete similar groups of struc-
tures (or ‘folds’) is complicated by the possibility of regions
of significant structural similarity in a conserved core border-
ing non-conserved regions with little in common (Fig. 2).
Different empirical approaches to these two problems result
in different classification systems (or ‘domain dictionaries’);
some of which are more suited to the study of protein
folding than others.

Levitt and Chothia (1976) performed the first classification
of protein structures into folds. Although based solely on the
31 known protein structures, they made several interesting
observations that have persisted over time and growth of the
Protein Data Bank (PDB): protein structures partition into
four distinct classes, proteins contain repeating motifs, and
there is a preference for ‘handedness’ in motifs. The original
classification relied primarily on the topological arrangement
of secondary structure elements. Later classifications would
focus more closely on the precise geometric arrangement of
these elements. Notably absent was the consideration of
specific angles of interaction between secondary structure
elements. For example, this consideration is an important
factor in distinguishing between orthogonal and parallel
helical bundles.

The structural patterns described by Levitt and Chothia
were incorporated into the development of the first publicly
accessible and consistently updated domain dictionary,
SCOP (Structural Classification of Proteins) (Murzin et al.,
1995). The initial versions of SCOP relied heavily on the
visual inspection of structures to identify domains and to
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group domains together into folds and superfamilies in the
SCOP hierarchy. The SCOP hierarchy has four levels: the
family, wherein proteins are clustered together primarily on
the basis of sequence identity (.30%) and/or functional
similarity; the superfamily, wherein families with low
sequence identity but similar functions and structural features
suggest a common origin; and the fold, wherein families and
superfamilies with conserved core topological arrangement
are grouped. SCOP folds are also grouped by secondary
structure class: all-a, all-b, a/b (where helices and sheets
are mingled) and a þ b (where helices and sheets are separ-
ate). The rapid increase in the rate of structure determination
prompted changes to the update methodology of SCOP
between versions 1.63 and 1.73 (Andreeva et al., 2008). The
large populations of some superfamilies resulted in some
component families that did not necessarily possess any
given level of sequence similarity despite their structural
similarity. Also, given the dependence on functional classifi-
cation for the superfamily level, proteins determined by

structural genomics initiatives that were functionally unchar-
acterized could only receive a provisional classification.
Finally, the rate of structural determination required an intro-
duction of an automatic PSI-BLAST protocol for screening
of new structures. Following release v1.71, complete classifi-
cation of all known PDB structures could no longer be guar-
anteed, so priority was assigned to potentially novel fold
representatives. The intensive nature of expert curation led to
the development of other approaches to domain classification
and fold assignment.

The development and release of CATH (Class,
Architecture, Topology, Homologous superfamily) was a
response to this ever-increasing rate of structure determi-
nation (Orengo et al., 1997). Specifically, CATH includes
automatic sequence and structure comparisons, and auto-
matic domain detection within its classification process. The
domain-partitioning algorithm in CATH underwent several
revisions (Greene et al., 2007). The structural comparison
algorithm used in the initial releases of CATH, Sequential
Structure Alignment Program (SSAP), was later augmented
by a graph-based prescreening method, GRATH (Orengo
et al., 1996; Pearl et al., 2001). The hierarchal levels in
CATH are as follows; the class, where proteins are grouped
by their secondary structure content (the distinction between
a þ b and a/b is not made at the class level in CATH); the
architecture, where proteins are grouped by their secondary
structure arrangement, regardless of chain connectivity; the
topology, where proteins are grouped by their architecture
and chain connectivity; and the homologous superfamily,
where proteins are grouped by possessing .35% sequence
identity. Functional considerations are not an explicit com-
ponent of the CATH classification. Also, domains in CATH
are not required to be continuous in sequence. The architec-
ture levels are derived by manual inspection of domains and
reflect the arrangement and number of secondary structure
elements regardless of chain connectivity.

