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Abstract

The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to
undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of
specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells
within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However,
in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to
revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the
dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for
therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy
directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell
phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical
investigation of this tumor trait and contributes to a quantitative understanding of cancer.
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Introduction

Traditionally, many different cell types within a tumor have

been considered to have tumorigenic potential and possess the

ability to cause cancers in secondary recipients. By contrast, the

cancer stem cell hypothesis suggests that only a small subpopu-

lation of tumor cells has that potential [1]. This hypothesis has

been shown consistent with data from such diverse cancer types as

chronic and acute myeloid leukemias [2,3], breast cancer [4],

colorectal cancer [5], mesenchymal neoplasms [6], head and neck

squamous cell carcinoma [7], and pancreatic cancer [8]. The

investigation of cancer stem cells in melanoma, however, has led to

controversial findings. Some studies suggested that melanoma cells

that are capable of transplanting the disease are exceedingly rare

[9] while others, using more severely immunocompromised mice,

found that cells with those capabilities are very common within the

tumor [10]. Similarly, the frequency of tumor cells positive for

stem cell-like markers in breast cancer varies according to the stage

and subtype of the tumor [11].

These findings have led to discussions about the applicability of

the cancer stem cell hypothesis to all tumor types, and also the

ability of xenotransplantation assays to reliably identify cancer

stem cells [12,13]. The differential ability of mouse models to

detect cancer stem cells may be explained by a context-dependent

phenotype of those cells, as supported by evidence from co-

injection experiments of stromal and cancer cells [10]. In these

studies, the efficiency of transplantation of putative cancer stem

cells was higher when stromal cells were co-injected as compared

to injection of cancer stem cells alone. This data suggests that the

ability of cells to initiate neoplastic growth may not only depend on

the severity of immunodeficiency of assay mice, but also on the

microenvironmental context of these cells [14].

The phenotypic plasticity of stem cells has been a topic

attracting great interest. Studies of cells in the central nervous

system, for instance, have shown that certain extracellular signals

can induce oligodendrocyte precursor cells to dedifferentiate into

multipotential neural stem cells [15]. These extracellular signals

are provided through exposure to fetal calf serum and certain

cytokines, including some bone morphogenic proteins, as well as

basic fibroblast growth factor (bFGF), and cause many purified

oligodendrocyte precursors to revert to a state that resembles that

of multipotential neural stem cells [15]. Similarly, a study in which

mature astrocytes were exposed to transforming growth factor a
(TGFa) demonstrated that a single extracellular factor is sufficient

to induce differentiated cells of the central nervous system to

regress into a stem-like cell stage [16]. This observed plasticity of

normal tissue stem cells has implications for tissue organization in

general, and the view of rigid differentiation hierarchies of cells

must be revised in light of these findings.

Observations parallel to those observing a dedifferentiation

potential of normal cells have also been made with regard to

cancer cells. A recent study identified signaling within the

perivascular niche as a driving force for tumor cells to acquire

stem cell characteristics. In this study, nitric oxide was shown to

activate Notch signaling via cGMP and PKG in a subset of glioma

cells resulting in acquisition of the side population phenotype and
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increased neurosphere and tumor formation [17]. These alter-

ations occurred within as little as two hours of treatment and had

long-term effects on the phenotype generally associated with stem

cell character. This plasticity of tumor stem cells may also apply to

liquid tumors, as it was recently shown that leukemia-initiating

cells in AML patients harboring mutations in nucleophosmin

(NPM) can reside in the CD34+ as well as CD34- fraction [18].

The ability of committed cancer progenitors to dedifferentiate

to a stem-like state has important implications for the dynamics of

tumor progression and the response to therapy. In this paper, we

design a novel mathematical model to quantify the effects of the

dedifferentiation rate on disease outcome. As all mathematical

modeling approaches, our framework represents an abstraction of

the biological system and as such should be considered as a toy

model to investigate several characteristics of the system. This

work is part of a growing literature describing mathematical

investigations of cancer stem cells [19,20,21,22,23,24].

