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The discovery of infectious proteins, denoted prions, was unexpected. After much debate
over the chemical basis of heredity, resolution of this issue began with the discovery that
DNA, not protein, from pneumococcus was capable of genetically transforming bacteria
(Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bac-
terial pathogens with respect to the transmission of some nervous system diseases (Prusiner
1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt–Jakob
disease (CJD) and related disorders are caused by prions. The prion diseases are character-
ized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the
normal, cellular isoform of the prion protein (PrPC) and stimulating its conversion into the
disease-causing isoform (PrPSc). PrPC and PrPSc have distinct conformations: PrPC is rich in
a-helical content and has little b-sheet structure, whereas PrPSc has less a-helical content
and is rich in b-sheet structure (Pan et al. 1993). The conformational conversion of PrPC to
PrPSc is the fundamental event underlying prion diseases. In this article, we provide an intro-
duction to prions and the diseases they cause.

PRION PROTEIN ISOFORMS

PrPSc, an alternative or abnormal isoform
of PrP, stimulates the conversion of PrPC

into nascent PrPSc; in the brain, accumulation
of PrPSc causes neurodegeneration. In Syrian
hamsters, PrPC and PrPSc are both 209-residue
proteins with two glycosylation sites and a
glycosylphosphatidyl inositol (GPI) anchor
(Fig. 1). PrP is posttranslationally processed to
remove a 22-amino-acid, amino-terminal sig-
nal peptide and a 23-amino-acid, carboxy-
terminal peptide, which directs addition of the
GPI anchor that tethers the protein to the cell

membrane. No posttranslational modifications
to the primary structure differentiate PrPC from
PrPSc (Stahl et al. 1993). Limited protease diges-
tion of PrPSc often produces a smaller, protease-
resistant molecule of approximately 142 amino
acids, referred to as PrP 27–30 (Fig. 1). Under
the same conditions, PrPC and some forms of
PrPSc are completely hydrolyzed. Although re-
sistance to limited proteolysis has proved to be
a convenient tool for detecting PrPSc, not all
PrPSc molecules are resistant to protease di-
gestion (Hsiao et al. 1994; Telling et al. 1996;
Safar et al. 1998; Gambetti et al. 2008; Colby
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et al. 2010); these protease-sensitive PrPSc forms
are denoted sPrPSc. Furthermore, PrPSc from
different species or prion strains may show dif-
ferent degrees of protease resistance.

In the presence of detergent, PrP 27–30 pol-
ymerizes into amyloid (McKinley et al. 1991).
The tendency of prions to form amyloids has

also provided a useful means of prion detection
(Colby et al. 2007); however, amyloid forma-
tion is a nonobligatory feature of prion disease
(Wille et al. 2000). Prion rods formed by limited
proteolysis and detergent extraction are indis-
tinguishable from the filaments that aggregate
to form PrP amyloid plaques in the CNS (De-
Armond et al. 1985). Both the rods and the
PrP amyloid filaments found in brain tissue
show similar ultrastructural morphology and
green-gold birefringence after staining with
Congo red dye (Prusiner et al. 1983).

As in mammals, proteins with self-propa-
gating conformations have been found in fungi;
these fungal prions share many similarities with
mammalian prions (Chien et al. 2004). Because
of the ease of genetic manipulation and fast
growth rates of fungi, fungal prion research
has progressed at a rapid pace, often presag-
ing discoveries in mammalian prion research.
In yeast, alternative conformational states of
the Ure2p and Sup35 proteins encipher the
[URE3] and [PSI] phenotypes (Wickner 1994;
Patino et al. 1996), respectively, whereas the
Het-s protein enciphers the [HET-s] phenotype
in Podospora anserine (Coustou et al. 1997).
However, it is important to note that there are
also many differences between yeast and mam-
malian prions—for example, yeast prions do
not cause disease nor do they transmit from
one mature cell to another.

THE PrP GENE

A chromosomal gene encodes PrP and is de-
noted Prnp, which is a member of the Prn gene
family that also includes Prnd, encoding the
doppel protein (Moore et al. 1999), and Sprn,
encoding shadoo (Watts and Westaway 2007).
In all known PrP genes from various species,
the PrP open reading frame (ORF) is encoded
within a single exon although the gene itself
comprises two to three exons (Basler et al.
1986; Westaway et al. 1987; Hsiao et al. 1989;
Gabriel et al. 1992). The other exons contain
untranslated sequences including the promoter
and termination sites. The PrP promoter con-
tains multiple copies of GC-rich repeats—a
canonical binding site for the transcription
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Figure 1. Prion protein isoforms. (A) Western immu-
noblot of brain homogenates from uninfected (lanes
1 and 2) and prion-infected (lanes 3 and 4) Syrian
hamsters. Samples in lanes 2 and 4 were digested
with 50 mg/ml proteinase K for 30 min at 378C, com-
pletely hydrolyzing PrPC. Proteinase digestion cleaves
�67 amino acids from the amino terminus of PrPSc

to generate PrP 27–30 (lane 4). Blot developed
with anti-PrP polyclonal antiserum R073 (Serban
et al. 1990). (B) Bar diagrams of the hamster Prnp
gene and PrP isoforms. The Prnp ORF encodes a pro-
tein of 254 residues, which is shortened to 209 resi-
dues during posttranslational processing. PrPSc is
an alternate conformation of PrPC with identical
primary structure. Limited proteolysis of PrPSc cleaves
the amino terminus and produces PrP 27-30, com-
posed of approximately 142 residues. Panel A,
reprinted with permission, from Prusiner 2004.
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factor Sp1 (McKnight and Tjian 1986), driving
expression in many different tissues.

The alignment of the translated sequences
from more than 40 PrP genes shows a striking
degree of conservation between the mammalian
sequences, suggesting the retention of some
important function for PrP through evolution.
However, variations in PrP sequences exist both
between species and between individuals within
species (Fig. 2), greatly affecting susceptibility
to prion infection.

The shortest incubation times, or the inter-
val between inoculation and clinical signs of
disease, are achieved with intracerebral inocula-
tion of prions with a sequence identical to that
of the host animal; under these conditions, all
animals develop prion disease within a narrow
interval for a particular dose. When the donor
prion originates from a species different from
the host animal, and thus, the sequences dif-
fer between infecting PrPSc and host PrPC, the
incubation time can be prolonged and vary
substantially between individual animals ino-
culated; often, many of the inoculated animals
do not develop disease (Carlson et al. 1989;
Telling et al. 1994; Telling et al. 1995; Tateishi
et al. 1996). This phenomenon is referred to as
the species barrier that was first noted by Ian
Pattison (Pattison 1965).