When applied to known protein structures, the classifi-
cation system in CATH describes a ‘fold space’ that is
unevenly populated. A small number of topologies in CATH
contain a disproportionately large number of domains. These
highly populated topologies are referred to as ‘superfolds’.
Additionally, multiple architecture levels are disproportio-
nately populated, these are referred to as ‘superarchitectures’
(Orengo et al., 1994). While the cause of this population bias
may be biological in origin, it is difficult to disentangle from
potential bias in targeting proteins for structural determi-
nation (or the ease with which some folds crystallize).
Buchan et al. (2002) have suggested that the overpopulation
of these fold families is related to their ability to evolve and
adapt new structure and function. Where architectures are
highly populated, structural similarity can exist that leads to
structural continuity across multiple topologies. This continu-
ity of similarity across multiple topologies has been used as
evidence for continuity within some regions of fold space
and as an example of the difficulties of representing fold
space as discrete folds (Kolodny et al., 2006).

An approach to domain classification that reduces or
removes manual inspection is desirable both due to the rate
of structure determination and the potential inconsistencies
introduced by expert curation. Version 3.1b of the Dali
Domain Dictionary relied on the hierarchal clustering of
domains compared by the DALI structural alignment method

Fig. 2 Structurally similar domains and their structural elements. Some
structurally similar proteins contain nearly identical secondary structure
elements in similar orientations. Hemoglobin, chain A (PDB:2MHB, chain
A) and myoglobin (1A6N) are two such members of the globin fold.
Chemotaxis protein Y (PDB:3CHY), Histamine N-methyltransferase
(PDB:2AOT) and Catechol O-methyltransferase (1VID) have a conserved
structural core surrounded by some non-conserved regions.

Fig. 1 Structural elements from Pit-1 homeodomain (PDB:1AU7) and Src
(PDB:1FMK). Motifs are made up of secondary structure elements but do
not necessarily make up a hydrophobic core. Domains are the smallest
self-contained unit within a structure. Structures may be made up of
multiple domains, sometimes with repeats of the same domain.
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coupled with a feature vector that contained enzymatic, func-
tional, and keyword annotation for each domain (Holm and
Sander, 1999; Dietmann et al., 2001). Domains were ident-
ified from structures using ‘compactness’ and recurrence cri-
teria (Holm and Sander, 1998a). Folds were assigned by
hierarchal clustering of the DALI Z-scores from an all versus
all structural alignment of domains and using empirical simi-
larity thresholds such that the resulting dendrogram was dis-
cretized into clusters with shared topologies. The DALI
structural alignment program relied on the identification of a
set of substructures (usually secondary structure elements)
shared between two structures and then optimization of the
alignment of the substructures’ Ca–Ca distance matrices
(Holm and Sander, 1996). A neural network optimization
used a vector of functional annotations to distinguish homol-
ogues from analogues within a fold and to derive ‘superfami-
lies’ (Dietmann and Holm, 2001). Ultimately, although the
Dali Domain Dictionary was fully automated, it was ham-
pered by the computational power required to perform all
versus all comparisons at the current rate of structure release
(Hasegawa and Holm, 2009).

Problems with domain classifications. The manual inspec-
tion used by SCOP and CATH during the chain partition and
domain classification process allows for powerful structural
and biological insights to be built into these dictionaries; it
also potentially allows unintended consequences from these
choices to arise within the classification system. Since both
hierarchies rely on the abstraction of topology and/or func-
tional considerations, the structural similarity of domains
within families and superfamilies can be lower than
expected. This problem can be exaggerated when sequence
alignment becomes a component for the automatic assign-
ment of domains to homologues (Greene et al., 2007;
Andreeva et al., 2008). Although high-sequence identity
often implies high structural similarity, at the borders of
folds, there is sufficient overlap that unexpected structural
diversity can accumulate (Reeves et al., 2006; Cuff et al.,
2009a) (Fig. 3). The ‘bottom-up’ approach of structural com-
parison relies on purely geometric metrics of structure com-
parison as a means of avoiding overlapping regions that arise
from the assumption that high sequence identity implies
structural similarity (Valas et al., 2009). However, domain
classification that relies purely on structural comparison
algorithms is often blind to potentially useful distant biologi-
cal relationships and determined by an arbitrary threshold of
structural significance (Adam, 1996). An exhaustive review
of current structural alignment algorithms has recently been
published (Hasegawa and Holm, 2009). Any discrete domain
classification system needs to account for the presence of
observable intermediate forms between certain distinct struc-
tural topologies. The difficult choice is whether to split inter-
mediate forms into a separate fold or to merge them into one
of the structurally similar but still distinct folds.

