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Abstract

Objective—Rare mitochondrial mutations cause neurologic disease including ischemic stroke
and MRI white matter changes. We investigated whether common mitochondrial genetic variants
influence risk of sporadic ischemic stroke and, in patients with stroke, the volume of white matter
hyperintensity (WMHV).

Methods—In this multicenter, mitochondrial genome-wide association study (GWAS), 2284
ischemic stroke cases and 1728 controls from the International Stroke Genetics Consortium were
genotyped for 64 mitochondrial single nucleotide polymorphisms (SNPs). Imputation resulted in
144 SNPs, which were tested in each cohort and in meta-analysis for ischemic stroke association.
A genetic score of all mitochondrial variants was also tested in association with ischemic stroke.
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Results—No individual SNP reached adjusted significance in meta-analysis. A genetic score
comprised of the summation of contributions from individual variants across the mitochondrial
genome showed association with ischemic stroke in meta-analysis (OR = 1.13, p < 0.0001) with
minimal heterogeneity (12 = 0.00). This ischemic stroke score was robust to permutation, and was
also associated with WMHYV in 792 nested case individuals with ischemic stroke (p = 0.037).

Interpretation—In this mitochondrial GWAS of ischemic stroke, a genetic score comprised of
the sum of all common variants in the mitochondrial genome showed association with ischemic
stroke. In an independent analysis of a related trait, this same score correlated with WMHYV in
stroke cases. Despite this aggregate association, no individual variant reached significance.
Substantially larger studies will be required to identify precise sequence variants influencing
cerebrovascular disease.

Search Terms
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INTRODUCTION

Rare diseases caused by gene mutations encoding mitochondrial proteins often result in
neurologic manifestations, including seizures, optic atrophy, white matter MRI
abnormalities, and ischemic stroke [1,2]. Because mitochondrial proteins are encoded within
both the nuclear and mitochondrial genomes, mutations within either can result in
mitochondrial disease, with resultant differences in inheritance patterns. Neurons are highly
susceptible to such mutations because of their sensitivity to impaired mitochondrial energy
metabolism [3].

Ischemic stroke is a heritable disease [4], and recent data suggest there may be a maternal
inheritance pattern — the hallmark of a disorder related to mitochondrial DNA [5].
Traditional genome-wide association study (GWAS) approaches, which have focused on the
nuclear genome, have included only limited coverage of sequence variation in the
mitochondrial genome. Genome-wide coverage of common variation within the
mitochondrial genome requires custom genotyping because the current generation of whole
genome arrays does not provide complete coverage of common variation in the
mitochondrial genome. While recent GWAS have identified promising loci where common
autosomal genetic variants may alter the risk of ischemic stroke [6], no study has yet
identified an association between individual common mitochondrial variants and ischemic
stroke.

The mitochondrial genome predominantly encodes proteins functioning in the oxidative
respiratory chain, thereby impacting energy metabolism [7]. Due to the high energy
requirements of endothelial and neurologic tissues, we hypothesized that common variants
in the mitochondrial genome may play a role in ischemic stroke, and that any variants that
emerge may also influence the burden of white matter hyperintensity volume (WMHV), an
established determinant of risk of stroke recurrence and degree of recovery from stroke
[8,9].

To explore this hypothesis, we performed a multi-center mitochondrial GWAS (mtGWAS)
of ischemic stroke with a panel of single nucleotide polymorphisms (SNPs) covering all
common variation in the mitochondrial genome. Four centers within in the International
Stroke Genetics Consortium (ISGC, http://www.strokegenetics.org) participated.
Association testing was performed for all-cause ischemic stroke. A genetic score-based
approach was used to combine effects of all mitochondrial SNPs in analysis, to assess the
cumulative impact of multiple mitochondrial variants on respiratory chain function. This
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genetic score was further applied to WMHYV as a biological extension to a related
phenotype.