HUMAN PRION DISEASES

Prion diseases occur as sporadic, genetic, and
transmissible disease in humans (Table 1).
Although infectious forms of prion disease are
most well known to the general public, sporadic
and heritable forms of the disease occur much
more frequently in humans, with sporadic (s)
CJD accounting for approximately 85% of
cases. sCJD has no known cause although
spontaneous misfolding of PrPC into PrPSc is a
leading hypothesis (Prusiner 1989; Hsiao et al.
1991a). Alternate hypotheses include somatic
mutation of PRNP, undetected horizontal
transmission (Gajdusek 1977), and infrequent
amplification of low levels of PrPSc that are
part of “normal” protein homeostasis. The
brains of sCJD patients harbor infectious prions
that are transmissible to experimental animals

(Gibbs et al. 1968; Brown et al. 1994). In hu-
mans, virtually all forms of prion disease feature
neuropathological changes including vacuola-
tion (resulting in the spongiform appearance
of brain tissue), astrocytic gliosis, and PrP
deposition. The morphology of vacuoles and
PrP deposits varies depending on the prion
strain and host, as do the regions of the brain
affected.

To date, over 40 different mutations of the
PrP gene have been shown to segregate with
the heritable human prion diseases (Fig. 2).
The resulting diseases have been classified
as Gerstmann–Sträussler–Scheinker syndrome
(GSS), familial (f ) CJD, or fatal familial insom-
nia (FFI) according to the clinical symptoms,
although all result from PRNP mutations. At
the time when the discoveries were reported
that fCJD and GSS could be transmitted to
apes and monkeys, many still thought that scra-
pie, CJD, and related disorders were caused
by slow viruses (Roos et al. 1973; Masters et al.
1981). Only the discovery that a proline-to-leu-
cine mutation at codon 102 of the human PrP
gene was genetically linked to some GSS pedi-
grees permitted the unprecedented conclusion
that prion disease can have both genetic and
infectious etiologies (Hsiao et al. 1989; Prusiner
1989). This mutation has been found in unre-
lated families from several countries (Doh-ura
et al. 1989; Goldgaber et al. 1989; Kretzschmar
et al. 1991), and other mutations causing GSS
have since been identified (Dlouhy et al. 1992;
Petersen et al. 1992; Poulter et al. 1992; Rose-
nmann et al. 1998).

Likewise, several different mutations have
also been discovered to cause fCJD. A repeat
expansion in the amino-terminal region of
PrP, which in the healthy population contains
five repetitive sequences of eight residues each
(octarepeats), has been genetically linked to
fCJD. Insertions of two to nine additional oct-
arepeats have been found in individuals with-
in fCJD pedigrees (Owen et al. 1989; Goldfarb
et al. 1991a). Molecular genetic investigations
have revealed that Libyan and Tunisian Jews
with fCJD have a PrP gene point mutation
at codon 200, resulting in a glutamic acid-to-
lysine substitution (Goldfarb et al. 1990a; Hsiao
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Figure 2. Variation of in the prion protein gene. (A) Species variations of the prion protein gene. The x-axis rep-
resents the human PrP sequence, with the five octarepeats and H1–H4 regions of the putative secondary struc-
ture shown, as well as the three a-helices A, B, and C and the two b-strands S1 and S2 as determined by NMR.
Vertical bars above the axis indicate the number of species that differ from the human sequence at each position.
Below the axis, the length of the bars indicates the number of alternative amino acids at each position in the
alignment. (B) PrP mutations causing inherited human prion disease (above the line) and PrP polymorphisms
(below the line) found in humans, mice, sheep, elk, and cattle. Residue numbers in parentheses correspond to
the human codons. Data in Panel A compiled by P. Bamborough and F.E. Cohen and reprinted, with permission,
from Prusiner 2004.
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et al. 1991b), a mutation that has since been
identified in fCJD pedigrees in many locations
(Goldfarb et al. 1990a; Goldfarb et al. 1990b;
Bertoni et al. 1992).

The D178N mutation can cause either fCJD
or FFI, depending on the polymorphism pre-
sent at codon 129, where both methionine and
valine are commonly found. D178N coupled
with V129 produces fCJD, in which patients
present with dementia and widespread depo-
sition of PrPSc (Goldfarb et al. 1991c). If the
disease mutation is coupled with M129, how-
ever, FFI results and patients present with a pro-
gressive sleep disorder that is ultimately fatal.
Postmortem analysis of FFI brains revealed
deposition of PrPSc confined largely to specific
regions of the thalamus (Lugaresi et al. 1986;
Gambetti et al. 1995).

Infectious forms of prion diseases include
kuru, iatrogenic (i) CJD, and variant (v) CJD.
Kuru in the highlands of New Guinea was trans-
mitted by ritualistic cannibalism, as people in
the region ate the brains of their dead relatives
in an attempt to immortalize them (Glasse
1967; Alpers 1968; Gajdusek 1977). Iatrogenic
transmissions include prion-tainted human
growth hormone and gonadotropin, dura mater
grafts, and transplants of corneas obtained
from people who died of CJD (Koch et al.

1985; PHS 1997). In addition, CJD cases have
been recorded after neurosurgical procedures
in which ineffectively sterilized depth electrodes
or instruments were used.

More than 200 teenagers and young adults
have died of vCJD, mostly in Britain (Spencer
et al. 2002; Will 2003). Both epidemiologic and
experimental studies have built a convincing
case that vCJD resulted from prions being trans-
mitted from cattle with bovine spongiform en-
cephalopathy (BSE, or “mad cow” disease) to
humans through consumption of contami-
nated beef products (Chazot et al. 1996; Will
et al. 1996; Cousens et al. 1997). Until recently,
all of the vCJD-affected individuals were identi-
fied to express methionine homozygously at
codon 129. A single case of vCJD in a patient
heterozygous at codon 129 has been reported,
raising the possibility of a second wave of
“mad cow”–related deaths (Kaski et al. 2009).

PRION DISEASES OF ANIMALS

Prion diseases occur naturally in many mam-
mals, including scrapie of sheep and goats,
BSE, transmissible mink encephalopathy (TME),
chronic wasting disease (CWD) of mule deer
and elk, feline spongiform encephalopathy,
and exotic ungulate encephalopathy (Table 1).

