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Abstract

BAM1 is a plastid-targeted b-amylase of Arabidopsis thaliana specifically activated by reducing conditions. Among
eight different chloroplast thioredoxin isoforms, thioredoxin f1 was the most efficient redox mediator, followed by

thioredoxins m1, m2, y1, y2, and m4. Plastid-localized NADPH-thioredoxin reductase (NTRC) was also able partially

to restore the activity of oxidized BAM1. Promoter activity of BAM1 was studied by reporter gene expression (GUS

and YFP) in Arabidopsis transgenic plants. In young (non-flowering) plants, BAM1 was expressed both in leaves and

roots, but expression in leaves was mainly restricted to guard cells. Compared with wild-type plants, bam1 knockout

mutants were characterized by having more starch in illuminated guard cells and reduced stomata opening,

suggesting that thioredoxin-regulated BAM1 plays a role in diurnal starch degradation which sustains stomata

opening. Besides guard cells, BAM1 appears in mesophyll cells of young plants as a result of a strongly induced
gene expression under osmotic stress, which is paralleled by an increase in total b-amylase activity together with its

redox-sensitive fraction. Osmotic stress impairs the rate of diurnal starch accumulation in leaves of wild-type plants,

but has no effect on starch accumulation in bam1 mutants. It is proposed that thioredoxin-regulated BAM1 activates

a starch degradation pathway in illuminated mesophyll cells upon osmotic stress, similar to the diurnal pathway of

starch degradation in guard cells that is also dependent on thioredoxin-regulated BAM1.
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Introduction

Starch is the major storage biopolymer synthesized by

plants. Thanks to its physicochemical properties, starch

represents a convenient way for plants to store large

amounts of chemical energy and organic matter without
altering the osmotic balance of the cell. Up to half of the

photoassimilated carbon in a day can enter the pathway of

starch biosynthesis in leaves (Stitt and Quick, 1989; Rao

and Terry, 1995; Teusink et al., 1998; Zeeman et al., 2004).

Leaf starch is transiently accumulated in a daily cycle.

Soluble carbohydrates resulting from starch degradation are

mainly exported to sink tissues or used in the same cell

where they are produced. Alternatively, starch-derived

soluble sugars can also participate to osmotic adjustment

under water stress (Basu et al., 2007; Lee et al., 2008) or
take part in the osmotic regulation of specialized cells,

notably guard cells (Talbott and Zeiger, 1993; Lascève

et al., 1997; Vavasseur and Raghavendra, 2005; Lawson,

2009). Many environmental and genetic factors influence

starch biosynthesis and degradation (e.g. photoperiod, light

quality, temperature, sugars, senescence, etc). Genetically
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impaired leaf starch breakdown gives rise to a common

phenotype in Arabidopsis and other species, characterized

by stunted plant growth and exaggerated accumulation of

starch in leaves (starch excess, sex) (Caspar et al., 1991;

Huber and Hanson, 1992; Eimert et al., 1995).

Beta-maltose, exported from the chloroplast during the

night, is the major product of leaf starch breakdown (Weise

et al., 2005) and b-amylases are the only enzymes able to
produce b-maltose in plants. The Arabidopsis genome codes

for nine b-amylase-like proteins and four of them are

targeted to chloroplasts (Lao et al., 1999; Sparla et al.,

2006; Fulton et al., 2008). Different nomenclatures have

been reported for b-amylases, here the one recently pro-

posed by Fulton et al. (2008) is adopted and chloroplast

b-amylases are thus named BAM1 (At3g23920, formerly

TR-BAMY, Sparla et al., 2006; and BMY7, Kaplan and
Guy, 2005), BAM2 (At4g00490), BAM3 (At4g17090, for-

merly CT-BMY, Lao et al., 1999; and BMY8, Kaplan and

Guy, 2005) and BAM4 (At5g55700). These four b-amylases

play different roles in starch degradation in chloroplasts

(Fulton et al., 2008). BAM3 is the main b-amylase of

Arabidopsis leaves and bam3 mutants display a strong sex

phenotype both in Arabidopsis (Kaplan and Guy, 2005) and

potato (Scheidig et al., 2002). BAM3 is probably the major
player in the normal degradation of leaf starch during the