Fold classification is dependent on the prior problem of
partitioning multi-domain chains. Results of domain-
partitioning algorithms and domains partitioned by expert
curation have been compared both with each other and with
domain boundaries generated by the crystallographers for the
structure in question (Islam et al., 1995). In an exhaustive
study by Holland et al. (2006), each domain’s partitioning
method was analyzed with respect to: (i) the distribution of

single and multiple domain chains, (ii) the ratio of continu-
ous to discontinuous domains, (iii) the distribution of domain
sizes and (iv) the distribution of fragment sizes in discontinu-
ous domains. Although domain classification methods tend
to agree on boundaries in general, they vary on their ten-
dency to partition chains into multiple domains; both with
respect to the number of domains they partition into and
whether those domains are continuous or discontinuous. The
domain boundaries of SCOP and CATH show the best agree-
ment with the crystallographers’ annotations and DALI the
least. Owing to the larger proportion of bona fide single-
domain chains in most structure test sets, domain assignment
methods can disagree on the assignment of boundaries in
multi-domain chains and still agree on a majority of domains
by correctly identifying single-domain chains. Religa et al.
(2007) have even found that engrailed homeodomain (EnHD)
can be truncated into a stable HTH motif similar to the
folding intermediate of the full structure, suggesting that
even in minimal single-domain proteins, the boundary of
folding domains may be more complex than expected.
Furthermore, as structures become more complex, domain
classifications diverge and agreement drops (Fig. 3).

SCOP tends to leave large structures uncut, identifying the
largest recurrent subunit rather than the smallest independent
subunit, which is correlated with less discontinuous domains
resulting from domain crossover. The presence of discontinu-
ous domains and the consequent presence of domain cross-
over (where another domain is inserted into the region
between two fragments of a discontinuous domain) have
troubling implications for the definition of a domain as an
independent folding unit. CATH, on the other hand, agrees
more closely with algorithmic domain assignment methods
(such as DALI) while maintaining agreement with SCOP on
many smaller domains. DALI tends to partition chains into
multiple domains, most often by emphasizing compact

Fig. 3 Domains of guanylate kinase (CATH: 1KGDA01) and translocation
ATPase (CATH:1NGDA01), two structurally diverse domains from the
CATH v1.73 superfamily 3.40.50.300, the P-loop nucleotide hydrolases.
Adapted from Cuff et al. (2009a).
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domains, and is the most likely to create discontinuous
domains (Fig. 4). The primary conclusions of Veretnik et al.
(2004) were that domain partitioning methods tend to dis-
agree on: (i) the definition of very small domains; (ii) split-
ting secondary structures between domains; (iii) the size and
number of discontinuous domains; (iv) closely packed or
convoluted domain–domain interfaces; (v) structures with
large and complex architectures; and (vi) the role of struc-
tural, functional and evolutionary concepts in the determi-
nation of domain definitions.

Despite the varying strategies for the derivation of domain
dictionaries, most approaches agree on a large number of
domain classifications. Multiple studies have compared the
consensus domain assignments in expert-curated and auto-
mated methods (Hadley and Jones, 1999; Day et al., 2003;
Csaba et al., 2009). Holland et al. (2006) performed a com-
parison of automated domain assignment methods on a
curated multi-domain protein set and found that no single
automatic method could consistently and accurately generate
domain partitions while optimizing for continuous or mini-
mally discontinuous domains. They suggest that this lack of
consistency is the result of competing structural and func-
tional definitions of the domain implicit in boundary defi-
nitions. Despite disagreements on some multi-chain domains,
a consensus method can accurately treat a majority of the
domains captured by SCOP, CATH and Dali/FSSP (Hadley
and Jones, 1999; Day et al., 2003), largely due to the preva-
lence of single-domain protein chains.