MATERIALS AND METHODS

Samples

Samples were contributed by the Massachusetts General Hospital Ischemic Stroke GWAS
(MGH) (n = 1236) [10], the University of Cincinnati Greater Cincinnati and Northern
Kentucky Stroke Study (GCNKSS) (n = 749) [11], the Jagiellonian University (Krakow,
Poland) Stroke Study (JUSS) (n = 981) [12], and investigators participating in either the
Ischemic Stroke Genetics Study or the Siblings With Ischemic Stroke Study (ISGS/SWISS)
(n=1046) [13,14] [Table 1]. All of these participating studies utilized a prospectively
enrolled hospital-based case-control study design. Analysis of WMHYV was restricted to
ischemic stroke cases from individuals in the MGH and ISGS/SWISS datasets (n = 792).
Individuals with T2-FLAIR sequences of sufficient quality for quantification on cranial
MRIs obtained < 72 hours after admission for stroke were included in the WMHYV analysis.
All Institutional Review Boards approved the study, and all participants gave informed
consent for data collection, genotyping, and analysis of genetic data.

Patient selection and definitions

Case and control recruitment and phenotype ascertainment were performed in each cohort as
described previously [10-14]. Cases were all consenting adults presenting to the emergency
department of each participating institution for evaluation of acute stroke. For the purposes
of this study, individuals were defined as ischemic stroke cases in the presence of (1) a
radiographically proven infarct associated with an appropriate clinical syndrome, or (2) a
fixed neurologic deficit persisting > 24 hours, consistent with a vascular event, without
evidence of demyelination or non-vascular disease. All samples within the ISGS/SWISS,
GCNKSS, and MGH datasets were assessed and Trial of Org 10172 in Acute Stroke
Treatment (TOAST) stroke subtypes [15] were assigned by a neurologist. As in the original
classification, infarct area, but not white matter burden, was considered in assigning TOAST
subtype diagnosis. All controls were recruited from the same populations as the cases, and
were confirmed to be free of stroke symptoms by interview and review of medical records.
All clinical information, demographics, and comorbidities were abstracted prospectively by
patient or proxy interview, and/or supplemented through medical chart review.

Genotyping of common mitochondrial variants

Common mitochondrial variants were genotyped according to a validated protocol, with
selection of 144 SNPs capturing 100% of variants with MAF > 0.01 in Europeans [16]. A
total of 64 tagging SNPs were selected to capture all common variation outside the hyper-
variable D-loop, and genotyping was performed with use of a Sequenom platform (San
Diego, CA, USA). Haplotype-based imputation was used to capture the remaining 80
variants (all r2 > 0.8 with directly-genotyped SNPs). . All genetic analysis was performed
using PLINK v1.07 [17].

Mitochondrial genomic quality control

Quality control of genotyped individuals included filters for missingness by individual > 0.1,
missingness by SNP > 0.1, and minor allele frequency (MAF) < 0.005 [Supplementary
Figure S1]. The MAF filter was set after empiric assessment of MAF in the current study
population and in previously published data [16].
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Haplogroup assignment and meta-analysis

European haplogroups (H1, H2, I, J, K, T, U, pre-HV, and W/X) were assigned according to
previously published methods [18]. A total of 1074 complete sequences from the 10 most
common European haplogroups were downloaded from mtDB
(http://www.genpat.uu.se/mtDB/). From these sequences, the genotypes at tagging SNP loci
were determined and used as predictors in a linear discriminant function analysis in R
v2.10.0. The accuracy of prediction of haplogroup was determined using a bootstrap cross-
validation approach, and determined to be >98.5%.

Population structure assessment and control

Only individuals of European ancestry were analyzed. Principal component analysis (PCA)
has been identified as a robust means to control confounding by population stratification
[19,20]. Population structure was assessed by performing PCA on all SNPs passing quality
control. PCA was performed using the EIGENSOFT v3.0 software package [19] and
confirmed using Multidimensional Scaling in PLINK v1.07. Principal components (PCs) 1 —
10 were extracted for each individual, and PCs were added until no additional reduction in
mitochondrial genomic inflation factor (mtGIF) could be achieved (PC1-5 for all analyses)
[Figure S2].