Methods

vWe designed a simple mathematical model to investigate the

dynamics of different cell populations during tumor progression and

treatment. The model considers three differentiation stages for both

the healthy and the cancer cell differentiation hierarchies. Stem cells

reside at the top of the hierarchy and give rise to progenitor cells,

which in turn give rise to differentiated cells (Fig. 1). Denote the

abundances of healthy stem, progenitor, and differentiated cells by

x0, x1, and x2, respectively, and the abundances of the corresponding

cancer cell types by y0, y1, and y2. Healthy stem cells proliferate at

rate rx and die at rate d0, and give rise to healthy progenitors at rate ax

per day; the rate ax also includes the possibility of limited expansion

in the progenitor compartment via symmetric self-renewing

progenitor cell divisions. Progenitors die at rate d1 and give rise to

healthy differentiated cells at rate bx per day; the latter cells die at

rate d2. Similarly, cancer stem cells proliferate at rate ry and give rise

to cancer progenitors at rate ay, which in turn give rise to

differentiated cancer cells at rate by per day. Again, the rate by

includes the possibility of differentiated cell replication. The death

rates per day of the cancer cell types are denoted by c0, c1, and c2. In

the simplest form of our model, we consider these parameters to be

constant unless external factors – such as the administration of

treatment – are applied to the system. However, the model can easily

be extended to include more complex scenarios such as variability in

the microenvironment, involvement of the immune system, and

interactions between cancer and stromal cells. Such situations may

be described by considering a distribution of parameters from which

the values are selected. In the absence of estimates for the

parameters and their distributions, however, we chose to analyze

the model in its simpler form of constant parameter values.

In addition to their ability to produce differentiated cancer cells,

cancer progenitors may regress to a stem-like state via genetic,

epigenetic, or other mechanisms [17]. The rate at which cancer

progenitors dedifferentiate per day is denoted by c. This rate may

be a function of the microenvironmental conditions of these cells

and can also vary over time as tumors become more aggressive.

There may also be a similar propensity of healthy progenitor cells

to regress to a stem cell like state [15,16]; a rate of dedifferentiation

of healthy progenitors can be included in the model but is

neglected for purposes of clarity. We consider the production of

stem cells to be limited by the density of both healthy and cancer

stem cells; this modeling assumption is made because stem cell

numbers are limited by the availability of extracellular resources as

well as spatial constraints within the tissue, and therefore the

production of stem cells is constrained by those resources and

spatial considerations regardless of whether they are produced by

symmetric division or dedifferentiation. The density dependence is

achieved by the functions wx~1{ x0zvy0ð Þ=kxand wy~1{
x0zy0ð Þ=ky for these two cell types. The terms kx and ky represent

the carrying capacity that the healthy and cancer stem cells may

expand to, and the term v represents the increased crowding that

cancer cells can tolerate. It is for this density dependence effect

that we include the healthy differentiation hierarchy in our system.

Note that the parameters kx and ky can be scaled to describe

situations with extensive competition between cells (large extent of

density dependence) as well as situations with little competition.

Then the basic mathematical model is given by

_xx0~ rxqx{d0ð Þx0

_yy0~ ryqy{c0

� �
y0zcqyy1

_xx1~axx0{d1x1

_yy1~ayy0{c1y1{cqyy1

_xx2~bxx1{d2x2

_yy2~byy1{c2y2

ð1Þ

For shorthand we will write _xx~fx xð Þ and _yy~fy yð Þ instead of

equation (1). In order to study the dynamics of these cells in

response to therapy, we denote the rates of production of cancer

cells during treatment by ~rryƒry, ~aayƒay, and ~bbyƒby. We may

also investigate an additional or alternative effect of therapy on the

death rates of cancer cells, leading to increased rates during

treatment: ~cc0§c0, ~cc1§c1, and ~cc2§c2. Note that we do not allow

the terminally differentiated cells to dedifferentiate to give rise to

progenitors; this modeling assumption is made since in most tumor

types, terminally differentiated cancer cells are post-mitotic and

therefore incapable of dedifferentiating.