Table 1. Prion diseases in humans and animals.

Disease Host Mechanism of pathogenesis

Kuru humans
(Fore people)

infection through ritualistic cannibalism

Iatrogenic CJD humans infection from prion-contaminated HGH, medical equipment, etc.
Variant CJD humans infection from bovine prions
Familial CJD humans germline mutations in the PRNP gene
GSS humans germline mutations in the PRNP gene
FFI humans germline mutations in the PRNP gene
Sporadic CJD humans somatic mutation or spontaneous conversion of PrPC to PrPSc

sFI humans somatic mutation or spontaneous conversion of PrPC to PrPSc

Scrapie sheep infection
BSE cattle infection or sporadic
TME mink infection with prions from sheep or cattle
CWD deer, elk infection
FSE cats infection with prion-contaminated bovine tissues or MBM
Exotic ungulate

encephalopathy
greater kudu,

nyala, oryx
infection with prion-contaminated MBM

Prions
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Unlike in humans, prion diseases in animals
mainly occur as infectious disorders. As in hu-
mans, prion disease in animals is characterized
by neuropathologic changes, including vacuo-
lation, astrocytic gliosis, and PrP deposition.

Scrapie of sheep has been documented in
Europe for hundreds of years. Despite efforts
attempting to link scrapie to CJD, no evidence
exists to establish a relationship (Chatelain
et al. 1981). Polymorphisms in sheep PrP mod-
ulate susceptibility to scrapie, rendering some
breeds more resistant to infection than others
(Goldmann et al. 1991). As scrapie prions can
persist in soil for years (Palsson 1979; Brown
and Gajdusek 1991), selective breeding pro-
grams may be the most effective means to erad-
icate scrapie. In part because scrapie is not
infectious for humans, hamster- and mouse-
adapted scrapie strains, such as Sc237 and
RML, are important laboratory tools for study-
ing prions.

During the BSE epidemic in Britain, it was
estimated that nearly one million cattle were
infected with prions (Anderson et al. 1996;
Nathanson et al. 1997). The mean incubation
time for BSE is approximately 5 years. Most cat-
tle were slaughtered between 2 and 3 years of
age, and therefore, in a presymptomatic phase
of infection (Stekel et al. 1996). BSE is a massive
common-source epidemic caused by meat and
bone meal (MBM) fed primarily to dairy cows
(Wilesmith et al. 1991; Nathanson et al. 1997).
MBM was prepared from the offal of sheep,
cattle, pigs, and chickens as a high-protein
nutritional supplement. In the late 1970s, the
hydrocarbon-solvent extraction method used
in the rendering of offal began to be abandoned,
resulting in MBM with a much higher fat
content (Wilesmith et al. 1991; Muller et al.
2007). It is now thought that this change
allowed scrapie prions from sheep or low levels
of bovine prions generated sporadically to
survive the rendering process, resulting in the
widespread infection of cattle. Changes in the
methods used for feeding cattle have since elim-
inated the epidemic, although sporadic BSE
cases arise occasionally.

Mule deer, white-tailed deer, and elk have
been reported to develop CWD. As the only

prion disease identified in free-ranging animals,
CWD appears to be far more communicable
than other forms of prion disease. CWD was
first described in 1967 and was reported to be
a spongiform encephalopathy in 1978 on the
basis of histopathology of the brain. Originally
detected in the American West, CWD has
spread across much of North America and has
been reported also in South Korea. In captive
populations, up to 90% of mule deer have been
reported to be positive for prions (Williams
and Young 1980). The incidence of CWD in
cervids living in the wild has been estimated
to be as high as 15% (Miller et al. 2000). The
development of transgenic (Tg) mice expressing
cervid PrP, and thus susceptible to CWD, has
enhanced detection of CWD and the estimation
of prion titers (Browning et al. 2004; Tamgüney
et al. 2006). Shedding of prions in the feces,
even in presymptomatic deer, has been iden-
tified as a likely source of infection for these
grazing animals (Williams and Miller 2002;
Tamgüney et al. 2009b). CWD has been trans-
mitted to cattle after intracerebral inoculation,
although the infection rate was low (4 of 13 ani-
mals [Hamir et al. 2001]). This finding raised
concerns that CWD prions might be transmit-
ted to cattle grazing in contaminated pastures.

TRANSGENIC MICE

The development of various lines of Tg mice has
provided valuable insight on these disorders.
Altering the expression level of PrP in Tg mice
can lead to abnormalities in uninfected mice
and strongly affects incubation times in prion-
infected mice. Tg mice expressing different
levels of wild-type (wt) PrP of the Syrian ham-
ster (SHa) sequence showed incubation times
following prion inoculation that were inversely
proportional to the level of PrP expression
(Prusiner et al. 1990). Older, uninoculated
mice expressing high levels of SHaPrP, ovine
PrP, or mouse PrP(F108,V189) developed neu-
rological dysfunction that was distinct from
prion disease (Westaway et al. 1994).

Mice with the Prnp gene knocked out,
termed Prnp0/0 mice, have also been created;
ablation of Prnp does not affect normal

D.W. Colby and S.B. Prusiner

6 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a006833



development but renders mice resistant to prion
disease (Büeler et al. 1992; Büeler et al. 1993;
Prusiner et al. 1993; Manson et al. 1994). Al-
tered synaptic behavior in the brains of Prnp0/0

mice was found in some studies (Collinge
et al. 1994; Whittington et al. 1995) but not
others (Herms et al. 1995; Lledo et al. 1996).
Some early findings of dysfunction in Prnp0/0

mice were later attributed to abnormal ex-
pression of the doppel protein, which resulted
from the technique used to ablate Prnp gene
expression (Sakaguchi et al. 1996; Moore et al.
1999).

Tg mouse models of genetic forms of prion
disease have been constructed, and several reca-
pitulate key features of prion disease. Tg mice
overexpressing high levels of mouse (Mo) PrP
with a P!L substitution at position 101, which
corresponds to the mutation causing GSS in
humans, spontaneously develop neuropathol-
ogy characteristic of prion disease and accumu-
late an abnormal isoform of PrP (Hsiao et al.
1990; Tremblay et al. 2004). Serial passage of
brain homogenates to Tg mice expressing lower
levels of the same transgene accelerated the
onset of disease (Hsiao et al. 1994). As models
of FFI and fCJD in humans, Tg mice express-
ing D178N coupled with M129 and V129, re-
spectively, show behavioral abnormalities,
misfolded PrP, and neuropathological changes
(Dossena et al. 2008; Jackson et al. 2009).
Mice overexpressing a novel set of mutations
(S170N/N174T) engineered to alter the struc-
ture of PrP also developed disease, which trans-
mitted to animals expressing wt PrP (Sigurdson
et al. 2009).

