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Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts
introduced by analyzing acquired data consisting of two propagating waves �a fast wave and a slow
wave� as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and
slow waves could therefore lead to enhancement of bone quality assessment. The current study uses
Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic
attenuation �nBUA� parameters in a model of fast and slow wave propagation. Calculations are
carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal
posterior probability densities for parameters in the model. The technique is applied to simulated
data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to
data acquired on a human femur condyle specimen. The models are in good agreement with both the
simulated and experimental data, and the values of the estimated ultrasonic parameters fall within
expected ranges. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3493441�
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I. INTRODUCTION

Quantitative ultrasound is a modality for evaluating
changes in bone quality associated with osteoporosis.1–10

Quantitative ultrasound parameters, such as speed of sound
and broadband ultrasonic attenuation �BUA�, have been
shown to correlate with bone mineral density �BMD�.3,11,12

The frequency dependence of phase velocity �i.e., disper-
sion� may also contain relevant clinical information, but it
has not yet been demonstrated as a reliable indicator of bone
quality.

Cancellous �trabecular� bone is a porous material found
within the cavities of long bones and vertebrae. It consists of
a complex matrix of hard spicules �trabeculae� interspersed
with soft bone marrow. The complicated microstructure is
known to support the propagation of multiple compressional
ultrasonic wave modes, often referred to as fast waves and
slow waves.13–19 When cancellous bone samples are insoni-
fied in through-transmission studies, the two waves occa-
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sionally are separated and clearly distinct in the radiofre-
quency �rf� data. However, in some circumstances, the two
waves can strongly overlap during the time period over
which the rf data are acquired, resulting in interference and
difficulties in distinguishing between the two
waves.5,15,17,18,20,21

Ultrasonic measurements from many laboratories have
revealed that cancellous bone exhibits a linear or nearly-
linear increase in attenuation coefficient with
frequency.1,3,22–24 According to some forms of the causality-
imposed Kramers-Kronig �KK� relations that relate the fre-
quency dependence of the phase velocity to the attenuation
coefficient, materials that exhibit a linear-with-frequency in-
crease in attenuation coefficient are expected to exhibit a
logarithmic-with-frequency increase in phase velocity.22,25–32

However, many laboratories report phase velocity measure-
ments that decrease with frequency, a phenomenon known as
anomalous negative dispersion.2,6,8,20–22,33–37 In an effort to
explain the observed phase velocity dispersion, our Labora-
tory proposed that conventional phase spectroscopy analysis
of acquired radiofrequency data might be influenced by the

presence of multiple interfering compressional wave modes.
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contin
In instances where fast and slow waves are overlapped,
anomalous dispersion measurements could result from ana-
lyzing the interfering waves as if only one wave were
present.20,21 Numerical simulations demonstrated that when
interference between a fast wave and a slow wave occurs, the
acquired waveform exhibits apparent ultrasonic properties
that differ from the true properties of the individual fast and
slow waves.20,21 Solving the inverse problem—that is, recon-
structing the ultrasonic properties of the interfering fast and
slow waves—could provide more reliable information about
the medium under study. Studies undertaken by Sebaa et
al.,38 our Laboratory,39–42 and Wear43 have addressed various
ways of addressing inverse problems in the ultrasonic inves-
tigation of cancellous bone to accomplish these goals. The
objective of the current study is to extend and enhance our
Laboratory’s proposed technique of using Bayesian probabil-
ity theory to recover the properties of individual interfering
waves in data acquired on bone and bone-mimicking phan-
toms.

II. METHODS

A. Ultrasonic data acquisition

Two phantoms capable of producing two overlapping
waves in acquired ultrasonic data were constructed from
plastics. The plastic phantoms were not introduced to strictly
reproduce the mechanisms of attenuation and dispersion in
cancellous bone, which are produced by interactions between
fluid and solid components of a porous medium. However,
for the purposes of investigating a method for estimating the
ultrasonic properties of interfering fast and slow waves de-
scribed in the current study, such phantoms provide an ap-
propriate and less complicated way to generate experimental
data consisting of overlapping waves with the well-
understood ultrasonic properties of the plastics used in their
construction. One phantom was constructed by machining a
step discontinuity into a previously flat and parallel block of
Lexan �polycarbonate thermoplastic resin�. The thick portion
of the block was 8.5 mm, and the thin portion of the block
was 8.1 mm thick. Upon insonation, approximately half the
ultrasonic beam propagates through the thick portion of the
block, and half propagates through the thin side of the block.
The difference in sample lengths for the two portions of the
beam leads to two apparently independent waves in the ac-