night (for a review, see Zeeman et al., 2010). BAM1 is

redox-regulated and only active in vitro under reducing

conditions (Sparla et al., 2006). Loss of function bam1

mutants show no sex phenotype (Kaplan and Guy, 2005),

but analysis of double and multiple mutants indicate that

mutation of BAM1 exacerbates the sex phenotype of the

single bam3 mutant (Fulton et al., 2008). The role of BAM2
is marginal, while BAM4, which is preferentially expressed

in vascular tissues (Francisco et al., 2010) and may be

catalytically inactive as a b-amylase, has been proposed to

have an important regulatory function, possibly as a maltose

sensor modulating the rate of starch breakdown. Accord-

ingly, bam4 knockout mutants also feature the typical sex

phenotype (Fulton et al., 2008).

In comparison with mesophyll cells, our current knowl-
edge of starch metabolism in guard cells is still incomplete.

Guard cells have a remarkable metabolic plasticity and their

mechanisms of osmoregulation, which often involve starch

metabolism, vary with species and environmental conditions

(Lawson, 2009). While massive uptake of potassium ions

from the apoplast builds up guard cell turgor leading to

stomatal opening during the day, the synthesis of organic

anions (such as malate2–) or sometimes the uptake of
inorganic anions, represents a flexible response to sustain

membrane potential (Amodeo et al., 1996; Talbott and

Zeiger, 1996). Synthesis of malate occurs in the cytosol of

guard cells using carbon skeletons derived from starch

degradation in the light. Besides potassium, sucrose may

also contribute to lower the osmotic potential of guard cells

when stomata are open. Sucrose accumulation could derive

from CO2 fixation in guard cells but, since the photosyn-
thetic activity of these cells is limited, more often derives

from either degradation of starch accumulated in guard cell

chloroplasts or direct uptake from the apoplast (Vavasseur

and Raghavendra, 2005).

Stomatal closure at night requires potassium to exit from

the guard cells and, possibly, sucrose to be removed for

nocturnal starch biosynthesis. Storage and mobilization of

starch in guard cells thus generally follow an opposite rhythm

with respect to mesophyll cells, where starch is synthesized

during the day and degraded throughout the following night.
The maltose transporter MEX1 is the major transporter

responsible for the export of carbon skeletons resulting from

starch degradation in the stroma of mesophyll chloroplasts

(Niittylä et al., 2004). Although there is no evidence yet for

such a transporter in the chloroplast envelope of guard cells,

glucose and maltose are the predominant metabolites

released by guard cell chloroplasts in the light (Ritte and

Raschke, 2003), implying that b-amylases could play a role in
daily starch degradation in guard cell chloroplasts.

The present work indicates that one of the four Arabidop-

sis b-amylase isoforms targeted to chloroplasts, thioredoxin-

regulated BAM1 (formerly TR-BAMY, Sparla et al., 2006)

in young plants (up to 26 d) is preferably expressed in guard

cells, where starch may be preferably degraded during the

day rather than in the night (Vavasseur and Raghavendra,

2005; Lawson, 2009). This localization is consistent with the
activation of BAM1 by reduced thioredoxins which need

light to be reduced (Buchanan and Balmer, 2005). Indeed,

knockout mutants lacking BAM1 accumulate starch in

guard cells and are impaired in stomatal opening, suggesting

that BAM1 plays a role in starch degradation in guard cells

to sustain stomata opening during the day. BAM1 is also

expressed in the mesophyll cells of adult plants at the

flowering stage (more than 31 d), and it is strongly expressed
in the mesophyll of osmotically stressed immature plants

(younger than 26 d), suggesting that a diurnal, redox-

regulated pathway of starch degradation may be activated

even in cells which concomitantly synthesize starch in the

light. Finally, BAM1 is expressed in roots where it could

be activated by NADPH-thioredoxin reductase (NTRC),

recently proposed to be a major regulator of starch

biosynthesis in amyloplasts (Michalska et al., 2009).