The number of unique protein folds. Important goals of
structural biology include the identification of all families of
sequence domains, structures with sequences homologous to
those families, folds containing those structures and func-
tions conveyed by those folds. By identifying these elements,
we hope to largely sidestep the difficult process of structu-
rally determining the individual proteins within an organism

and instead understand its components and their interactions
purely from its genetic code. For these reasons, the number
of total folds (and the number of associated functions) is a
matter of interest. Protein folds are not equally populated,
some folds are either more structurally or sequentially
diverse, and these effects are not necessarily correlated
(Orengo et al., 1997; Holm and Sander, 1998b). This differ-
ence in the distribution of domains complicates estimates of
the total number of protein folds. In addition, families of
sequences with no detectable similarity can adopt the same
structural fold. Estimates of the number of protein folds have
varied over two orders of magnitude (103–105) in the past
two decades (Table I). The presence of highly populated
folds, some sequence diverse, in domain classification
systems is consistent, but these folds may arise for different
reasons. The degree to which population differences are
biased by the targeting of structure determination efforts is
difficult to estimate, but structural prediction of whole
genomes suggests that it is small (Wolf et al., 2000; Buchan
et al., 2002). It is unclear whether highly populated folds
arise because of convergent evolution from multiple origins,
which might suggest that these folds are more easily evolved
to be stable; or divergent evolution from a single origin,
which might suggest that these folds are more easily evolved
to adapt different functions. Furthermore, it is difficult to
assess how the total number of observed folds is related to
the total number of naturally occurring folds. At least one
topology has been designed that has not yet been observed in
nature (Kuhlman et al., 2003). Is there a significant set of
folds that are physically possible but that have not been
evolved? Interestingly, Govindarajan et al. (1999) estimated
that there are �4000 unique protein folds and that �2200
are likely in nature.

Protein folds are islands of discrete structural similarity
within which structures share some level of sequence simi-
larity. As a corollary, sequences with high identity usually
share the same structural fold. This principle is widely used
to automate domain assignments to folds and in comparative
modeling of sequences with no known structure. However,
multiple cases of domains with detectable sequence simi-
larity to members of multiple structurally distinct folds have
been described (Grishin, 2001; Alva et al., 2008). Another
complication is that domains can be classified as having the
same fold because of substructure similarity while possessing

Fig. 4 Examples of difficult domain partitions. (A) Escherichia coli
phosphorin (PDB:1PHO); SCOP and CATH do not partition this structure,
DALI partitions it into four separate domains. (B) Periplasmic lysine/
arginine/ornithine-binding protein (PDB:2LAO); SCOP does not partition
this domain (disfavors discontinuous domains), CATH and DALI partition it
into two domains; domain 1 (red/brown), domain 2 (blue). (C)
3-ketoacyl-CoA thiolase (PDB:1PXT), CATH assigns two domains, (D)
SCOP assigns two different domains, (E) and the AUTHORS database
(Islam et al., 1995) assigns three. Adapted from Veretnik et al. (2004).

Table I. Estimates for the number of protein folds and superfamilies by

year

Year Folds Superfamilies Reference

1992 ,1000 1500 Chothia (1992)
1994 ,7700 23 100 Orengo et al. (1994)
1994 6727 — Alexandrov and Go (1994)
1996 455 — Zhi-Xin (1996)
1997 ,920 920 Brenner et al. (1997)
1997 �5200 17 175 Zhang (1997)
1998 650 1150 Zhi-Xin (1998)
1998 836 — Zhang and DeLisi (1998)
1999 3756 — Govindarajan et al. (1999)
2000 �1000 4000–7000 Wolf et al. (2000)
2002 10 000 50 000 Coulson and Moult (2002)
2007 1613 — Levitt (2007)
2009 �1700+400 �4000 Sadreyev et al. (2009)
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significant overall structural dissimilarity (Cuff et al.,
2009b). The effect of this loss of transitivity of domain simi-
larity has been studied in both SCOP and CATH folds
(Csaba et al., 2009; Pascual-Garcia et al., 2009). Both of
these effects indicate that regions of fold space exist that are
difficult or improper to discretize by assuming a correlation
between sequence homology and structural similarity (i.e.
regions of ‘continuous’ fold space). That these regions exist
does not negate the fact that the majority of structurally
characterized domains are sourced from single-domain
chains and that these chains seem to exist in consistent, ther-
modynamically stable islands in fold space (Cuff et al.,
2009a,b; Sadreyev et al., 2009). Are these regions of fold
space simply more capable of evolving into new structures,
or are we simply observing the effects of higher sampling
within these regions of fold space? Finally, the boundary
cases in any empirical fold classification that relies on heur-
istic criteria not directly related to the biophysical and bio-
logical origin of folds (i.e. their folding pathways and
evolutionary origins) will have boundary conditions. Any
replacement for current domain classification systems will
need to be generated with these criteria in mind.