PRION REPLICATION

Prion propagation requires conversion of PrPC

to PrPSc, thought to occur by a template-
assisted process in which PrPSc acts as a template
onto which PrPC is refolded into the infectious
conformation. The faithful replication of prion
strains supports this theory. Evidence for this
theory also comes from investigations of Tg
mice expressing both SHaPrP and MoPrP, des-
ignated Tg(SHaPrP)Prnpþ/þ mice (Prusiner
et al. 1990). When these mice were inoculated

with prions originating from mice, MoPrPC

was recruited and converted into MoPrPSc.
Inoculation of these mice with hamster prions
resulted in the conversion of SHaPrPC into
SHaPrPSc. These findings indicate that mole-
cules with the PrP sequence that is most well
suited to adapt to the PrPSc template are
selected for conversion.

PrPC may need to enter a partially unfolded,
intermediate state to interact with PrPSc and
undergo conversion; this intermediate state is
referred to as PrP� (Cohen et al. 1994). During
in vitro conversion, PrPC must be denatured
either by GdnHCl (Kocisko et al. 1994; Kaneko
et al. 1997b) or by sonication (Castilla et al.
2005). This denaturation is presumed to con-
vert PrPC into a PrP�-like molecule. The con-
version of PrPC to PrPSc may also require the
assistance of one or more as-yet-unidentified
cofactors, provisionally designated protein X.
Presumably, protein X binds to PrPC and en-
ables it to interact with PrPSc for conversion.
Overexpression of protein X would thus shorten
incubation times for disease, whereas ablation
of protein X would prolong or abolish prion
disease. Many putative protein X genes have
been identified, but transgenic knockouts for
these genes have failed to alter incubation times
substantially (Tamgüney et al. 2008). Several in
vitro investigations have suggested that polyan-
ions, including nucleic acids, may accelerate
prion formation (Deleault et al. 2007; Wang
et al. 2010) although this has not been shown
in animals. For yeast prions, several protein
chaperones that modulate prion states have
been identified (Paushkin et al. 1997; Shorter
and Lindquist 2008).

In mammalian cell cultures, prion accumu-
lation was determined by the interplay between
de novo prion formation, catabolism, cell divi-
sion, and horizontal cell-to-cell transmission.
Using a subline of neuroblastoma (N2a) cells,
we studied the kinetics of prion propagation
and found that cell division led to a predictable
reduction in steady-state prion levels but not
to complete clearance (Ghaemmaghami et al.
2007). Scrapie-infected N2a cells were capable
of accumulating different steady-state levels
of prions, dictated partly by the rate of cell
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division. We also observed that prions in this
subline of N2a cells were transmitted primarily
from mother to daughter cells, rather than
horizontal cell-to-cell transmission. Our kinetic
results were modeled based on a mechanism
that assumed a subpopulation of prions is
capable of self-catalysis, and the levels of this
subpopulation reached saturation in fully in-
fected cells.

BIOLUMINESCENCE IMAGING

Because astrocytic gliosis marked by the deposi-
tion of fibrils composed of GFAP is a prominent
feature of prion disease (DeArmond et al. 1987;
Hwang et al. 2009), we investigated whether
GFAP might be used as a surrogate marker for
prions. To interrogate this posit, we inoculated
prions into Tg mice expressing luciferase (luc)
under the GFAP gene (Gfap) promoter, denoted
Tg(Gfap-luc) mice (Tamgüney et al. 2009a).
Weekly noninvasive, bioluminescence imaging
(BLI) detected an increase in light emitted
from the brains of Tg(Gfap-luc) mice at �55 d
after inoculation and �62 d before neurologic
deficits appeared (Fig. 3). To determine whether
BLI could be used as a proxy bioassay for prion
infectivity, we performed endpoint titrations
of prions in Tg(Gfap-luc) mice. BLI bioassays
were as or more sensitive than those determined
by the onset of neurological dysfunction, and
were completed in approximately half the
time. These findings indicate that BLI is likely
to be a suitable surrogate for measuring prion
infectivity, and might be useful in the study of
Tg mouse models for other neurodegenerative
illnesses.

PrP AMYLOID

As mentioned earlier, amyloid plaques are a
nonobligatory feature of prion diseases. Ap-
proximately 10% of sCJD cases whereas 70%
of kuru cases show amyloid plaques; all vCJD
cases show amyloid plaques surrounded by a
halo of spongiform degeneration—such struc-
tures are called florid plaques (Klatzo et al.
1959; Will et al. 1996). In Tg(SHaPrP)Prnpþ/þ

mice expressing both MoPrP and SHaPrP,

amyloid plaques were found when hamster
prions replicated but not when mouse prions
replicated (Prusiner et al. 1990). These experi-
mental studies showed unequivocally that
amyloid plaques need not accompany prion
replication. In earlier studies, the 87V prion
strain that produced numerous amyloid pla-
ques was isolated from Cheviot sheep with scra-
pie and resulted in amyloid when passaged in
Prnpb/b mice (Bruce et al. 1976; Jeffrey et al.
1994).

Importantly, ionizing radiation studies
showed the target size for scrapie prions was
�55,000 Da regardless of the preparation (Bel-
linger-Kawahara et al. 1988). Fractions contain-
ing purified PrP 27–30 amyloid rods showed
the same resistance to inactivation by X-rays
as crude brain homogenates or PrP 27–30
dispersed into liposomes. Electron crystallogra-
phy of purified PrP 27–30 amyloid rods identi-
fied two-dimensional (2D) crystals with a unit
cell of 70 Å, which allowed sufficient space for
a PrP 27–30 trimer assuming each protein con-
tained a b-helix (Wille et al. 2002; Govaerts
et al. 2004b; Wille et al. 2009b). Because each
PrP 27–30 molecule is composed of approxi-
mately 140 amino acids, an infectious trimer
is readily accommodated by the putative tar-
get size.