Materials and methods

Thioredoxin specificity and activation of recombinant BAM1 by

NTRC

Recombinant BAM1 was expressed and purified as described in
Sparla et al. (2006). Recombinant isoforms of Arabidopsis
chloroplast thioredoxins were expressed and purified as in Collin
et al. (2003, 2004). Thioredoxin specificity was evaluated by testing
the activation rate of different thioredoxins on pre-oxidized
BAM1. Oxidized BAM1 was obtained by incubating pure
recombinant enzyme for 3 h at room temperature in the presence
of 20 mM oxidized DTT, followed by desalting in 100 mM Tricine,
pH 7.9, using a PD10 column (GE Healthcare). Oxidized BAM1
(0.1 mg) was then incubated in the presence of 0.5 mM reduced
DTT and thioredoxin f1, x, y1, y2, m1, m2, m3, m4, at 1 lM each.
At different incubation times, b-amylase activity was measured
with p-nitrophenyl maltopentaoside (PNPG5) as described in
Sparla et al. (2006).
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Chloroplast-localized NADPH-dependent thioredoxin reductase
(NTRC, At2g41680) from Arabidopsis was expressed and purified
in recombinant form and tested for its capability to restore the
activity of pre-oxidized BAM1. Oxidized BAM1 was obtained as
previously described, and desalted in 50 mM TRIS-HCl, pH 7.6.
Two different molar ratios between BAM1 and NTRC (1:10 and

1:100, respectively) were tested. Before measuring the activity with
PNPG5, oxidized BAM1 was incubated for 3 h at room tempera-
ture in the presence of NTRC, 0.1 mg ml�1 BSA and 0.5 mM
NADPH. Blanks without NTRC or without NADPH were null.
Fully reduced BAM1 was obtained incubating BAM1 in the

presence of 20 mM reduced DTT.

Plant material and growth conditions

Arabidopsis thaliana plants (ecotype Columbia) were grown on soil
or in hydroponic solution in a growth chamber at constant
temperature of 22 �C, under 12/12 h light/dark cycle and
photosynthetic photon flux density of 100 lmol m�2 s�1.
For hydroponic cultures, seeds were stratified at 4 �C for 4 d in

seedholders filled with 0.65% (w/v) agarose and containing one seed
each. Seedholders, obtained from 0.5 ml test tubes, were lodged in
the perforated lid of the black polyethylene box filled with
hydroponic solution (full-strength composition: 1.25 mM KNO3;
1.5 mM Ca(NO3)2; 0.75 mM MgSO4; 0.5 mM KH2PO4; 50 lM
Fe(II)-EDTA; 50 lM H3BO3; 1 lM ZnSO4; 0.7 lM CuSO4; 12 lM
MnSO4; 0.24 lM Na2MoO4; 0.1 mM Na2SiO3). Starting from the
third week of growth, the nutrient solution was changed every week.
For experiments of osmotic stress, 24-d-old hydroponically

grown plants were transferred to a hydroponic medium supple-
mented with 450 mM mannitol.

T-DNA line

The bam1 T-DNA insertion mutant line from the SALK Institute
(SALK_039895) was obtained from the European Arabidopsis
Stock Centre (NASC, Nottingham, UK). Insertion site of the
T-DNA was confirmed by PCR on genomic DNA and cDNA
obtained by total RNA, using the T-DNA specific primer
5#-TGGTTCACGTAGTGGGCCATCG-3# in combination with
BAM1 specific primers 5#-AGAACGTATAGAGAAGGAGG-
GATTG-3# and 5#-CCGTCTCTGAACCTTGTGTTGTAGTA-3#
as in Fulton et al. (2008).

YFP and GUS lines

The YFP (Yellow Fluorescent Protein)-coding sequence and the
GUS (b-glucuronidase)-coding sequence were both fused to the
BAM1 promoter (base positions –2195 to –1). The 2195 bp
promoter fragment was amplified by PCR using genomic DNA
extracted from Arabidopsis leaves as template. The pair of primers,
both carrying an EcoRI restriction site, were as follows:
forward primer 5#-CATGGAATTCTATTTGAATCAATTT-
GACCCAGA-3# and reverse primer 5#-CATG-
GAATTCTTTTCTCTCTATACGCGAGAAAACG-3#.
After digestion, the promoter was cloned upstream of the GUS

or YFP coding regions into a modified pGreen0029 binary vector
(Hellens et al., 2000), where the GUS or YFP coding sequence,
fused with the nos terminator, was previously inserted in the
polylinker between KpnI-SacI restriction sites.
The pGreenBAM1promoter::GUS or pGreenBAM1promoter::-