The model outlined above considers the dynamics of treatment

response without the possibility of acquired resistance. Even drugs

that elicit a dramatic initial response often fail later on due to the

emergence of resistance mutations which render the drug

ineffective. Two prominent examples are the point mutations in

BCR-ABL and EGFR that confer resistance against the small

molecule inhibitors imatinib/dasatinib and erlotinib/gefitinib

[25,26]. In the context of our model, the first cell carrying a

resistance mutation can only initiate a long-lived clone if it is a

stem cell, or alternatively a progenitor that dedifferentiates to a

stem-like state. Denote the rate at which a resistance mutation

arises per cell division by u. The probability of resistance depends

on the total number of stem cell divisions and a fraction of

progenitor cell divisions, given by

R tð Þ~
ðt

0

~rryy0 sð Þzcy1 sð Þ
� �

ds

Note that a resistant cell can arise during a division of a sensitive

cancer stem cell or during a dedifferentiation event of a sensitive

cancer progenitor cell. Then the probability that at least one

resistant cell that will persist in the population has arisen by time t

is given by P tð Þ~1{ exp {uR tð Þ½ �.
Furthermore, the basic mathematical model as given by

equation (1) can be expended to include a differentiation hierarchy

of drug-resistant cancer cells. Denote the abundance of resistant

stem, progenitor and differentiated cancer cells by z0, z1 and z2,

Cancer Stem Cell Plasticity
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respectively. Then the dynamics of the system including resistant

cells is given by

_xx0~(rxwx{d0)x0

_yy0~ ry 1{uð Þwy{c0

� �
y0zcwyy1

_zz0~ryuwyy0z rzwz{c0ð Þz0zcwzz1

_xx1~axx0{d1x1

_yy1~ayy0{c1y1{cwyy1

_zz1~azz0{c1z1{cwzz1

_xx2~bxx1{d2x2

_yy2~byy1{c2y2

_zz2~bzz1{c2z2

ð2Þ

Here the growth, death and differentiation rates of resistant cancer

cells are denoted by the parameters ry, az, bz, and c0, c1, and c2,

respectively.

Results

Let us first discuss the effects of the dedifferentiation parameter

on the dynamics of treatment response. Figure 2a shows the number

of differentiated cancer cells as a function of time after the initiation

of therapy. Note that the dedifferentiation parameter c has a strong

affect on the tumor’s response to treatment; in particular, a larger

value of c corresponds to a poorer response to treatment. In

Figure 2b, we investigate the effect of the dedifferentiation rate, c,

on the probability of resistance, R(t), finding that larger values of c
lead to a substantially higher risk of developing resistance.

The dynamics of treatment response without resistance
mutations

Let us now consider specific examples for the treatment

response of a tumor for a fixed level of the dedifferentiation

parameter, c. In the following we investigate the effects of a variety

of hypothetical drugs that target different cells within the

differentiation hierarchy. Note that these scenarios describe

idealized treatments which exert the specified effects onto cancer

cells; these scenarios serve as examples of the dynamics of the

system during drug treatment. Table 1 provides a summary of the

four treatment strategies considered.

First, let us investigate a hypothetical drug that reduces the

production rate of both progenitor and differentiated cells. Treatment

1 in Figure 3 provides a numerical example for such a situation. The

panels of the figure show the abundance of differentiated cancer

cells over time in response to treatment (Fig. 3a) as well as the

probability of resistance emerging during treatment (Fig. 3b). Note

that this type of treatment leads to a reduction in the number of

cancer progenitors and differentiated cells, but is incapable of

depleting cancer stem cells. Such interventions might reduce

symptoms for a limited time by debulking the tumor. However,

the persistence of cancer stem cells in this scenario prevents tumor

eradication and permits the evolution of acquired resistance, which

renders the response to treatment short-lived.

Figure 1. Schematic representation of the mathematical model. The mathematical model considers three levels of the differentiation
hierarchy of cells: stem cells, progenitors and differentiated cells. These cell types are present in the system as healthy cells (left), drug-sensitive cancer
cells (middle) and drug-resistant cancer cells (right). Stem cells give rise to progenitors which in turn give rise to differentiated cells. Additionally,
cancer progenitors may have the ability to dedifferentiate to stem cells. The rate of dedifferentiation is denoted by c. Drug-sensitive cancer stem cells
produce drug-resistant cancer stem cells at rate u per cell division.
doi:10.1371/journal.pone.0014366.g001
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In contrast to the scenario above, a drug may inhibit the

production of all cancer cell types but still fail to completely

eradicate the cancer cell population. To illustrate this point,

consider a drug that inhibits all three cancer cell types. A drug

that elicits this response is shown as Treatment 2 in Figure 3.

The performance of a drug with these properties is a slight

improvement over the example considered previously; however,

the probability that acquired resistance will evolve is still

substantial since the drug cannot deplete the cancer stem cell

population. This type of drug allows a stable population of cancer

stem cells to remain and continuously repopulate the progenitor

and differentiated cells.