Although some investigators argue that
mammalian prions multiply by a seeded poly-
merization process during which PrPC is trans-
formed into PrPSc, there is little evidence for
such a process. More likely it is a template-
assisted replication mechanism whereby the
conformation of PrPSc is copied with a high
degree of fidelity. As noted earlier, it seems likely
that chaperone proteins feature in the forma-
tion of mammalian prions but none have been
identified to date. Some investigators argue
that yeast prions replicate through polymeriza-
tion into amyloid fibers (Wickner et al. 1995;
Speransky et al. 2001). The chaperone protein
Hsp104 appears to enhance fungal prion rep-
lication by breaking the amyloid fibers to create
more seeds for polymerization; in addition,
there is evidence that other chaperones, includ-
ing Hsp 40 and Hsp 70, participate in yeast
prion replication (Shorter and Lindquist 2008).
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Figure 3. Bioluminescence in Tg(Gfap-luc) mice inoculated intracerebrally with RML prions (n ¼ 12) indicated
a reactive astrocytic gliosis. (A) Bioluminescence measured from the brains of prion-inoculated mice (black
circles) began to increase at 55 d postinoculation (dpi). Bioluminescence in control Tg(Gfap-luc) mice inocu-
lated with 1% normal brain homogenate (NBH) (n ¼ 4, gray squares) remained low throughout the incubation
period. (B–D) Photos of representative Tg(Gfap-luc) mice, with overlays of the circular area above the brain
from which bioluminescence was quantified. Bioluminescence measured, �106 photons/s, from each mouse
brain is shown below each image. The bioluminescence measured from the brains of prion-infected mice sig-
nificantly increased (��, P , 0.001, Bonferroni t test) from 48 dpi (B) to 55 dpi (C). Similarly, bioluminescence
measured from infected mice at 55 dpi (C) was also significantly (�, P , 0.005) greater than in control mice
inoculated with NBH and imaged at 56 dpi (D). No significant difference (N.S., P , 0.5) was measured between
RML-inoculated mice at 48 dpi (B) and control mice at 56 dpi (D). Based on this result, astrocytic gliosis
was detectable at bioluminescence measurements .2.0 � 106 photons/s. Reprinted, with permission, from
Tamgüney et al. 2009a.
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CELL BIOLOGY OF PrPSc FORMATION

Prion-infected cell lines, including scrapie-
infected neuroblastoma (ScN2a) cells, have been
used to investigate the subcellular localization
of PrP conversion. In scrapie-infected cells,
PrPC molecules are trafficked to the cell surface
via their GPI anchor before conversion into PrPSc

(Stahl et al. 1987; Borchelt et al. 1990; Caughey
and Raymond 1991). PrPC then appears to
re-enter the cell through subcellular compart-
ments, which are likely cholesterol-rich, deter-
gent-insoluble membranes called caveolae-like
domains (Gorodinsky and Harris 1995; Tarabou-
los et al. 1995; Vey et al. 1996; Kaneko et al. 1997a;
Naslavsky et al. 1997). Within this cholesterol-
rich, nonacidic compartment, GPI-anchored
PrPC can be either converted into PrPSc or par-
tially degraded (Taraboulos et al. 1995; Peters
et al. 2003). Subsequently, PrPSc is trimmed at
the amino terminus in an acidic compartment
in scrapie-infected cultured cells to form PrP
27–30 (Caughey et al. 1991a). In contrast,
amino-terminal trimming of PrPSc is minimal
in the brain, where little PrP 27–30 is found
(McKinley et al. 1991).

STRUCTURAL FEATURES OF PrPC

AND PrPSc

Determining the structural features that differ
between PrPC and PrPSc will likely provide im-
portant insight into the pathogenic conversion
of PrPC into PrPSc. NMR structures of recombi-
nant PrP from many different species have been
solved over the past 15 years, representing the
best estimate of the structure of PrPC. All reveal
a three alpha-helix bundle protein with two
short antiparallel b-strands (Riek et al. 1996;
James et al. 1997; Riek et al. 1998; Zahn et al.
2000) (Fig. 4). These well-folded structural ele-
ments are composed of the carboxyl terminus of
the protein; the amino-terminal domain is
highly flexible and lacks identifiable secondary
structure under the experimental conditions
employed (Donne et al. 1997). More recently,
a crystal structure of PrP has been obtained,
largely in agreement with the NMR structures
(Antonyuk et al. 2009).

Because PrPSc is insoluble and forms aggre-
gates with some degree of disorder, no success-
ful attempts at crystallization or solution-based
NMR have been reported. Investigations using
solid-state NMR have been limited by the ab-
ility to produce labeled PrPSc and by the molec-
ular size of PrP. However, key insights into the
structure of PrPSc have been obtained through
electron crystallography coupled with compu-
tational modeling (Govaerts et al. 2004a; Wille
et al. 2009b) (Fig. 5). Isomorphous, 2D crystals
were discovered by negative-stain electron
microscopy. Such crystals were found both in
preparations of PrP 27–30 and in preparations
of a “miniprion” composed of 106 residues for-
med from discontinuous PrP segments (termed
PrPSc106). Image processing allowed the extrac-
tion of limited structural information to 7-Å
resolution. Models were generated based on
known protein folds, constrained by space fill-
ing of the 2D crystals, the amount of b-sheet
content measure by FTIR (Caughey et al.
1991b; Pan et al. 1993), the locations of the
glycosylation sites, and the location of the
deleted protein segments in PrPSc106 (Supatta-
pone et al. 1999a). Only models including par-
allel b-helices as the key element could satisfy
the constraints (Wille et al. 2002). Subsequent
computational modeling identified trimeric,
left-handed b-helices as the most likely sub-
structure for PrPSc (Govaerts et al. 2004a).
X-ray diffraction patterns obtained from PrP
27–30 fibers were consistent with this model
(Wille et al. 2009a).

Given the evidence that distinct confor-
mations of PrP result in different prion strains
(see sections “De novo Generation of Prions”
and “Prion Strains” below), it is perhaps better
to speak of prion structures rather than a single
structure. Whether the structural differences
that encipher prion strains are subtle or more
substantial remains to be determined.

DE NOVO GENERATION OF PRIONS

Refolding PrP into an infectious conformation
in vitro has been considered by many to be final
proof of the protein-only hypothesis. Many
studies have advanced knowledge toward
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achieving this goal. In Tg(PrP,P101L) mice, an
experimental model of human GSS, prion dis-
ease was transmitted from high-expressing
Tg(PrP,P101L) mice to Tg mice expressing low
levels of MoPrP(P101L), which are far less sus-
ceptible to spontaneous prion disease (Hsiao
et al. 1990; Hsiao et al. 1994; Nazor et al.