Study power

We determined statistical power for identification of association between analyzed variants
and ischemic stroke at a = 0.00035 (144 independent tests). Power calculations specific to
mitochondrial analysis were performed using a simulation-based method published in a prior
study [18]. Power estimates were by Monte Carlo simulation, with power differences
averaged over the observed distribution of MAF. Power was calculated for effect sizes of
1.2, using a haploid model with MAF 0.05, and disease prevalence of 0.03 [21]. Post-hoc
power calculations were performed similarly, using assumptions of MAF and effect size
based on data from meta-analysis results. Power estimation for the haplogroup-based meta-
analysis was performed according to published methods using Monte Carlo permutation
testing [22]. Because each haplogroup represents a variable proportion of the study
population, detectable odds ratios at power 0.80 were assigned independently for each
haplogroup, assuming o = 0.05.

Genetic association analysis by study cohort and meta-analysis

Genotype data were analyzed using an allele-based model, with odds ratio (OR) expressing
the effect of the reference allele. All analyses included age, sex, and PC1-5 as covariates.
Statistical significance was defined as Bonferroni-adjusted p-value for 144 independent
tests. Association tests by study were combined in meta-analysis with a conservative,
random-effects pooling method (DerSimonian-Laird), using R v2.10.0. SNPs that did not
pass quality control filters in at least 3 studies were excluded, leaving 121 SNPs. Reference
alleles were checked to ensure concordance, and MAFs were inspected by cohort.

Haplogroup-based analysis

European haplogroups were tested in a case-control logistic regression for ischemic stroke,
using age and sex as covariates. Pooled results from each study were then used in a random-
effects meta-analysis accounting for site. For this haplogroup-based analysis only, an
additional cohort of 481 cases and 537 controls of European ancestry from the University of
Maryland Genetics of Early Onset Stroke (GEOS) study were incorporated into the meta-
analysis. These individuals had sufficient genotyping for haplogroup assignment, but lacked
the comprehensive mitochondrial genotyping needed for the remainder of the study.
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Genetic score analysis

Combined effects of all mitochondrial SNPs were evaluated using a score-based method
previously used to assess the cumulative effect of loci affecting lipid levels, risk for
myocardial infarction, blood pressure, and schizophrenia [23-26]. Briefly, meta-analysis
results were extracted for SNPs passing quality control filters in all 4 cohorts, resulting in 90
SNPs available across all 4 studies. The stroke risk conferred by each SNP (expressed as a
beta coefficient) was then applied to each individual in the dataset, with the sum of all SNP
beta coefficients resulting in the “score” for each individual [Figure 1]. This genetic score
was then divided into quintiles and used as the dependent variable in a logistic regression for
ischemic stroke, with age, sex, site, and PC1-PC5 used as covariates. Because only one test
was performed in this analysis, Bonferroni correction was not necessary. Results from each
cohort were meta-analyzed using the meta library for R v. 2.10.0. Power estimation for
association with the genetic score was performed using R (http://www.r-project.org),
v2.10.0, assuming an effect size of 1.20 (per risk score quintile) for ischemic stroke, and
explanation of 1% of variance for WMHV.

Permutation

To test the results of the genetic score analysis against the null hypothesis and limit the
possibility of false positive association, two forms of permutation were employed using R
v2.10.0. In the first method, case and control assignment was randomized in 10,000
permutations, betas and scores were re-calculated, and tests for association with the
permuted case/control status were performed.

In the second method, the beta coefficients used to generate the score were assigned
randomly to different SNPs in 10,000 iterations, scores were re-calculated, and these scores
were then tested against the original case/control status. For both methods, the empiric p-
value reported is defined as the number of times the observed test-statistic in permutation
was superior to the test-statistic of the original dataset, divided by the number of
permutations (10,000).