Let us now consider a drug that reduces the growth rate of all

cancer cell types to a larger extent. An example of this type of

therapy is shown as Treatment 3 in Figure 3. A drug eliciting these

effects is capable of eradicating the disease. Furthermore, the

probability of resistance is small since the cancer stem cell

population is driven to extinction and thus, fewer chances for the

emergence of a resistance mutation to arise. Once treatment has

eradicated cancer stem cells, cancer progenitor and differentiated

cells equally go extinct since the latter cell types do not have

(sufficient) self-renewing abilities.

Lastly, let us consider a drug that inhibits cancer stem cells only.

In this setting, the rate of depletion of the total cancer cell

population may be too slow to be considered effective; an example

is shown as Treatment 4 in Figure 3. The advantage of such a drug is

that the chance of drug-resistant tumors is diminished since there

are so few stem cells. However, the tumor burden remains at a

relatively high level for a prolonged period of time because

differentiated cancer cells are unaffected by the drug.

These four treatment strategies represent idealized therapies;

however, their study leads to insights into how heterogeneous tumor

cell populations respond to treatments that affect particular types of

cells, and suggests the most desirable subpopulation to target.

The dynamics of treatment response with resistance
Instead of considering the proportion of patients that develop

resistance, it is also useful to investigate the expected number of

resistant cells present within a patient for a given mutation rate, u.

In the context of our mathematical model, drug-resistant cancer

stem cells initiate their own cellular differentiation hierarchy (Fig. 1

and equation (2)). With this extension of the mathematical model,

we can investigate an additional aspect of treatment: the

propensity of a drug to delay progression due to resistance, i.e.

the onset of a resistance-driven rebound of the cancer cell

population. Figure 4 shows how drugs that target various

parameters of the cancer cell differentiation hierarchy can have

vastly different effects on the duration of successful treatment

before the onset of resistance.

When comparing drugs that affect the birth and death rates of

cancer stem cells, drugs that target the production of cancer stem

cells lead to a longer time during which treatment is effective and

before resistance emerges. This effect can be seen by comparing

panels a and b with panels c and d of Figure 4, and results from the

fact that a reduction in the number of cancer stem cell divisions

leads to fewer opportunities per unit time for resistant cells to arise.

Figure 4 also shows that dedifferentiation can have a very strong

effect on the time until disease progression. In particular, a change

in the order of magnitude of the dedifferentiation rate has

approximately twice the effect as compared to a change in

magnitude of the mutation rate. Lastly, note that an increased net

growth rate of stem cells delays the rebound of the tumor

population. This fact is due to the maintenance of the stem cell

population near its carrying capacity, which prevents resistant cell

populations from arising since we consider density-dependent

growth dynamics.

Let us now compare the efficacy of different treatment protocols

while also taking into consideration the possibility of resistance

(Fig. 5). We investigate two types of treatment: a drug that causes a

decline in the growth rates of all cancer cell types (Fig. 5 a and c),

and a drug that only inhibits progenitor and differentiated cells

(Fig. 5b and d). When comparing the effectiveness of these two

drugs over short time spans (panels a and b), we find that a drug

that inhibits proliferation for all cell types is preferable as

compared to the other type of treatment – i.e., the total cell

number is significantly lower in the former case. However, over

longer time spans (panels c and d) the drug that only inhibits

Figure 2. The effect of dedifferentiation on the abundance of differentiated cancer cells and the probability of resistance. In panel a,
we show the abundance of differentiated cancer cells over time since the initiation of therapy. In panel b, we plot the probability of resistance versus
time. Growth rates during treatment are ~rry~0:001, ~aay~ay=100 and ~bby~by=750, and death rates are ~cci~di for i = 0,1,2. Other parameters are
rx = 0.005, ry = 0.008, d0 = 0.004, d1 = 0.008, d2 = 0.05, ax = 100d1, bx = 100d2, ay = 2ax, by = 2bx, kx = 1.26106, ky = 66107, u = 561029, and v= 0.1. The
initial condition for the panels is found by simulating system (1) using the pretreatment parameter values and the initial condition x0(0) = 106, x1(0)
= 108, x2(0) = 1010, y0(0) = 1, and y1(0) = y2(0) = 0. We simulate this system until detection time T, i.e., when y2(T) $1012, and then simulate the
treatment phase by running system (1) with the initial conditions x0(T), x1(T), …, y2(T) and the treatment parameter values.
doi:10.1371/journal.pone.0014366.g002
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progenitor and differentiated cells is more effective at preventing