Computational simulation of protein folding
Proteins fold from a partially structured denatured state
through any number of increasingly structured intermediate
states into the folded native ensemble. Although we can
experimentally characterize the native ensemble at the
atomic level, generally speaking, the atomic details of par-
tially folded states are inaccessible. If the rules of protein
structural classification are hierarchical, as discussed in the
previous section, then it may also be the case that the folding
of these domains displays a similar hierarchical behavior,
such that small well-behaved domains studied in isolation
will also reflect their behavior in the context of larger multi-
domain structures.

All-atom molecular dynamic (MD) simulations model
states along the folding/unfolding pathway that cannot be
directly observed by experiment. Recent increases in compu-
ter power have translated into increases in the length and
complexity of MD simulations. Using such simulations,
more sampling of the partially structured states along the
folding pathway can be achieved. The structural heterogen-
eity of partially folded states complicates their experimental
structural analysis. Spectroscopic signals from these states
may originate from many different structures or from a small
fraction of folded structures in a large ensemble of unfolded
structures. Therefore, MD simulations can provide a theoreti-
cal model with which to interpret experimental signals. Here
briefly describe three proteins studied by combining MD
in the Daggett group and experimental studies in the
Fersht group. These three proteins fall into 3-fold classes:
mixed a/b, all-a, and all-b.

A mixed a/b-protein. Our representative mixed a/b protein
is chymotrypsin inhibitor 2 (CI2). CI2 is a 64-residue protein
with a single a helix and a three-stranded b-sheet, and it was
the first protein whose folding was mapped in detail and
extensively validated. The packing of the helix against the
sheet forms the hydrophobic core. CI2 was the first protein
demonstrated to fold by a two-state mechanism. The TS of
CI2 was first characterized at the atomic level by MD

simulation and F-value analysis (Li and Daggett, 1994;
Otzen et al., 1994; Daggett et al., 1996; Li and Daggett,
1996). The MD-generated TS structures were further vali-
dated by the design of faster folding variants by targeting
interactions in the MD structures that could not be predicted
from the native state (Ladurner et al., 1998). The redesigns
were successful, leading to the fastest folding CI2 variant
thus far. The TS of CI2 contains partial secondary and ter-
tiary structure and the final event during folding involves
their simultaneous consolidation (Fig. 5A).

CI2 served as a workbench for establishing many of the
early postulates of the study of protein folding by simulations
of high-temperature unfolding. Through simulations of CI2,
it was first established that a plausible TS could be selected
from a high-temperature MD simulation and that the proper-
ties of the TS mirrored those probed experimentally at lower
temperature (Li and Daggett, 1994). Microscopic reversibility
was first observed in simulations of CI2, such that folding
and unfolding were observed in a single continuous simu-
lation and they followed the same steps, but in reverse (Day
and Daggett, 2007). In addition, through a set of 100 inde-
pendent simulations, it was demonstrated that a small
number of simulations (5–10) could capture the overall prop-
erties of the full set (Day and Daggett, 2005). Furthermore,
NMR studies of the denatured state of CI2 showed that long-
range residual structure detected in MD simulations could be