YFP construct was transferred into GV3101-pSoup Agrobacterium
strain (Hellens et al., 2000) and Arabidopsis plants were trans-
formed by the floral dip method (Clough and Bent, 1998) and
screened on half-strength MS agar medium containing 50 mg l�1

kanamycin. The presence of the insertions was confirmed by PCR
on genomic DNA with the following specific primers: forward
primer inside BAM1 promoter sequence 5#-CACCGTCCATTCT-
GACTCTTTT-3#; reverse primer inside the GUS coding sequence

5#-CGGCTAACGTATCCACGCCGTAT-3#; reverse primer inside
the YFP coding sequence 5#-CGGTGGTGCAGATGAACTT-3#.
Eleven and four independent BAM1promoter::GUS and

BAM1promoter::YFP T1 plants, respectively, were screened and
selected for comparable localization of reporter genes.
Subsequent work was conducted on T2 plants. A single GUS

line was subjected to GUS staining and a single YFP line was
analysed for its fluorescence.

Histochemical GUS assay and detection of YFP fluorescence

For histochemical GUS assays, 2–5 plants at various developmen-
tal stages and under stress conditions, were treated as described in
Jefferson et al. (1987). Stained plants were examined by bright-field
microscopy using a Nikon Eclipse 90-I microscope. The images
were processed using the software NIS-Element A-R 3.0. Two
independently grown batches of plants of the same GUS line were
analysed.
The transgenic plants (mature hydroponically grown and seed-

lings) transformed with YFP were analysed by confocal micros-
copy, using a Nikon PCM2000 (Bio-Rad, Germany) laser scanning
confocal imaging system. For the YFP detection, excitation was at
488 nm and emission between 530/560 nm. For chlorophyll
detection, excitation was at 488 nm and detection over 600 nm.
Each experiment was repeated twice (independently grown

batches of plants of the same YFP line) and for each time and
condition at least three plants were analysed. The images show
representative leaves.

Analysis of starch content

Starch content was visualized on individual hydroponically grown
plants after decolorization with hot 80% (v/v) ethanol and stained
with iodine (Scheidig et al., 2002). Subcellular localization of
starch content was observed using a Nikon Eclipse 90-I micro-
scope and the images were processed using the software NIS-
Element A-R 3.0. Thirty-six stomata for both the wild type and
bam1 mutant were randomly selected and their guard cells were
analysed for starch content using the software ImageJ 1.38 for
Windows. The amount of starch per guard cell was calculated as
the total pixel area of the dark brown circles isolated in each cell.
The experiment was replicated three times. Plants were 26-d-old
and 2/3 leaves per plant were analysed after 6 h of light exposure in
the growth chamber. Values of starch accumulation in the guard
cells were analysed by one-way completely randomized ANOVA
and means comparison was performed by Duncan’s test at
significance level of 0.01 (CoStat, CoHort Software, USA).
Quantification of starch content in plant leaves was obtained

using the entire rosette of usually three plants (0.3 g fresh weight,
on average) for each data point. Plants collected were immediately
frozen in liquid N2. Starch was extracted and determined by
measuring the amount of free glucose released from insoluble
starch after treatment with a-amylase and amyloglucosidase, as
described in Smith and Zeeman (2006). The analysis was
performed on three independent batches of plants.

Detection of total b-amylase activity in plants

Soluble proteins were extracted from leaves of 26-d-old, hydro-
ponically grown plants after 4 h of treatment with 450 mM
mannitol or control solution. In a typical experiment, all leaves of
each plant were homogenized on ice in 0.5 ml of 100 mM Tricine,
pH 7.9, 10 mM 2-mercaptoethanol, and 1 mM phenylmethanesul-
phonylfluoride (PMSF) using a TissueRuptor (Qiagen). The
homogenate was spun down in a microfuge at 16 000 g for 25 min
at room temperature. The resulting supernatant was transferred to
a clean tube on ice for the following measurements. Total protein
concentration was determined according to the Bradford method
and b-amylase activity was assayed at 37 �C with PNPG5 as
described in Sparla et al. (2006). Total b-amylase activity is

Thioredoxin-activated b-amylase | 547



referred to as total PNPG5-activity measured after 1 h incubation
at room temperature in 20 mM reduced DTT. The redox-sensitive
fraction of b-amylase activity corresponds to the difference
between total PNPG5-activity (20 mM reduced DTT) and the
PNPG5-activity measured after 1 h of incubation at room
temperature in 20 mM oxidized DTT. Each measure was
replicated on a minimum of 30 plants.