2005). Similar transmissions were later ac-
complished with a synthetic, 55-residue peptide
carrying the same P!L mutation and folded
into a b-rich structure (Kaneko et al. 2000;
Tremblay et al. 2004).

Synthetic prions were formed by polymer-
ization of recombinant MoPrP into amyloid
fibers (Legname et al. 2004). Inoculation of
PrP amyloid fibers into Tg9949 mice, which
overexpress amino-terminally truncated PrP at
16–32� levels, led to the recovery of prions
containing protease-resistant (r) PrPSc and to
neuropathological changes typical of prion dis-
ease. The conformational stability of the result-
ing prion isolate, as measured by the GdnHCl
concentration required to denature half of the
sample ([GdnHCl]1/2), was unusually high
(�4.5 M), confirming the novelty of the prion
strain generated (Legname et al. 2005). Subse-
quent serial passage of this isolate led to short-
ened incubation periods and a decrease in the
conformational stability of the resulting prion
isolate. Combining these data with those avail-
able for naturally occurring prion strains, it
was found that the conformational stability of
prions was directly proportional to the incuba-
tion period (Fig. 6) (Legname et al. 2006).

Based on the relationship between con-
formational stability and incubation period
(Legname et al. 2006), the conditions used to
refold recombinant PrP were altered to generate
a spectrum of amyloids with different confor-
mational stabilities. The amyloids were inocu-
lated into mice that moderately overexpress
full-length PrP (8�), resulting in distinguish-
able prion strains with incubation periods and
conformational stabilities dictated by the sta-
bility of the recombinant PrP amyloid fibers
(Colby et al. 2009). Amyloids with higher con-
formational stability resulted in prions with
longer incubation periods, whereas amyloids
of low conformational stability caused prion
disease in shorter durations. Amyloids of
intermediate stability enciphered intermediate
incubation periods. This direct demonstration
of the conformational basis of prion strain
diversity provided further evidence that syn-
thetic prions arise from the recombinant amy-
loid preparations, and not from the host or
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Figure 4. Structures of PrPC. (A) NMR structure of
Syrian hamster (SHa) recombinant (rec) PrP(90–
231), which presumably resembles PrPC. Blue,
a-helices; yellow, loops; green, b-strands (James
et al. 1997). (B) Schematic diagram showing degree
of structure for entire PrP polypeptide chain based
on f1Hg-15N NOE data. Red, most flexible regions
of the protein; blue, least flexible regions (James
et al. 1997). Arbitrary structure is shown for residues
23–89. Reprinted, with permission, from Prusiner
2004.
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from contamination. If prions were arising
spontaneously in the host, one would expect
the strain properties to be independent of the
amyloid properties. Exhaustive negative con-
trols also excluded spontaneous prion genera-
tion and contamination.

In other work, amyloid inoculation of
Tg9949 mice overexpressing an amino-ter-
minally truncated PrP resulted in novel, pro-
tease-sensitive, synthetic prions (Colby et al.
2010). Although these strains lacked protease
resistance, they caused severe neuropathology
and were serially transmissible both in Tg9949
mice and in Tg mice moderately overexpress-
ing full-length PrP. Most, if not all, naturally oc-
curring prions contain some fraction of PrPSc

in a conformation that resists protease digestion
(McKinley et al. 1983). This observation has led
some researchers to equate protease resistance

with prion infectivity and pathogenesis. How-
ever, many naturally occurring prion strains
also contain PrPSc in a conformation that is sen-
sitive to protease digestion (Safar et al. 1998).
The novel, protease-sensitive, synthetic prion
strains showed that sPrPSc is both transmissible
and pathogenic.

Synthetic prions have also been generated
using sonication (Deleault et al. 2007; Barria
et al. 2009; Wang et al. 2010). Infectivity was
spontaneously generated in sonicated mixtures
of polyanions combined with PrPC, which was
accompanied by copurified lipids (Deleault
et al. 2007). Prions were generated in a simi-
lar fashion using brain homogenate as the
substrate, rather than minimal components
described earlier (Barria et al. 2009). Prions
created in these studies using PrPC or normal
brain homogenate had titers that were sufficient

Figure 5. Structural models of PrPSc. (A) Residues
89–174 of PrP threaded into a left-handed b-helix
based on UDP N-acetylglucosamine O-acyltrans-
ferase from Escherichia coli (PDB ID code 1LXA).
(B) Model of the monomer of PrP 27–30 with the
a-helical region (residues 177–227) as determined
by NMR spectroscopy shown in red. (C) The crystal
structure of the trimeric carbonic anhydrase from
Methanosarcina thermophila. (D) Trimeric model of
PrP 27–30 built by superimposing three monomeric
models onto the structure shown in C. (E) Projection
map of PrP 27–30 obtained by processing and averag-
ing three independent 2D crystals of PrP 27–30.
(F) Statistically significant differences between PrP
27–30 and PrPSc106 overlaid onto the projection
map of PrP 27–30. The differences attributed to the
internal deletion of PrPSc106 (residues 141–176) are
shown in red; the differences in glycosylation between
PrP 27–30 and PrPSc106 are shown in blue. (G)
Superimposition of the trimeric left-handed model
onto the EM maps. The trimeric left-handeda-helical
model of PrP 27–30 is superimposed on a 1:1 scale
with the electron crystallographic maps of PrP 27–
30. (H ) The scaled trimeric model was copied onto
the neighboring units of the crystals to show the crys-
tallographic packing suggested by the model. Bars in
panels E–H represent 50 Å. Reprinted with permis-
sion, from Govaerts et al. 2004a.
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to infect hamsters with prolonged incubation
periods of 113 to 168 days, compared to incuba-
tion periods of approximately 70 days with some
naturallyoccurring prion strains (Kimberlinand
Walker 1977). Synthesis of high-titer prions
from recombinant PrP was reported using soni-
cation in the presence of lipids and RNA (Wang
et al. 2010); the infectivity of these prions was
comparable to naturally occurring strains.

Synthetic yeast prions have also been con-
structed. A recombinant fragment of the Sup35
NM protein fragment was polymerized into
amyloid fibrils and introduced into yeast (Spar-
rer et al. 2000). Similar studies have also been
performed for the [HET-s] and [URE3] fungal
prions (Maddelein et al. 2002; Brachmann
et al. 2005).