the emergence of resistance. This effect results from the density

dependent growth of cancer stem cells; since this drug does not

inhibit the stem cell population, resistant stem cells never become

established due to the density constraint mechanism. Any resistant

stem cells that arise during administration of this treatment will

have suppressed growth since the stem cell population has already

reached its maximum population size. Note that the short time

span (panels a and b) refers to 500 days after the initiation of

therapy, while the long time span (panels c and d) refers to 5000

days since the start of treatment. The drug shown in panels a and

b does significantly decrease the population of stem cells, and

therefore any resistant stem cell that arises will not be inhibited by

the density constraint mechanism and be able to establish a

resistant clone. Hence in the short term, it is preferable to inhibit

cancer stem cells (panels a and b), while during longer periods of

time (panels c and d), this strategy may backfire because it allows

the resistant tumor stem cells to grow.

A reduction of the dedifferentiation rate has a beneficial effect

regardless of the cell type that the drug targets (Fig. 5). However,

note in Figure 6d that the sensitivity of the system to the

dedifferentiation parameter is decreased with increasing progen-

itor birth rate, ay. An increase in the production of progenitor cells

leads to a larger number of those cells, and thus a decrease in the

dedifferentiation rate will need to be enhanced in order to have a

substantial effect on the stem cell population.

Dedifferentiation increases the risk of pre-existing
resistance

In many cases of treatment failure due to the evolution of

acquired resistance, resistant cells are present at the time of

diagnosis. Let us thus discuss such pre-existent resistance and its

effects on the prognosis of cancer patients (Fig. 6). First we study

the probability of developing resistance prior to detection. Fig. 6a

shows that as the dedifferentiation rate increases, the probability of

pre-existing resistance also increases. This effect arises because

there are more opportunities for resistant cancer stem cells to arise

if an increasing fraction of progenitor cells dedifferentiate to

become cancer stem cells, since we consider the contribution

of dedifferentiating progenitor cells to the total risk of resistance in

the stem cell pool. Fig. 6b displays the number of tumor cells as a

function of time after the initiation of therapy under the

assumption that a small number of resistant cells is present at

the time of diagnosis. Note that the time until the resistant

cells cause a disease rebound is strongly dependent on the

dedifferentiation rate – the larger this rate becomes, the more

rapidly the cancer cell population rebounds due to the expansion

of resistant cells. This finding is consistent with the results shown in

Figure 4.

The success of pulsatile therapy depends on the extent
of dedifferentiation

Anti-cancer therapy is often administered in treatment pulses to

limit the toxicity of these agents. The advantage of treatment

pulses is that higher drug concentrations can be reached using

such a strategy as compared to the continuous dosing regimen.

The disadvantage to pulsatile therapy, however, is that during

treatment breaks, the cancer cell population expands exponentially

Table 1. The effect of different hypothetical treatment
strategies on cancer cell populations.

Stem Cells
Progenitor
Cells

Differentiated
Cells

Treatment 1 2 + +

Treatment 2 + + +

Treatment 3 + + +

Treatment 4 + 2 2

Sensitivity to treatment is denoted by ‘+’ and insensitivity by ‘2’.
doi:10.1371/journal.pone.0014366.t001

Figure 3. The effect of different treatment strategies on the abundance of differentiated cancer cells and the probability of
resistance. The figure shows the abundance of differentiated cancer cells, y2, over time since initiation of therapy in panel a and the probability of
resistance, P(t), as a function of time in panel b. We display four different treatment types that affect the cancer cell populations differentially.
Treatment 1 represents a drug that affects only the production of cancer progenitor and differentiated cells, ~aay~ay=100 and ~bby~by=750. Treatment 2
is a drug affecting all cancer cell types while not inhibiting cancer stem cells by a substantial amount, ~rry~0:005 while ry~0:008, and ~aay~ay=100 and
~bby~by=750. Treatment 3 represents a drug that affects all cancer cell types and has a substantial effect on stem cells, ~rry~0:001, ~aay~ay=100 and
~bby~by=750. Treatment 4 is a drug that decreases only the growth rate of cancer stem cells, ~rry~0:001. The pre-treatment parameters are identical to
those in Figure 2, and in both panels we set ~cci~di for i = 0,1,2.
doi:10.1371/journal.pone.0014366.g003
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and leads to rebounds as well as an increased risk of acquired

resistance. So far, the effects of dedifferentiation of progenitor cells

to a stem cell-like state have not been investigated with respect to

pulsed treatment strategies. Our mathematical model is useful for

evaluating the impact of pulsed therapy with regard to recovery of

the cancer stem cell population by dedifferentiation of progenitors.