Fig. 5 Major conformational states sampled during thermal unfolding MD
simulations. (A) Native (N), transition (TS) and denatured state (D) of CI2.
The TS of CI2 is characterized by the packing of the still nascent helix
against the partially formed b-sheet. The denatured state of CI2 is
particularly denatured, containing little secondary structure. (B) Native (N),
transition (TS), intermediate (I) and denatured (D) states of the engrailed
homedomain. The TS of EnHD is characterized by essentially native helices
condensing into their native topology. The EnHD intermediate contains fully
formed helices I and III with a partially denatured helix II. (C) The WW
domain does not contain a hydrophobic core. Instead, two small
hydrophobic clusters are found on either side of the b-sheet. Residues in
cluster 1 (purple) and cluster 2 (cyan), associate in strands 1 (red) and 2
(blue) of FBP28 in the TS. These residues nucleate the folding of the WW
domain despite the plasticity of the precise turn residues in the TS.
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similarly detected by NMR (Kazmirski et al., 2001). Early
work on CI2 established the benchmarks by which future
work on EnHD and small all-b model proteins (such as the
WW domains) would be measured. Furthermore, the synergy
between the simulation and experiment became apparent:
experiment benefits from the detailed structural information
that can be obtained from MD, and MD needs experiment to
establish its validity.

An all a-protein. EnHD is a 56-residue three-helix bundle
that folds through an intermediate. MD simulations have pro-
vided structural models for the major states along the folding
pathway of EnHD (Mayor et al., 2000). These states were
then validated by experiment. For example, the
MD-predicted transition state ensemble (TS) (Mayor et al.,
2000) was found to agree with experimental F-values deter-
mined several years later (Gianni et al., 2003). Similarly, the
MD-predicted intermediate (Mayor et al., 2000) was vali-
dated by direct structural determination by NMR (Religa
et al., 2005). Finally, the unfolding pathway of EnHD was
directly observed to be reversible, both via simulations near
its melting temperature (325 K) (McCully et al., 2008) and
by temperature-quenched simulations conducted on the inter-
mediate state (McCully et al., 2010).

The MD-generated TS structures of EnHD at different
temperatures are similar and are native-like with all native
helices essentially fully formed (Mayor et al., 2000). The
estimated half-life of unfolding by experiment was found to
be very similar to the MD predictions (Mayor et al., 2003).
The prediction that the TS of EnHD contains essentially
native helices that are only partially packed was also con-
firmed by experiment (Gianni et al., 2003) (Fig. 5B). A fun-
damental assumption of high-temperature simulations is that
the folding pathway at low temperatures contains the same
states as the unfolding pathway at high temperatures. Given
good agreement between MD simulations probing unfolding
and experiments on both folding and unfolding, this assump-
tion seems to be reasonable, but it was also shown directly
that the overall TS properties are insensitive to temperature
(Mayor et al., 2000; Mayor et al., 2003; DeMarco et al.,
2004). In addition, as with CI2, this assumption was directly
tested and the principle of microscopic reversibility was
shown to hold for continuous trajectories of EnHD at its
melting temperature (McCully et al., 2008).

In addition to the simulations around the melting point,
quench simulations of thermally denatured structures of
EnHD were performed (McCully et al., 2010). A series of 46
refolding simulations was started from a single thermally
denatured structure (the intermediate state) from a 498 K
simulation of EnHD near the temperature of the maximal
folding rate (310, 314 and 319 K). A single simulation, run
for 700 ns, refolded. However, 45 of the 46 simulations did
not refold and instead were confined in the intermediate state
primarily via non-native electrostatic interactions. The inter-
mediate state of this protein is very stable by experiment and
the rate-determining step for folding is not folding to the
intermediate but the transition from the intermediate to the
native state. The simulations provide examples of specific
non-native interactions that slow folding by stabilizing the
intermediate state. Altogether these results demonstrate that
the folding pathway of EnHD is well understood and demon-
strates the predictive power of the MD simulations and the

strength, or even necessity, of combining experimental and
computational methods.