Quantification and analysis of WMHV

MRI scans performed within 72 hours of stroke onset were converted from DICOM to
Analyze format using MRIcro software (University of Nottingham School of Psychology,
Nottingham, UK, www.mricro.com) for computer-assisted determination of WMHYV. All
WMHYV measurements were performed at MGH. Using MRIcro, a region-of-interest map of
supratentorial WMHYV was created by signal intensity thresholding followed by manual
editing as necessary [27,28]. Axial T2 fluid attenuated inversion recovery (FLAIR)
sequences were used to create the WMH maps. Areas of signal change from previous
infarctions were not considered WMH and the corresponding brain regions were masked. In
order to correct WMHYV for head size we used the sagittal midline cross-sectional
intracranial area (ICA) as a surrogate measure of the intracranial volume, according to a
previously validated method [29]. The intracranial cavity was manually outlined on the two
most mid-sagittal T1-weighted slices using MRIcro software, and the areas were averaged.
All MRI measurements were performed centrally by readers blinded to clinical data,
including functional outcome and TOAST subtype assignment.

The genetic score for each individual developed using the ischemic stroke phenotype was
divided into quintiles to improve normality of distribution, and applied as a dependent
variable in linear regression of WMHYV. Additional covariates included age, sex, site, and
PC1-5. Results were reported as a coefficient and p-value for association between the
ischemic stroke genetic score and WMHV.
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WMHYV permutation

We performed permutation testing of the association between the ischemic stroke
mitochondrial genetic score and WMHYV through 10,000 permutations with randomization
of the WMHYV phenotype. Permutation testing was performed in R v2.10.0. Permutation
empiric p-value is reported as the number of times the observed test-statistic in permutation
was superior to the test-statistic of the original dataset, divided by the number of
permutations (10,000).

RESULTS

Mitochondrial genetic quality control

5,912 individuals from the four cohorts had mitochondrial genotype information available.
After quality control filtering, 2284 cases and 1728 controls remained for analysis of
ischemic stroke. Filtering of mtGWAS data was applied to the initial pool of 64 SNPs, and
after imputation, 109 — 132 SNPs remained for analysis within the four cohorts
[Supplementary Figure S1]. Of these, 121 SNPs were common to at least 3 cohorts, and 90
SNPs were common to all four cohorts [Supplementary Table S1]. Population stratification
was assessed by calculating the mtGIF for each study after incorporation of PCs
[Supplementary Figure S2]. In pooled analysis of the 90 shared SNPs, the mtGIF was 1.00
after correction for PC1-PC5.

Statistical Power

Given our sample size, our study had power of 0.99 to detect an effect size of 2.0, given an
expected MAF of 0.05 and disease prevalence of 0.03. Our power fell to 0.04 to detect effect
sizes of 1.2. To achieve power of 0.8 to detect effect sizes of 1.2 at this MAF would require
13,638 cases with matching controls. For association between individual haplogroups and
ischemic stroke, detectable odds ratios at power 0.80 varied from 1.18 for haplogroup H to
2.80 for haplogroup | as risk alleles, and 0.84 for haplogroup H to 0.36 to haplogroup I as
protective alleles [Supplementary Table S2]. For analysis of WMHYV, our genetic score
analysis had 0.85 power to explain 1% of the variance in WMHYV, assuming for WMHYV a =
0.05.

Study results by cohort and meta-analysis

No individual SNP in any cohort met the pre-specified significance threshold of p <
0.00035. In meta-analysis of all cohorts, again no individual variant reached statistical
significance [Table 2]. While there was significant heterogeneity (12 > 40%) for a minority
of SNPs (n = 14), none of the leading association results showed significant heterogeneity
(all 12 < 40%). Accordingly, MAF concordance between cohorts was excellent (average
Spearman correlation coefficient: 0.92, range 0.90 — 0.95, all p < 0.0001).

We tested all European haplogroups in meta-analysis (MGH, ISGS/SWISS, GCNKSS,
JUSS, and GEOS cohorts) for association with ischemic stroke. No significant link between
any particular haplogroup and ischemic stroke was identified [Table 3]. In particular, using
our larger cohort and rigorous control for population stratification [20], we failed to replicate
the findings of association with H1 and pre-HV haplogroups [30] and K haplogroup [31] as
previously published. Using our power calculations [Supplementary Table S2], we had
power > 0.99 to detect these associations at the effect sizes reported [30,31].