FIG. 1. Data acquisition arrangement for the Lexan phantom with a step dis
quired data. The size of the step discontinuity was chosen so
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that the fast and slow wave components would be approxi-
mately 180 degrees out of phase in order to maximize the
degree of interference between the two waves. Data were
acquired on this phantom in a water tank using planar broad-
band transducers with a diameter of 1.3 cm and a center
frequency of 5 MHz �Panametrics V309, Waltham, MA,
USA� in a through-transmission arrangement. Although fre-
quencies near 5 MHz constitute an experimental bandwidth
higher than typical clinical frequencies, the choice of this
bandwidth was to more closely approximate the strength of
signal attenuation in cancellous bone. Signals at frequencies
relevant to clinical studies �those near 0.5 MHz� tend to be
strongly attenuated in cancellous bone, but such frequencies
are not strongly attenuated in plastics. Therefore, the stepped
Lexan plastic phantom was interrogated with 5 MHz signals,
which are more strongly attenuated in plastic.

A second phantom was constructed from rectangular
blocks of Plexiglas �polymethyl methacrylate� and Lexan
�polycarbonate thermoplastic resin�. These blocks were
bonded with Acrylic cement �IPS Corporation, Gardena, CA,
USA� and machined so that the bonded material was flat and
parallel, with a thickness of 1.1 cm. When this phantom is
insonified near the boundary between the plastics, half of the
ultrasonic beam travels through Lexan, and the other half
travels through Plexiglas. Two waves arise in the acquired
data because the speed of sound in Plexiglas is faster than the
speed of sound in Lexan. To better approximate the condi-
tions used in data acquisition on cancellous bone, especially
the high kilohertz frequency range, data were acquired on
this phantom using matched broadband 500 kHz center-
frequency transducers �Panametrics V391, Waltham, MA,
USA� in a through-transmission arrangement. These trans-
ducers were also planar and had a diameter of 2.9 cm. Sche-
matics of the acquisition arrangement are shown in Fig. 1.

Additionally, a human femur condyle specimen was pre-
pared by machining the anterior and posterior sides of the
condyle so that they were flat and parallel, with the trabecu-
lar structure exposed. The marrow was removed, and the
sample was saturated with water. Data were acquired in a
water tank at several spatial sites on the sample using a
matched pair of 1 cm diameter, planar, 500 kHz center-
frequency broadband transducers in a through transmission
arrangement similar to the one used for data acquisition on
the plastic bone-mimicking phantoms.

uity �left� and the phantom made from bonded Lexan and Plexiglas �right�.
The data acquired on the plastic phantoms and on the
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human bone sample served as input to a Bayesian program
that estimated the ultrasonic parameters of a fast wave and a
slow wave.

B. Model of ultrasonic wave propagation

Ultrasonic data can be modeled as

output�f� = input�f��Hfast�f� + Hslow�f�� + n , �1�

where output�f� and input�f� are the complex Fourier spectra
of the model waveform and incident ultrasonic pulse, respec-
tively, Hfast�f� and Hslow�f� are the transfer functions for the
fast and slow waves, and n is an additive noise vector. When
calculations were performed on the simulated input data, a
simulated incident pulse was used to generate input�f�. When
experimentally acquired data were used as input to the cal-
culations, a reference water-path signal was used as the
source for input�f�. The transfer functions are given by

Hfast�f� = Afast exp�− � fastfd�exp� i2�fd

cfast�f�
� , �2�

Hslow�f� = Aslow exp�− �slowfd�exp� i2�fd

cslow�f�
� , �3�

where Afast and Aslow are parameters that account for
frequency-independent signal loss, such as transmission
losses that might occur at interfaces between different media.
The parameters �fast and �slow are the slopes of attenuation
�nBUA� for the fast and slow waves, d is the thickness of the
bone sample, and cfast and cslow are the phase velocities for
the fast and slow waves. To ensure agreement with the
Kramers-Kronig relations, the phase velocities are related to
the attenuation coefficients by

cfast�f� = cfast�f0� + �cfast�f0��2� fast

�2 loge� f

f0
� , �4�

cslow�f� = cslow�f0� + �cslow�f0��2�slow

�2 loge� f

f0
� , �5�

where f0 is a reference frequency chosen from within the
experimental bandwidth and loge denotes the natural loga-
rithm. In all calculations, f0 was set at or near the middle of
the experimental bandwidth, typically corresponding to a fre-
quency near the center frequency of the transducer �either
500 kHz or 5 MHz for the experimentally acquired data�.