The lessons we learn from closely analyzing individual
proteins must be applicable to other proteins in order to be
useful. Then the question becomes, does the mechanism of
a single model protein necessarily represent that of structu-
rally similar proteins (Daggett and Fersht, 2003)? To
address this question, the folding behavior of EnHD was
compared with other three-helix bundles; c-Myb transform-
ing protein (c-Myb) and human telomeric repeat factor 1
(hTRF1) were simulated and analyzed (Gianni et al., 2003;
White et al., 2005). Although all three proteins belong to
the same fold, hTRF1 and c-Myb folded by different
apparent mechanisms than EnHD by experiment (Gianni
et al., 2003). Whereas EnHD folds via the framework
mechanism with formation of the helices followed by
docking of the preformed helices, both hTRF1 and c-Myb
displayed properties that were consistent with the nuclea-
tion–condensation mechanism, whereby secondary and ter-
tiary interactions are closely coupled, as with CI2. MD
simulations of EnHD, c-Myb and hTRF1 provided TS
ensembles consistent with the experimental F-value analy-
sis (White et al., 2005). Whereas the TS of EnHD con-
tained fully formed native helices, in both c-Myb and
hTRF1 helices were only partially formed. Interestingly, an
intermediate was observed in MD simulations of c-Myb
that was not observed by experiment. A c-Myb mutant was
designed to stabilize the proposed intermediate and its
population increased such that it became visible by exper-
iment (White et al., 2005). These studies showed that
these family members are linked by a common folding
mechanism that is modulated in different family members
by the helical propensities and strength of specific tertiary
interactions.

An all b-protein. WW domains have been popular model
systems for studying the formation of b-structure. They
are small proteins consisting of a three-stranded b-sheet
(a double hairpin) lacking a conventional hydrophobic core
(Macias et al., 2000). Owing to the topology of WW
domains, particular interest has focused on the role of the
b-turns. The WW double hairpin fold is found as a substruc-
ture in other larger proteins. Consequently, generalizing the
behavior of these domains could provide a general model for
b-sheet folding. Previous combined experimental and theor-
etical work demonstrated that the precise main-chain hydro-
gen bonding of the first b-turn of FBP28 is disrupted in the
TS (Petrovich et al., 2006). In the follow-up work, three WW
domains, hYAPtm, FBP28 and PIN1, were studied both by
experiment and by MD simulation (Sharpe et al., 2007).
Using NMR relaxation methods, the S2 order parameters,
reflecting motion of the NH bond vectors, were measured for
both hYAPtm and FBP28 and compared with values calcu-
lated from MD. In both proteins, the S2 values compared
well between experiment and simulation and showed that the
first turn was highly mobile in the native state. These results,
combined with the F-value analysis, yield a model for
b-sheet folding in which the early formation of the turn per
se is not necessary for folding, but side-chain interactions in
the turn region are important in the nucleation of sheet for-
mation (Fig. 5C).
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Toward general principles of protein folding
Given the utility of the combined experimental/theoretical
approach to the study of protein folding, a quandary remains.
To what degree are these results representative of the protein
universe? Even within structural families that are well
studied, variation in folding behavior can be observed
between family members, although the folding behavior is
often conserved within a fold family (Gunasekaran et al.,
2001; Zarrine-Afsar et al., 2005; Nickson and Clarke, 2010).
Despite 20 years of active study on various model proteins,
we have only begun to scratch the surface of available
protein structures and their folding pathways. At this point,
the increase in computer power and the confidence in simu-
lation methods have advanced to a sufficient point where we
must expand our horizons beyond the well-studied proteins
over which we have labored in the past. A broad scale, data-
driven approach to protein modeling can bring about the dis-
covery and enumeration of general rules to protein folding
only hinted at by previous studies.

Mass simulation of all known globular protein folds. The
identification of domains in protein structures and the classi-
fication of these domains into folds are fairly well under-
stood. We have demonstrated that native states and folding
pathways can be fleshed out using a combination of exper-
iment and theory. The next logical step is to combine this
knowledge into a broad-based high-throughput study of
folding across representatives of all known protein folds. The
recent increases in available computer power have made
high-throughput simulation initiatives possible and the first
and most extensive of these is the Dynameomics project
(Day et al., 2003; Beck et al., 2008; van der Kamp et al.,
2010). The Dynameomics project entails systematic simu-
lation of representatives of all autonomous protein folds.
These representatives are taken from a consensus domain
dictionary (CDD), where the consensus relates to consensus
within the SCOP, CATH and Dali domain dictionaries (Day
et al., 2003; Schaeffer et al., 2010). From a total of 1695
consensus folds (or metafolds), 807 individual domains were
found to be autonomous folded domains. For many meta-
folds no suitable domains exist, for one or more reasons.
Domains may contain cofactors that are structurally signifi-
cant or contain large gaps or other quality factors that prohi-
bit simulation. Interestingly, we found that the single largest
reason for the rejection of metafolds was that they contained
only discontinuous domains or domains were not auton-
omous when excised from their structure. Over 40% of the
metafolds in the v2009 CDD were rejected for this reason
(Schaeffer et al., 2010). Nevertheless, 807 metafolds repre-
senting a majority of the domains in the CDD (due to the
differential population of metafolds) were selected and simu-
lated. The Dynameomics database currently contains over
11 000 simulations of over 2000 systems, representing the
largest collection of protein simulations and structures in the
world. The native state simulations of the Top 100 targets
are publicly accessible at http://www.dynameomics.org.