Post-hoc power calculation

In examination of all SNPs in meta-analysis, the median MAF was 0.032, with average
effect sizes of 1.09 for risk alleles and 0.92 for protective alleles. We recalculated study
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power under these assumptions, both for risk and protective variants. Average study power
for risk alleles was found to be 0.002, while power for protective alleles was 0.0017. To
achieve power of 0.80 with this MAF and effect size would require over 80,000 cases with
matching controls.

Mitochondrial genetic score results in ischemic stroke

We performed a genetic score-based analysis in order to assess the possible effects of
multiple mitochondrial variants acting in concert to influence respiratory chain function.
Using the effect sizes generated in meta-analysis for SNPs passing quality control filters in
all cohorts [Supplementary Table S1], we computed genetic score values for all individuals
[Figure 1]. These values were then used in logistic regression for association with ischemic
stroke, both in each cohort as well as in meta-analysis of all cohorts [Figure 2, Table 4]. This
genetic score analysis had power of 0.99 to detect an effect size of 1.20 for ischemic stroke
per risk score quintile. Our mitochondrial genetic score was strongly associated with
ischemic stroke in meta-analysis (OR 1.13, 95% confidence interval 1.06 — 1.20, p <
0.0001), and showed very little between-study heterogeneity (12 = 0%). The odds ratios
shown in Table 4 represent the risk of ischemic stroke for each quintile increase of the
mitochondrial genetic score. This result was robust to permutation by both case-control
switching (p = 0.0012) and beta randomization (p = 0.0023).

Mitochondrial ischemic stroke genetic score in WMHV

Using 792 ischemic stroke cases from the MGH and ISGS/SWISS cohorts, we determined
whether the mitochondrial genetic score for ischemic stroke correlated with increasing
WMHV. This independent case-only analysis demonstrated a significant (p = 0.037)
association between the aggregated risk SNPs for ischemic stroke, and the quantity of
WMHV, with a coefficient of 0.0665 (SE = 0.032). This coefficient represents the log-
transformed WMHYV attributable to each quintile of the mitochondrial ischemic stroke
genetic score. Other predictors of WHMYV in the regression included age (p < 0.001), and
site (p < 0.001). To investigate the role of the site in the determination of WMHYV, we
inserted all TOAST subtype classifications into the regression model. None of the TOAST
subtypes demonstrated a strong association (all p = NS), but the inclusion of these subtypes
in the regression model reduced the significance of site in the association with WMHV,
decreasing the p-value from < 0.001 to 0.02 with an effective halving of the effect size. The
association between the ischemic stroke mitochondrial genetic score and WMHYV was also
robust to permutation via phenotype randomization, with p = 0.009.

DISCUSSION

Although our analysis was underpowered to detect associations for individual mitochondrial
variants, our data provide evidence for an aggregate effect of common mitochondrial
variation on risk of ischemic stroke. The score-based approach used to demonstrate this
effect has been applied successfully to resolve genetic associations for lipid profiles,
myocardial infarction, and blood pressure, as well as other complex traits [20-22]. While in
these conditions the score was comprised of SNPs with genome-wide significance, in
schizophrenia a score built from multiple non-significant SNPs with small effect sizes has
been validated in multiple independent cohorts [26]. Our approach parallels that taken by the
schizophrenia researchers, although we are not able to present replication in an independent
data set. Our results were derived from meta-analysis of four independent cohorts, the
results of which were all quite consistent with one another and without significant
heterogeneity. Although this does not constitute formal replication, the correspondence in
effect size and lack of between-study heterogeneity in these independent cohorts is
suggestive of generalizability. In addition, the genetic score derived from these cohorts was
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also robust to two different forms of permutation, in which our results were tested repeatedly
against the null hypothesis. Finally, we have applied our ischemic stroke genetic score to
WMHYV in an independent case-only sample, showing that this score comprised of
mitochondrial variants that influence stroke risk also has an effect on the burden of white
matter disease in individuals with ischemic stroke. This biologic extension to a related
phenotype of ischemic stroke further strengthens the robustness of our findings.