In Eqs. �2�–�5�, the nBUAs, �fast and �slow, are ex-
pressed in natural �i.e., base e� units �e.g., cm−1 MHz−1�.
However, a common convention is to report nBUA in units
of dB/cm/MHz. To avoid confusion, the notation �dB

fast and
�dB

slow is used when referring to logarithmic values of
nBUA, and �fast and �slow �without the superscript� is used
when referring to natural units, with the understanding that

� fast
dB =

20

loge�10�
� fast � 8.69 � � fast �6�

and that a similar relationship exists between �slow and
dB
� slow.
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C. Bayesian calculations

Bayesian probability theory44 is used to estimate all of
the parameters appearing in Eqs. �1�–�5�. Bretthorst45 gives a
detailed example of a calculation similar to the one carried
out here. In Bayesian probability theory, everything known
about a parameter is summarized by a probability density
function. For example, the probability for cslow�f0� is repre-
sented symbolically as P�cslow�f0� �DI�, where this notation
should be understood as the posterior probability for the pa-
rameter cslow�f0� given the data D and the prior information I.
The posterior probabilities for each individual parameter can
all be computed from the joint posterior probability for all of
the parameters by a process called marginalization, in which
an integral over the joint posterior probability is performed
over the uninteresting parameters. For example, if all of the
parameters are represented as �= 	Afast ,�fast , cfast�f0� ,
Aslow,�slow,cslow�f0�
, then the posterior probability for
cslow�f0� is computed as

TABLE I. Prior probability distributions for each model parameter. The
means and standard deviations define Gaussian distributions that are
bounded by the low and high values.

Afast Aslow

�dB
fast

�dB/cm
MHz�

�dB
slow

�dB/cm
MHz�

cfast

at 500 kHz
�m/s�

cslow

at 500 kHz
�m/s�

Low 0 0 0 0 1000 1000
Mean 0.5 0.5 43.4 43.4 2000 2000
High 1 1 86.8 86.8 3000 3000
Std. dev. 0.5 0.5 43.4 43.4 1000 1000

FIG. 2. Input data to the Bayesian calculations �top panel, solid black
circles� consisting of the sum of a simulated fast wave �middle panel, black
squares� and slow wave �bottom panel, black circles�. The output of the
Bayesian calculations corresponding to each portion of the data is shown
superimposed in a gray line. The signal-to-noise ratio in the input data is

50:1.
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ue. H
P�cslow�f0��DI� =� � � � � P���DI�dAfastdAslow

�d� fastd�slowdcfast�f0� , �7�

where P�� �DI� is the joint posterior probability for all of the
parameters. In a similar fashion, the posterior probabilities
for the other parameters can be obtained by marginalizing
over all of the parameters except the parameter of interest.

The joint posterior probability for all of the parameters
is obtained by applying Bayes’ theorem,

P���DI� =
P���I�P�D��I�

P�D�I�
, �8�

where P�� � I� is the prior probability for � given only I,
P�D ��I� is the likelihood or the direct probability for the
data given the parameters and the prior information, and
P�D � I� is a normalization constant.

Using the product rule of probability theory, the prior
probability for the parameters can be factored,

P���I� = P�Afast�I�P�� fast�I�P�cfast�f0��I�

�P�Aslow�I�P��slow�I�P�cslow�f0��I� . �9�

To make this factorization, it has been assumed that each
parameter is logically independent; i.e., each prior probabil-
ity depends only on the parameter in question. For example,

TABLE II. The input values of the model parameters
output means and standard deviations of the Monte C

Afast Aslow

Input
value 0.40 0.60
SNR 50:1 0.38�0.03 0.62�0.02
SNR 100:1 0.38�0.02 0.61�0.01
SNR 250:1 0.38�0.01 0.61�0.005

FIG. 3. Marginal posterior probability density functions for the three sets o
integrate to 1. SNRs of 50:1, 100:1, and 250:1 are shown in circles, squar
distributions decreases, indicating increased confidence in the parameter val
J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010
it has been assumed that what is known about Afast does not
depend on cslow�f0�, etc.