Figure 7 shows that higher levels of dedifferentiation, i.e. a

larger rate c, lead to larger rebounds of the cancer cell population

during treatment breaks as well as lower levels of cancer cell

depletion during treatment. Hence the possibility of dedifferenti-

ation of cancer progenitors renders otherwise successful therapy

less effective, to the point of being unsuccessful if the capacity of

progenitors for dedifferentiation is sufficiently large. Fig. 7a

demonstrates the effects of treatment with a drug that only

inhibits the production of cancer stem and progenitor cells. This

scenario leads to a drastic difference between situations with

different levels of the dedifferentiation parameter c. Figure 7b

shows the treatment response to a drug that additionally inhibits

the production of differentiated cancer cells. In this situation, the

difference between varying values of c is not as pronounced since

the drug has a substantial effect on differentiated cancer cells.

Discussion

During normal development, differentiation from stem cells to

final products is unidirectional. Some data suggest that oncogenic

mutations lead to loss of the ability for cells to maintain their

differentiated state. In the case of tumor suppressors, their normal

function may therefore be to maintain the unidirectional flow of

differentiation during development. Their inactivation or alter-

ation of certain signaling pathways may result in the loss of

unidirectionality of this process. Dedifferentiation does not

necessarily refer to a scenario in which every cell reverses its

differentiation phenotype. Instead, a small fraction of committed

progenitor cells may acquire stem cell-like characteristics in

response to genetic or environmental changes, and this small cell

Figure 4. The effect of different cancer stem cell treatment strategies on the time until disease progression. The figure shows the time
until the disease burden increases despite continuous therapy versus the birth rate (panels a and b) and death rate (panels c and d) of cancer stem
cells during therapy. The pre-treatment growth parameters are identical to those in Figure 2, and also ~aay~ay=100 and ~bby~by=750, lastly we set
rz~0:007 az~3ay=4 bz~3bz=4. In panel a, we set ~cci~di for i = 0,1,2, and u = 561029. The parameter ~rry varies along the x-axis and we consider three
different values of c. In panel b, we set ~cci~di for i = 0,1,2, and c = 1024. The parameter ~rry varies along the x-axis and we consider three different values
of u. In panel c, we set ~cci~di for i = 1,2, u = 1027, ~rry~ry , vary ~cc0 along the x-axis and consider three different values of c. In panel d, we set ~cci~di for
i = 1,2, c = 1024, ~rry~ry , vary ~cc0 along the x-axis and consider three different values of u.
doi:10.1371/journal.pone.0014366.g004
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number may lead to qualitatively different dynamics. We refer to

the fraction of cells that dedifferentiate per time unit as gamma. In

this paper, we determine the effects of various values of gamma on

the response of tumors to therapy, which specifically targets

either stem cells or non-stem cells. We have studied four

hypothetical treatment strategies (see Table 1 and the results

section) and have also evaluated the effects of dedifferentiation on

the risk of pre-existing therapy and the success of pulsatile

treatment.

We chose to formulate a simple mathematical framework that

only incorporates the essential considerations of cancer stem,

progenitor and differentiated cells. While our mathematical model

can easily be extended to describe more complicated scenarios

such as interactions of cancer cells with the stroma and immune

system, and the generation of tumor cell heterogeneity through

other avenues such as clonal diversification, we have concentrated

on the analysis of the basic model during different treatment

options. This model will be extended in future work to consider

more complex situations in cancer.

The results obtained from this modeling study indicate that the

response of tumors capable of dedifferentiating is qualitatively

different from a scenario in which treatment cannot completely

eradicate the bulk of tumor cells and the remaining cells lead to a

rebound post-therapy. In the latter case, the remaining cells likely

are sensitive to being re-challenged with treatment and therefore,

pulsed therapy has the potential to eradicate the disease. In a

scenario including the potential of dedifferentiation of cells, pulsed

therapy targeting stem cells is incapable of curing the disease, since

the cancer stem cell pool is continuously repopulated by

progenitor cells during treatment breaks. Therefore, the consid-

eration of a dedifferentiation potential of cancer cells is important

for an accurate understanding of anti-cancer therapy.