We did not identify any SNP of large effect (OR > 2), despite sufficient power to detect such
variants. Our analysis was underpowered to detect variants of small or moderate effects.
Because we have not identified an association between ischemic stroke and any specific
common variants, mitochondrial genetic testing for common alleles is not warranted at this
time. Additionally, because our haplogroup-based analysis does not demonstrate a robust
association between individual haplogroups and ischemic stroke, our results do not support
haplogroup assignment for clinical prediction. However, future DNA sequencing studies
building on our demonstration that common variants have an aggregate influence on risk of
ischemic stroke may lead to discovery of individual rare variants with clinical implications
for risk stratification in stroke.

This analysis provides concrete examples of the challenges particular to GWAS of
mitochondrial variants. Autosomal GWAS studies often assume MAFs > 0.05 for common
variants, while our observed median mitochondrial MAF was 0.032, with some variants
displaying MAF as low as 0.005. These low observed MAFs greatly limit power to detect
differences between groups, because larger sample sizes must be assembled to recruit rarer
risk alleles. Furthermore, the mitochondrial genome is haploid, making it impossible for
homozygous risk alleles to contribute additional signal in an additive genetic model. Finally,
the low effect sizes seen in meta-analysis also limit power to detect novel SNP associations.
These constraints altered our power estimates greatly in post hoc analysis.

The majority of the known genes in the mitochondrial genome subserve respiratory chain
functions [7]. It has been demonstrated that multiple rare mitochondrial variants can work in
concert to cause disease [32], possibly through collective impairment of the respiratory
chain [33]. This provides a strong biologic rationale for the application of a genetic-score
approach, as this technique allows assessment of the aggregate effect of all mitochondrial
SNPs. Under the genetic score paradigm, SNPs that do not contribute to disease association
only introduce random associations to the model, favoring the null hypothesis. For this
reason, and because our genetic score was robust to two independent forms of permutation,
our data provide strong support for a role of common mitochondrial variants in ischemic
stroke. Of note, our genetic score was comprised of all available genetic variants, and was
therefore an unbiased approach to disease association. The selection of individual candidates
for inclusion in a genetic score could introduce biases that limit replicability.

Our mtGWAS was performed using an exhaustive panel of SNPs, encompassing all
variation with MAF > 1% in individuals of European ancestry. While mitochondrial SNPs
are available on commercially-available genotyping platforms, they do not capture all
known common variation. Even with imputation, these platforms cannot achieve full
coverage of all common variants, limiting the utility of pooling data from the exhaustive
mitochondrial panel and standard GWAS platforms for analysis. Future mitochondrial
association studies will require continued use of targeted exhaustive panels [16] to minimize
risk of false negative results due to insufficient mitochondrial genome coverage.

Our study has limitations. Despite amassing a large, multi-center cohort of ischemic stroke
cases and controls, we did not have power to detect individual SNP associations for the
effect sizes and MAF observed in meta-analysis. To be adequately powered to identify
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associations with individual SNPs would require a cohort in excess of 80,000 cases with
matching controls. Even introducing additional controls to our study to reach a 4:1
(control:case) ratio would only increase our power from 0.002 to 0.004. Our results cannot
exclude a stroke subtype-specific effect for mitochondrial variants. Restricting sample size
in sub-analysis of stroke subtypes would further erode power, decreasing the probability of
detecting positive associations even for substantial subtype specificity. This study focused
solely on inherited common variation in SNPs outside the D-loop. Mutations within the D-
loop or insertion/deletion mutations would require a different study design to detect. We did
not model heteroplasmy in our analysis, but this phenomenon would theoretically only erode
power to detect associations for common inherited variants. Most importantly, we do not
have an additional cohort of individuals in which to replicate our findings, and only after
replication can our results be considered robust. While the fact that our results are robust to
permutation supports our conclusions, our analysis is still based on a single data-set.
However, the observation that the genetic score derived from ischemic stroke is also
associated with WMHYV in a nested case-only cohort represents a biologic extension of our
results in what must be considered an independent phenotype assessed only in stroke cases.
It is important to note that this result is insufficient to constitute a demonstration of an effect
of specific common mitochondrial variants on WMHV. Rather, it shows that the common
variants that increase the risk of ischemic stroke seem to also play some as-yet undefined
role in the genetics of WMHV. Further research will be needed to independently assess the
role of common mitochondrial variants in the phenotype of WMHV.