In the calculation reported in this paper, it has been as-
sumed that only vague prior information is available about
each parameter. Because the prior information is vague, the
functional form used to represent each prior probability is
found to make very little difference in the resulting posterior
probabilities. Consequently, these prior probabilities were as-
signed using bounded Gaussian distributions that provide
order-of-magnitude estimates of each parameter. A summary
of these order of magnitude estimates is given in Table I.

Finally, the likelihood, P�D ��I� was assigned using a
Gaussian prior probability to represent what was known
about the noise. The standard deviation of this Gaussian was
removed using marginalization with a Jeffreys prior.46

The calculation represented symbolically by Eq. �7� is a
complicated five dimensional integral that must be repeated
six times, once for each parameter appearing in the model.
Such multi-dimensional integrals are difficult or impossible
to solve analytically. Consequently, a Markov chain Monte
Carlo simulation with simulated annealing was used to ap-
proximate these integrals. More details on Bayesian prob-
ability theory are given by Sivia et al.44 and Bretthorst
et al.,45 and further information on how Markov chain Monte
Carlo is used in Bayesian probability theory is available in

to construct simulated data sets are compared to the
amples computed using Bayesian probability theory.

B
fast

/cm
Hz�

�dB
slow

�dB/cm
MHz�

cfast

at 500
kHz
�m/s�

cslow

at 500
kHz
�m/s�

.0 6.9 1600 1500
�1.3 7.2�0.3 1605�7 1500�0.4
�0.7 7.1�0.2 1605�3 1500�0.2
�0.3 7.1�0.1 1603�2 1500�0.1

ulated data at varying signal-to-noise ratio �SNR� levels. All distributions
d triangles, respectively. As the signal quality improves, the width of the
owever, the mean and peak parameter values do not change appreciably.
used
arlo s

�d

�dB
M

20
19.2
19.0
19.4
f sim
es, an
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the literature.47–50 Each calculation took approximately 6 min
to complete on a computer system with two dual core AMD
Opteron 2220 processors.

III. RESULTS

A. Simulated data

As a preliminary investigation, simulated ultrasonic data
were prepared using the model described in Eqs. �1�–�5�,
with varying levels of Gaussian noise added to the simulated
signal to create three different simulated data sets with peak
signal-to-noise ratios of 50:1, 100:1, and 250:1. In each case,
the parameters used to create the simulated data
were 	Afast ,�

dB
fast , cfast�f0� ,Aslow,�dB

slow,cslow�f0�
 �	0.4, 20
dB/cm MHz, 1600 m/s, 0.6, 6.9 dB/cm MHz, 1500 m/s
,
values previously shown to generate a negative dispersion

FIG. 4. Data acquired at 5 MHz on a Lexan phantom with a step disconti-
nuity �top panel, dark circles� with the model constructed from the param-
eters that maximized the joint posterior probability superimposed �top panel,
gray line�. The fast and slow waves that comprise the model are displayed in
the bottom panel.
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using this model for acoustic wave propagation in bone.20

The value of f0 was set at 300 kHz, and the propagation
distance was set at 1 cm.

A comparison of the input fast and slow waves to the
estimated fast and slow waves is shown in Fig. 2. The simu-
lated data used in this example had a signal-to-noise ratio of
50:1, and the estimated fast and slow waves were generated
from the parameters that had maximum posterior probability.
The agreement between the simulated input and model out-
put waves is excellent. In addition, the estimated parameters
are in good agreement with the input values. In additional
numerical studies �not shown�, it was determined that the
Bayesian parameter estimation approach accurately esti-
mated the ultrasonic properties of the fast and slow wave
modes over a range of input parameter values. This ability is
not significantly diminished even when the fast and slow
waves overlap more substantially than illustrated in Fig. 2,
although the uncertainty in the parameter values is increased
as the degree of overlap increases.

The marginal distributions for each parameter in the
model are shown in Fig. 3. Even when the signal-to-noise
ratio is relatively poor, Bayesian probability theory success-
fully estimates the true input parameter values; the peak val-
ues of the marginal distributions do not change appreciably
as signal quality changes. However, the benefit of high qual-
ity data is evident in that the widths of the marginal posterior
probability density functions are reduced as the signal-to-
noise ratio improves. A numerical summary of these results
is presented in Table II.