PRION STRAINS

Naturally occurring prion strains have been
isolated, each with a distinct incubation period
and characteristic pathology; these traits are

often conserved on serial transmission (Dickin-
son and Meikle 1969; Fraser and Dickinson
1973). Because prions are composed only of
protein and replicate using the PrP substrate
present in the host, differences in prion strains
cannot be attributed to genetic variability,
which accounts for the existence of viral strains.
Rather, prion strains arise from conforma-
tional variability—that is, PrP can assume
several different, self-propagating conforma-
tions, each of which enciphers a distinct prion
strain. Biochemical evidence (Bessen and
Marsh 1994; Collinge et al. 1996; Telling et al.
1996; Peretz et al. 2001a) and recent studies
with synthetic prions support this theory
(Colby et al. 2009).

Studies with synthetic prions showed that
the mouse synthetic prion (MoSP) strain 1
gradually adopted properties associated with
naturally occurring prion strains such as RML,
including short incubation times and low con-
formational stabilities (Ghaemmaghami et al.,
in prep.). These changes were accompanied by
a structural transformation, as indicated by a
shift in the molecular mass of the protease-
resistant core of MoSP1 from approximately
19 kDa [MoSP1(2)] to 21 kDa [MoSP1(1)].
We found that MoSP1(1) and MoSP1(2) could
be bred with fidelity when cloned in N2a cells
but when present as a mixture, MoSP1(1) prop-
agation led to the disappearance of MoSP1(2).
In culture, the rate of this transformation could
be modified by the culture media and the
presence of polyamidoamines. These findings
showed that prions exist as conformationally
diverse populations and each strain can repli-
cate with high fidelity. Competition and selec-
tion among the pool of strains provide a
mechanism for prion transformation and adap-
tation (Li et al. 2010).

Yeast also show multiple prion strains. A
recombinant Sup35 protein fragment refolded
into two different conformations was shown
to initiate two distinct [PSIþ] strain phenotypes
on transduction into yeast (King and Diaz-Ava-
los 2004; Tanaka et al. 2004). The propagation
rates for these synthetic yeast prion strains
were coupled to their conformational stability
(Tanaka et al. 2004), a finding that was later
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directly proportional to the length of the incubation
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extended to mammalian prion strains (Leg-
name et al. 2006; Colby et al. 2009).

ENLARGING SPECTRUM OF PRION-LIKE
DISEASES

The discovery that prions form amyloid
prompted one of us to suggest that the common
neurodegenerative diseases are also caused by
prions (Prusiner 1984; Prusiner 2001) despite
the inability to transmit such illnesses to mon-
keys and apes (Goudsmit et al. 1980). Brain
extracts from either Alzheimer’s patients or
aged Tg mice expressing mutant APP injected
into the brains of Tg mice expressing the
amyloid precursor protein (APP) carrying
the Swedish point mutation (Haass et al.
1995) accelerated the formation of Ab amyloid
plaques (Meyer-Luehmann et al. 2006; Eisele
et al. 2009). Brain extracts from Tg mice ex-
pressing mutant tau injected into the brains of
Tg mice expressing human wt tau produced
aggregates of human tau (Clavaguera et al.
2009). Similar results were found for aggre-
gated tau protein added to cultured cells, which
induced the aggregation of nascent tau (Frost
et al. 2009). These findings suggest that the
tauopathies result from a prion-like process
that induces hyperphosphorylation of tau fol-
lowed by polymerization into filamentous
aggregates. The production of hyperphospho-
rylated tau also appears to be stimulated by
oligomers of the Ab peptide, whereas amyloid
fibrils comprised of Ab are a much less efficient
stimulus (Lambert et al. 1998). An expanded
44-mer polyglutamine repeat of a truncated
huntingtin protein was found to stimulate ag-
gregation of a “normal” 25 mer; this aggregated
state could be maintained in cell culture over
many generations, arguing for prion-like prop-
agation of huntingtin aggregates (Ren et al.
2009). Patients suffering from Parkinson’s dis-
ease who received fetal grafts of substantia nigral
cells later showed aberrantly folded a-synuclein
in Lewy bodies within the transplanted grafts,
arguing that a-synuclein acted like a prion
(Kordower et al. 2008; Li et al. 2008; Olanow
and Prusiner 2009). Taken together, these
findings argue that prion-like, self-propagating

states feature in many different, if not all, neuro-
degenerative diseases.

A general model of propagation of mamma-
lian prion-like conformational states should
include the following considerations (Table 2):
First, when the precursor protein is converted
to a prion, it undergoes posttranslational mod-
ification. Such changes generally result in the
acquisition of a high b-sheet content. Proteo-
lytic cleavage features in Alzheimer’s disease
(AD) (Glenner and Wong 1984; Masters et al.
1985) and hyperphosphorylation occurs in
both AD and the tauopathies (Grundke-Iqbal
et al. 1986; Lee et al. 1991). Second, the b-
sheet–rich conformers form oligomers that
are toxic to cells (Walsh and Selkoe 2007).
Third, such oligomers are generally rendered
less toxic when they polymerize into amyloid
fibrils. Fourth, amyloid fibrils are sequestered
into biological wastebaskets in the CNS where
they are designated “plaques” in the extracellu-
lar space, and “tangles” or “bodies” within the
cytoplasm of neurons. Inert PrP amyloid fibrils
coalesce to form plaques in prion diseases
whereas fibrils composed of the Ab peptide
form plaques in AD. Paired-helical filaments
composed of hyperphosphorylated tau form
neurofibrillary tangles in AD, whereas tau fi-
brils coalesce into deposits called Pick bodies
in one of the frontotemporal dementias gener-
ally labeled Pick’s disease. In other tauopathies,
less well-formed tau aggregates have been

Table 2. Some characteristics of mammalian prions.

† When the precursor protein is converted to a prion,
it undergoes posttranslational modification
during which it becomes enriched in b-sheet
structure.

† b-sheet–rich conformers form oligomers that are
toxic to cells.

† Prion oligomers are generally rendered less toxic
when they polymerize into amyloid fibrils.

† Amyloid fibrils are sequestered in biological
wastebaskets such as plaques, tangles, or inclusion
bodies.