This large, multi-center mitochondrial GWAS of ischemic stroke was underpowered to
detect individual variants. However, we have shown that some association does exist
between common mitochondrial variants and stroke risk. Further studies are necessary to
replicate our findings, and substantially larger sample sizes will be required to identify
specific variants. It is possible that common variants in the mitochondrial genome conferring
a small increase in stroke risk are in linkage with rare variants conferring much larger risk.
Detection of these rare variants, through sequencing of the mitochondrial genome, may yield
important new information on the role of mitochondria on ischemic stroke and other
neurologic diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flowchart of genetic score-based analysis pipeline

Boxes represent the steps for generation and application of the genetic score to test
associations with ischemic stroke. Hexagons represent the locations where permutation
algorithms can be applied to test the score generated against the null-hypothesis. OR = Odds
Ratio, SNP = Single Nucleotide Polymorphism.
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Figure 2. Forest plot of meta-analysis of association between mitochondrial genetic score and
ischemic stroke

GCNKSS = Greater Cincinnati Northern Kentucky Stroke Study, Het p-value =
heterogeneity p-value, 12 = % of effect size attributable to meta-analysis heterogeneity,
ISGS/SWISS = Ischemic Stroke Genetic Study/Siblings with Ischemic Stroke Study, JUSS
= Jagiellonian University Stroke Study, MGH = Massachusetts General Hospital Ischemic
Stroke Genome-wide Association Study
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Demographic, clinical and radiographic characteristics, stratified by study

Table 1

ISGS/SWISS MGH
Cases Controls Cases Controls
No. 602 444 575 661
Age (yrs.), mean (SD) 65.7 (13.5)  67.9(14.8)  65.6 (15.8) 68.9 (9.3)
Sex (% male) 53 59 57 51
HTN (%) 67 37 52 33
DM I1 (%) 23 11 26 18
Smoking (% current) 20 8.6 25 20
No. WMH 189 - 603" -
WMH volume (cc) 5.3 (2.6-11.1) -- 10.2 (4.8-22.9) --
TOAST Stroke Subtypes
Cardioembolic 150( 0.25) - 230 (0.40) -
Large Artery 114 (0.19) -- 104 (0.18) --
Small Vessel 103 (0.17) - 63 (0.11) -
Other Determined Etiology 24 (0.04) - 132 (0.23) -
Undetermined Etiology 211 (0.35) - 46 (0.08) --
GCNKSS JUSS
Cases Controls Cases Controls
No. 459 290 648 333
Age (yrs.), mean (SD) 704 (12.9)  62.0(14.9)  642(17.1)  64.6(15.0)
Sex (% male) 52 47 51 49
HTN (%) 70 49 48 42
DM 11 (%) 36 16 17 22
Smoking (% current) 26 20 27 18
TOAST Stroke Subtypes
Cardioembolic 105 (0.23) - - -
Large Artery 69 (0.15) - - --
Small Vessel 92 (0.20) - - -
Other Determined Etiology 9 (0.02) - - -
Undetermined Etiology 184 (0.40) - - --

Page 14

*
Individuals analyzed for white matter hyperintensity volume from MGH are greater than the total analyzed ischemic stroke cases because quality
control procedures were implemented independently for the two cohorts.

All included individuals are of self-reported European or European-American ancestry. DM I = Type Il Diabetes Mellitus, GCNKSS = Greater

Cincinnati Northern Kentucky Stroke Study, HTN = Hypertension, ISGS/SWISS = Ischemic Stroke Genetic Study/Siblings with Ischemic Stroke
Study, JUSS = Jagiellonian University Stroke Study, MGH = Massachusetts General Hospital Ischemic Stroke Genome-wide Association Study,
SD = Standard Deviation, WMH = White Matter Hyperintensity
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