B. Phantom data

Ultrasonic data acquired on the Lexan phantom with a
step discontinuity are shown in the top panel of Fig. 4, with
the model constructed from the parameters that maximized
the posterior probability shown superimposed on the data. In
these calculations, the value of f0 was set at 5 MHz and the
distances of propagation for the fast and slow waves were set
to the distances corresponding to the thick and thin portions
of the Lexan phantom as measured with calipers. The indi-
vidual fast and slow waves that comprise the model are
shown in the corresponding lower panel. The qualitative
agreement between the input data and the model constructed
using Bayesian probability theory is excellent despite the
large difference in the phases of the fast and slow waves.
Moreover, as shown in Fig. 5, a conventional analysis of the
acquired data in Fig. 4 yields large artifacts near 5 MHz in
both the attenuation coefficient and phase velocity. In con-

FIG. 5. Conventional analysis of the data from a Lexan
phantom with a step discontinuity yields significant ar-
tifacts in the attenuation coefficient and phase velocity
near band center. In contrast, the curves for the fast and
slow waves obtained using Bayesian probability theory
are smoothly varying and consistent with a flat and par-
allel block of Lexan.
Anderson et al.: Bayesian parameter estimation in bone



trast, the attenuation coefficients and phase velocities of the
fast and slow waves obtained with Bayesian probability
theory do not exhibit such anomalous behavior, and are con-
sistent with the expected values for Lexan.

A summary of the parameter estimates �the means and
standard deviations of the Monte Carlo samples�, is given in
Table III. The properties of the fast and slow waves are simi-
lar because the medium under investigation in each case is
Lexan. Similar results for the bonded Lexan and Plexiglas
phantom are shown in Fig. 6. For these calculations, f0 was
set at 500 kHz and the propagation distance for each wave
was set at 1.1 cm, the thickness of the phantom as measured
with calipers. Each of these plastics has relatively low inter-
nal losses at frequencies in the 300–700 kHz bandwidth
compared to those in the 3–7 MHz bandwidth. This effect is
especially notable for Plexiglas, which has a relatively low
nBUA even over megahertz bandwiths �on the order of 0.7
dB/cm MHz from 3–7 MHz�. Consequently, the frequency-
dependent attenuation coefficient is more difficult to estimate
in the hundreds of kilohertz frequency range, because energy
loss is dominated by �approximately frequency-independent�
reflection losses at the interfaces between the plastics and

TABLE III. The expected values of the model param
on a flat and parallel block of Lexan. These expected
of the Monte Carlo samples computed using Bayesi
Lexan with a step discontinuity.

Afast Aslow

�
�dB/c

Expected – –
Bayesian estimate 0.43�0.01 0.44�0.01 4.0

FIG. 6. Data acquired at 500 kHz on a phantom constructed from bonded
blocks of Lexan and Plexiglas �top panel, dark circles� with the model
constructed from the parameters that maximized the joint posterior probabil-
ity superimposed �top panel, gray line�. The fast and slow waves that com-

prise the model are displayed in the bottom panel.
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water. Nevertheless, the qualitative agreement between the
model and the data remains quite good, and the ability of the
Bayesian approach to estimate the fast and slow wave phase
velocities is preserved despite the difficulties in estimating
nBUA for the fast and slow waves. These additional com-
plexities are not likely to persist in data acquired on cancel-
lous bone because the attenuation coefficients are much
larger than those in plastics �see Discussion section�.

A summary of the parameter estimates for the velocity
parameters in this data set is given in Table IV, with com-
parisons to approximate expected phase velocities at band
center for individual Lexan and Plexiglas samples. Here,
Plexiglas corresponds to the fast wave and Lexan corre-
sponds to the slow wave.