† Mutations in specific proteins cause familial
neurodegenerative diseases by facilitating
conversion of the protein into the prion state.
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identified inside cells. After a-synuclein ac-
quires a high b-sheet content, it polymerizes
into amyloid fibrils that coalesce in neurons to
form Lewy bodies. Fifth, mutations in the corre-
sponding proteins cause familial neurodegener-
ative diseases and facilitate conversion of the
protein to its prion state. For example, over 40
mutations in PrP have been identified that
cause GGS, fCJD, and FFI (Hsiao et al. 1989;
Goldfarb et al. 1991b; Medori et al. 1992).
Mutations in APP or presenilin (g-secretase)
that cleaves APP into Ab cause familial AD
(Goate et al. 1991), and duplication of the
APP gene in Down’s syndrome invariably causes
AD (Goldgaber et al. 1987). Mutations in tau
cause tauopathies (Hutton et al. 1998). Muta-
tions in a-synuclein cause familial Parkinson’s
disease (Polymeropoulos et al. 1997); dupli-
cation or triplication of the a-synuclein gene
also causes Parkinson’s disease (Singleton
et al. 2003).

Prions need not cause disease but may
function as regulators of cell metabolism. In
yeast, all of the prion proteins found to date
have a CG-rich domain that adopts a b-
sheet–rich conformation that polymerizes
into amyloid. The Sup35 protein in the prion
state causes a reduction in the fidelity of poly-
peptide chain termination during protein syn-
thesis (Wickner et al. 2007). The Aplysia prion
comprised of the cytoplasmic polyadenylation
element binding (CPEB) protein appears to
facilitate polyadenylation within limited re-
gions of neuronal cells, such as dendrites, and
has been suggested to function in long-term
memory (Si et al. 2010).

TOWARD THERAPEUTICS FOR
PRION DISEASES

Despite these advances in understanding prions
and many of the neurodegenerative diseases, no
treatment is currently available to halt the pro-
gression of any of these illnesses. Studies of
prions in mice have elucidated several aspects
of neurodegeneration that may prove useful in
developing effective therapeutics. First, reduc-
tion of the precursor protein PrPC prolongs
the incubation time (Büeler et al. 1993; Prusiner

et al. 1993; Safar et al. 2005). Second, slowing
prion formation by inhibiting of the formation
of nascent PrPSc prolongs the incubation time
(Kawasaki et al. 2007). Third, reducing the
availability of PrPC in cells or mice where prion
infection has already been established allows for
existing prions to be cleared (Enari et al. 2001;
Peretz et al. 2001b; Safar et al. 2005). Fourth,
enhancing the clearance of PrPSc provides an
alternative route of action for therapeutic inter-
vention (Supattapone et al. 1999b; Supattapone
et al. 2001).

Blocking conversion of PrPC to PrPSc would
seem to be the most practical therapeutic
approach, as the cellular pathogenesis of prion
disease is downstream of this event and not
well understood. Many compounds that inhibit
conversion have been identified, including
polysulfated anions, dextrans, Congo red dye,
oligonucleotides, and cyclic tetrapyrroles (for
reviews, see Trevitt and Collinge [2006]; Sim
and Caughey [2009]; Silber [2010]). Effective
treatment for prion disease is hampered by the
difficulty of these and other putative therapeu-
tics to access the CNS, and by the difficulty of
identifying small molecules that can prevent
the protein–protein interactions that result
in propagation of alternatively folded protein
isoforms. Studies with a phenylhydrazone re-
vealed restricted efficacy for specific prion
strains (Kawasaki et al. 2007) whereas studies
with the drug quinacrine revealed the develop-
ment of drug-resistant prions (Ghaemmaghami
et al. 2009).

It seems likely that studies on therapeutics
for prion diseases will inform the development
of drugs that halt AD, the frontotemporal
dementias, or Parkinson’s disease; moreover,
the lack of success in treating such diseases
argues for new paradigms. Work on the prion
diseases suggests that treatment for a limited
time that reduces or interrupts the formation
of nascent prions may be sufficient for the nor-
mal cellular clearance mechanisms to overtake
the synthesis of new prions. Such an approach
would argue for the development of drugs
that can be administered for a short period of
time instead of many years, which is the com-
monly held supposition.
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Gerstmann-Sträussler-Scheinker syndrome. Neurology
41: 681–684.

Hsiao KK, Groth D, Scott M, Yang S-L, Serban H, Rapp D,
Foster D, Torchia M, DeArmond SJ, Prusiner SB. 1994.
Serial transmission in rodents of neurodegeneration

from transgenic mice expressing mutant prion protein.
Proc Natl Acad Sci 91: 9126–9130.

Hsiao K, Meiner Z, Kahana E, Cass C, Kahana I, Avrahami
D, Scarlato G, Abramsky O, Prusiner SB, Gabizon R.
1991a. Mutation of the prion protein in Libyan Jews
with Creutzfeldt-Jakob disease. N Engl J Med 324:
1091–1097.

Hsiao KK, Scott M, Foster D, Groth DF, DeArmond SJ,
Prusiner SB. 1990. Spontaneous neurodegeneration in
transgenic mice with mutant prion protein. Science
250: 1587–1590.

Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S,
Houlden H, Pickering-Brown S, Chakraverty S, Isaacs
A, Grover A, et al. 1998. Association of missense and
5’-splice-site mutations in t with the inherited dementia
FTDP-17. Nature 393: 702–705.

Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B,
Baxter D, Pitstick R, Young R, Spicer D, et al. 2009. A sys-
tems approach to prion disease. Mol Syst Biol 5: 252.

Jackson WS, Borkowski AW, Faas H, Steele AD, King OD,
Watson N, Jasanoff A, Lindquist S. 2009. Spontaneous
generation of prion infectivity in fatal familial insomnia
knockin mice. Neuron 63: 438–450.

James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H,
Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner
SB, et al. 1997. Solution structure of a 142-residue
recombinant prion protein corresponding to the infec-
tious fragment of the scrapie isoform. Proc Natl Acad
Sci 94: 10086–10091.

Jeffrey M, Goodsir CM, Bruce M, McBride PA, Scott JR,
Halliday WG. 1994. Correlative light and electron mi-
croscopy studies of PrP localisation in 87V scrapie. Brain
Res 656: 329–343.

Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M,
Tremblay P, Safar J, Prusiner SB, DeArmond SJ, et al.
2000. A synthetic peptide initiates Gerstmann-Sträuss-
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