This large data set has then been used as a foundation
for studies into native state flexibility (Benson and
Daggett, 2008), transition state data mining (Jonsson et al.,
2009) and a property-based reaction coordinate of folding
(Benson and Daggett, 2008; Jonsson et al., 2009; Toofanny

et al., 2010). In the first case, a large-scale assessment of
native protein dynamics was performed. Proteins fluctuate
in their native state, potentially altering the apparent acces-
sibility of functional sites from static structures, as shown
some time ago for transient cleft formation in cytochrome
b5 (Storch and Daggett, 1995) that was later validated
experimentally and shown to be linked to function (Storch
et al., 1999a,b; Hom et al., 2000). Protein flexibility in the
native state was analyzed for a subset of 253
Dynameomics targets (Benson and Daggett, 2008). The
flexibility of the main chain was calculated using the prin-
cipal components of the Ca atoms (Teodoro et al., 2004).
The hydrophilic and polar residues were slightly more flex-
ible than hydrophobics, as is expected given their position
on the protein surface. The flexibility of a-helices was
more localized toward their termini, whereas for b-strands,
there was no such tendency. In comparing the native and
unfolding simulations, one sees that sites involved in early
unfolding tend to have high flexibility, suggesting a strong
link between native dynamics and folding behavior.

Interestingly, 21 highly inflexible loops were identified,
loops that were more inflexible than helices and sheets. No
significant deviation in amino acid populations was identified
in the inflexible loops. This finding suggests that there are
structural units that outside of the conventional secondary
structure definitions. In addition to the metafold representa-
tives, a series of additional targets was selected in the fold
families of EnHD, ubiquitin and Fyn SH3. The flexibility of
fold family members was found to be highly correlated
along their shared secondary structure. Where a member
deviated from the average behavior of the fold, it was associ-
ated with low sequence and structural identity to other
members of the fold.

Identification and characterization of the properties of TS
ensembles is one of the principal strengths of studying
protein folding by MD simulation. As the TS is an unstable
species, it can only be indirectly characterized by exper-
iment. Jonsson et al. (2009) identified a set of 183 TS ensem-
bles from an earlier subset of Dynameomics data (Beck
et al., 2008). Global properties were calculated over the set
of selected TS ensembles and analyzed by fold class, exper-
imental source and secondary structure content. Structures
were analyzed based on 27 structural properties, including
contacts, secondary structure content, solvent accessible
surface area (SASA) and radius of gyration (Rg). No signifi-
cant difference was observed for the identified TS ensembles
when separated by fold class (all-a, all-b and mixed a/b),
SASA or starting secondary structure. Contacts were ana-
lyzed for each residue in each TS ensemble and aggregated
by residue type. Residues with the highest number of con-
tacts in the starting structure tended to lose the most contacts
(and become fractionally more exposed) in the TS ensemble.
Helical residues tended to have slightly higher burial than
residues starting in other or no secondary structure. This
work represents the first major mining of the general proper-
ties of the unfolding pathways in Dynameomics. The general
properties of the TS found here cluster around a small
number of averages that are relatively invariant with respect
to protein fold, residue type and secondary structure. With
more extensive data mining of the native and denatured
states over the now complete 807 fold set, a general picture
of the entire folding pathway may emerge.
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Conclusions

Ultimately, the study of protein folding must move beyond
model systems. By coupling the broad-based knowledge of
protein domain partitioning and fold classification with high-
throughput MD simulations, the Dynameomics project pro-
vides a foundation for a new era of data-driven protein
folding research. With these data and new mining tools, we
are moving beyond the study of individual systems to obtain
a broader, more general view of protein folding.
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