C. Cancellous bone data

Acquired ultrasonic data and the corresponding Baye-
sian model for a single site on a human femur condyle are
shown in Fig. 7, with the fast and slow waves generated
using the parameters that had maximum posterior probability

are taken from ultrasonic measurements performed
s are compared to the means and standard deviations
obability theory for the data acquired on a block of

Hz�
�dB

slow

�dB/cm MHz�
cfast at5 MHz

�m/s�
cslow at5 MHz

�m/s�

4.2 2250 2250
1 4.3�0.1 2259�1 2257�1

FIG. 7. �Color online� Data acquired at 500 kHz at one site on a human
femur condyle specimen �top panel, dark circles� with the model constructed
from the parameters that maximized the joint posterior probability superim-
posed �top panel, gray line�. The fast and slow waves that comprise the
eters
value
an pr

dB
fast

m M

4.2
�0.
model are displayed in the bottom panel.
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displayed in the lower panel. The calculations were per-
formed with f0 set to 500 kHz and the propagation distance
set to 1.68 cm, the thickness of the bone sample. The com-
plex structure of cancellous bone results in data that are less
clean than the data acquired on flat and parallel blocks of
plastic; the signal-to-nose ratio for the fast wave is approxi-
mately 48:1, and the signal-to-noise ratio for the slow wave
is approximately 230:1. In turn, the anticipated agreement
between the data and model is lessened because the attenu-
ation coefficients for the fast and slow waves may deviate
from strict linearity, and thus the phase velocities become
less logarithmic in nature. However, in spite of these antici-
pated challenges, the data and model for this site are in good
agreement. Additionally, as shown in Fig. 8, the phase ve-
locities for the fast and slow waves recovered using Bayesian
methods are causally consistent. The conventionally mea-
sured dispersion for this site is shown in the left panel of Fig.
8 �black circles�, and a negative dispersion is evident. The
frequency dependence of this curve contrasts with that of the
dispersion predicted by the Kramers-Kronig relations, given
the nBUA at this site. However, the right panel of Fig. 8
shows that the dispersions for the fast and slow waves are
positive and increasing, as required by the model. A sum-
mary of the parameter estimates for these data is given in
Table V.

The analysis was performed at nine different sites on the
same femur condyle to verify that it could be applied to a
variety of data acquired on cancellous bone. The peak values
of �dB

fast, �dB
slow, cfast �500 kHz�, and cslow �500 kHz� were

recorded at each location and averaged to obtain mean values
for each parameter across the nine spatial sites. The results
are displayed in Fig. 9, with the error bars representing the
standard deviation in the most probable values for the param-
eter estimates across all of the nine spatial locations. There is
relatively little variance in cfast �500 kHz�, and cslow �500
kHz� over the spatial sites, but there is considerably more
variation in �dB

fast and �dB
slow over the same locations.

TABLE IV. The expected values of the model velocity parameters are taken
from ultrasonic measurement performed on flat and parallel blocks of Lexan
and Plexiglas. These expected values are compared to the means and stan-
dard deviations of the Monte Carlo samples computed using Bayesian prob-
ability theory for the data acquired on a phantom constructed by bonding
blocks of Lexan and Plexiglas.

cfast at500 kHz
�m/s�

cslow at500 kHz
�m/s�

Expected 2735 2185
Bayesian estimate 2765�1 2192�1
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IV. DISCUSSION

Analysis of ultrasonic data acquired on cancellous bone
is often performed by using time-of-flight or phase spectros-
copy methods to determine speeds of sound, and applying
log spectral subtraction methods to obtain values for BUA or
nBUA. Some assumptions underlying these approaches—
namely, that the signal loss and attenuation coefficient of
cancellous bone can be approximated by a linear relationship
with frequency—have been explicitly incorporated into the
model for ultrasonic wave propagation in bone used in the
current study. It should be noted, however, that there is not
yet an established empirical consensus on the frequency de-
pendence of individual fast and slow wave attenuation coef-
ficients or phase velocities in cancellous bone. There are
relatively few studies in the literature that report measure-
ments of individual fast and slow wave attenuation and dis-
persion. However, one study by Hosokawa and Otani sug-
gests that fast wave attenuation coefficients become large
and perhaps not-linear-with-frequency at higher frequencies
above 1 MHz, and that the fast and slow waves may not be
very dispersive.16 However, the results reported by
Hosokawa and Otani show that the attenuation coefficients
for both the fast and the slow waves appear to retain an
approximately linear frequency dependence for frequencies
near 500 kHz, which is the center frequency of the experi-
mental bandwidth used on cancellous bone in this study.