Figure 5. The effect of different cancer treatment strategies on the number of differentiated cancer cells in the presence of
resistance. Panels a and b display the tumor cell population after 500 days of treatment for two different types of treatment. In panel a we consider
a treatment that can target all types of cells, and in panel b we consider a treatment that only targets progenitor and differentiated cells. Panels c and
d display the tumor cell population after 5000 days of treatment for two different types of treatment. In panel c we consider a treatment that can
target all types of cells, and in panel d we consider a treatment that only targets progenitor and differentiated cells. The pre-treatment growth
parameters are identical to those in Figure 2 and the growth rate of the resistant cells is identical to that in Figure 4. In all four panels we set
u = 561029 and we set ~cci~di for i = 0,1,2. In panels a and c we set ~aay~ay=100 and ~bby~by=750, and vary ~rry (i.e., the drug effect on cancer stem cells)
along the horizontal axis. In panels b and d, we set ~rry~ry and ~bby~by=750, and vary ~aay (i.e., the drug effect on cancer progenitors) along the
horizontal axis. In panels a and b, the vertical axis corresponds to the number of differentiated cancer cells after 500 days of treatment, including
resistant and sensitive cancer cells. In panels c and d, the vertical axis corresponds to the number of differentiated cancer cells after 5000 days of
treatment, including resistant and sensitive cancer cells.
doi:10.1371/journal.pone.0014366.g005
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There has been significant discussion of the effects of tumor

stem cells that are insensitive to anti-cancer therapy. Standard

therapy inhibits proliferating cells of the tumor bulk but the tumors

recur from drug-insensitive stem cells. Because of this, it has been

suggested that a strategy targeting cancer stem cells is required for

curative therapy. However, if non-stem cells can acquire stem cell

properties with a sufficiently high probability but still much lower

than the differentiation rate, then a stem cell-specific treatment

strategy will be futile. The results of our mathematical modeling

studies described in this paper suggest that higher levels of

dedifferentiation substantially reduce the effectiveness of therapy

directed at cancer stem cells. During pulsed treatment strategies,

the possibility of dedifferentiation leads to higher rebounds of the

cancer cell population during treatment breaks as well as lower

levels of cancer cell reduction during treatment pulses. In addition,

we see that increasing the level of dedifferentiation significantly

Figure 6. The relationship between dedifferentiation rate and pre-existing resistance. Panel a considers the probability of pre-existing
resistance versus the dedifferentiation rate c for several mutation rates. We use the same pre-treatment growth rates as in Figure 2 and the same
growth rates for the resistant cells as in Figure 4, and evolve the system until the tumor population hits size 1012 and then evaluate the probability
of resistance at that time. Panel b plots the response of a tumor population to a drug, assuming that pre-existing resistant population of cells is
present at beginning of treatment. The sensitive cells have the same growth rate as in Figure 2, and the resistant cell have the same growth rates as
in Figure 4.
doi:10.1371/journal.pone.0014366.g006

Figure 7. The effect of the dedifferentiation rate on differentiated cancer cells during pulsatile therapy. The figure shows the dynamics
of differentiated cancer cells in response to a treatment strategy in which the drug is administered for 30 days, followed by a treatment holiday of 30
days during each pulse. Panel a shows the effects of a drug which inhibits cancer stem cell proliferation and their differentiation to progenitors, while
panel b demonstrates the effects of a drug which additionally inhibits the production of differentiated cancer cells from progenitors. Parameters are
~cci~di for i = 0,1,2, ~rry~0:001, ~aay~ay=100, and ~bby~by in (a) and ~bby~by=750 in (b). For both panels, the off-treatment parameters are identical to
those in Figure 2.
doi:10.1371/journal.pone.0014366.g007
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increases the number of stem cell replications and therefore

increases the probability of acquiring a resistance mutation in a

stem cell. In summary, plasticity of the cancer stem cell phenotype

is an important determinant of the effectiveness of therapy, and its

possibility cannot be neglected to gain an accurate understanding

of the treatment response of human tumors.
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