Because the attenuation coefficient is assumed to rise
linearly with frequency, this model employs a dispersion that
rises logarithmically with frequency as determined by the
Kramers-Kronig relations. The heterogeneity and general
complexity of cancellous bone structure appears to result in
some deviation from these strict frequency dependences. In-
deed, results presented above suggest that as analysis is per-
formed on data obtained from specimens ranging from com-
puter simulation, to homogeneous plastics, and to cancellous
bone, these approximations become less satisfying. In spite
of this trend, the fast and slow wave estimated parameters
appear to be plausible and might in future studies be shown
to be of diagnostic value. Furthermore, somewhat more so-
phisticated models for ultrasonic wave propagation can eas-
ily be incorporated into the Bayesian analysis introduced
here if appropriate.

Other potential complicating experimental factors not
directly accounted for in the model described here are the
effects of diffraction and phase cancellation at the face of a
piezoelectric receiver.51,52 Because the model does not cur-
rently include a mechanism for these effects, systematic er-
rors are introduced that could influence the parameter esti-

FIG. 8. �Color online� The conventionally measured
phase velocity for the data acquired on a human femur
condyle �left panel, dark circles� exhibits an anomalous
negative dispersion, in contrast with the dispersion pre-
dicted by the Kramers-Kronig relations �left panel, gray
curve�. The fast and slow wave dispersions obtained
using Bayesian probability theory �right panel� do not
exhibit anomalous behavior.
Anderson et al.: Bayesian parameter estimation in bone



mates, especially those that govern signal loss �Afast, Aslow,
�fast, �slow�. It is challenging to determine how much, or in
what capacity, these parameter estimates are affected. Inter-
pretation of the estimated values of Afast and Aslow is particu-
larly difficult, since these parameters presumably include
contributions from insertion losses, diffraction, phase cancel-
lation, and the distribution of energy among the fast and slow
wave modes. These complicating factors are one of the rea-
sons why, in Tables III–V, no “expected” value for Afast or
Aslow is given. The nBUA parameters �fast and �slow can also
suffer from a similar ambiguity in their interpretation in
some circumstances. However, if the internal losses in the
sample under investigation are large, nBUA parameters are
dominated by the contributions of the attenuation coefficient;
hence, the other complicating experimental factors can
sometimes be ignored. This reasoning provides an explana-
tion for the fact that the use of this model resulted in an
accurate determination of nBUA for plastic phantoms over
an experimental bandwidth of 3–7 MHz, where attenuation
coefficients are relatively large, but failed to do so over an
experimental bandwidth of 300–700 kHz, where attenuation
coefficients are relatively small.

The results presented show that Bayesian probability
theory can be used to determine the individual properties of
overlapping and interfering fast and slow waves that are not
obtained with more conventional analysis techniques. Al-
though the specific clinical relevance of the fast and slow
wave properties has yet to be determined, knowledge of in-
dividual fast and slow wave parameters might be expected to
have advantages over ultrasonic parameters determined from
waveforms consisting of overlapped and interfering waves.
Analysis of individual fast and slow waves may reduce or
eliminate spurious conclusions resulting from mixed mode
waveforms. Furthermore, supplementary parameters derived
from the fast and slow waves may provide additional infor-
mation about bone structure �i.e., the relative amplitude of
the fast wave and slow wave�. Bayesian probability theory
allows the direct computation of posterior probability density

TABLE V. Means and standard deviations of the M
theory for the data acquired on a human cancellous b

Afast Aslow

�dB
fast

�dB/cm MHz

Bayesian
estimate 0.82�0.05 0.23�0.01 42.8�1.2
functions for each parameter, as approximated by Markov
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chain Monte Carlo simulations, which provide easily inter-
preted representations of all information about a given pa-
rameter. Traditionally, Bayesian analysis has been limited by
the large computational resources needed to solve compli-
cated problems. However, advances in computing technol-
ogy have resulted in the ability to apply Bayesian probability
theory to problems with high dimensionality and complexity
with reasonably short calculation times and at relatively low
cost.

V. CONCLUSION

We have applied Bayesian probability theory to simu-
lated ultrasonic data, to data acquired on two different plastic
bone-mimicking phantoms, and to data from a human femur
condyle specimen. Agreement between the models and data
ranges from good to excellent. Marginal posterior probability
densities for the model parameters accurately reflect true in-
put values in simulated data and provide good estimates for
the ultrasonic characteristics of the plastic bone-mimicking
phantoms, although the analysis performs less well when the
medium under study exhibits a small attenuation coefficient.
Artifacts present in conventionally obtained phase velocities
and attenuation coefficients are replaced by smoothly vary-
ing curves determined by probability theory.
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