Statistical analysis

Before analysis, homogeneity of variances at P¼0.05 was con-
firmed by Bartlett’s test. Data on b-amylase activity were analysed
by one-way completely randomized ANOVA and means compar-
ison was performed by Duncan’s test at significance level of 0.05
(CoStat, CoHort Software, USA).

Stomatal aperture measurement and statistical analysis

Analyses were performed on 26-d-old plants after 6 h of light
exposure. Abaxial epidermal peels were fixed with medical spray
adhesive Hansaplast (Hansaplast�, Italy) on a microscope slide,
immediately observed with an image analyser-Axioplan micro-
scope (Zeiss, Jena, Germany) connected to a Sony CCD-IRIS
camera (SSC-M37CE, Sony, Japan). The captured images were
then processed using ImageJ 1.38 for Windows. Stomata were
randomly selected from the digital image collection, obtained from
a set of leaves of six independently grown plants for both the wild
type and the bam1 mutant. Stomatal apertures were calculated as
the ratio between the width and length of the pore (an average of
70 stomatal apertures were analysed for each genotype).
Data on stomatal aperture were analysed by one-way completely

randomized ANOVA and means comparison was performed by
Duncan’s test at significance level of 0.01 (CoStat, CoHort
Software, USA).

Results and discussion

Among all major plastidial thioredoxin isoforms of
Arabidopsis, BAM1 is preferably activated by
thioredoxin f

BAM1 is a thioredoxin-regulated b-amylase, being totally

inactive in the oxidized state and fully activated by

reduction (Sparla et al., 2006). Higher plants contain a large

number of thioredoxin isoforms (Lemaire et al., 2007) and

eight plastidial thioredoxins isoforms of Arabidopsis, repre-

senting all major types f, m, x, and y, for their capability to

regulate BAM1 activity were compared here.

The catalytic activity of BAM1 under oxidizing condi-
tions (3 h incubation in 20 mM oxidized DTT) was close to

zero. The incubation of pre-oxidized enzyme, after the

complete removal of oxidized DTT, with 0.5 mM reduced

DTT for 30 min did not lead to any significant reactivation

(not shown), but BAM1 activity was rapidly (t1/2 �1 min)

and fully restored if 1 lM thioredoxin f1 was also present in

the incubation medium (Fig. 1). All other thioredoxins

tested, at the same concentration of 1 lM, were much less
efficient than thioredoxin f1. However, thioredoxins m1,

m2, y1, y2, and m4, in this order, were all able to reduce

BAM1 to some extent, although the initial activation rates

were at least 20-fold lower, compared with thioredoxin f1.

The effect of thioredoxins m3 and x was negligible (Fig. 1).

Alternative activation of BAM1 by chloroplast
NADPH-thioredoxin reductase (NTRC)

To investigate the possibility that BAM1 could be regulated

by an alternative way to the classical ferredoxin/thioredoxin

system (Schürmann and Buchanan, 2008), recombinant

Arabidopsis NADPH-thioredoxin reductase (NTRC) was

tested for its capability to reductively activate oxidized

BAM1. NTRC is a plastidial flavo-reductase containing
a thioredoxin domain (Michalska et al., 2009). Incubation

of pre-oxidized BAM1 (0.5 lM) for 3 h with 5 lM NTRC

and 0.5 mM NADPH allowed recovery of about half of the

BAM1 maximal activity reached by incubation with 20 mM

DTT (Fig. 2). A 10-fold higher NTRC to BAM1 ratio did

not increase the activation level of BAM1 (data not shown).

NTRC can thus activate BAM1 at a much slower rate

than reduced thioredoxin f1. In illuminated chloroplasts at
least, it is likely that the capability of NTRC to regulate

BAM1 is fully overcome by the ferredoxin/thioredoxin

system connected to Photosystem I. The response of the

Calvin cycle enzymes to thioredoxin f is indeed in the same

time frame as BAM1 (Marri et al., 2009).

BAM1 promoter drives the expression of reporter genes
in roots, in guard cells of non-flowering plants, and in
the mesophyll of adult plants

To analyse the promoter activity of BAM1, a 2195 bp

fragment located upstream of the start codon was fused to

the GUS or to the YFP cassette within a binary vector for

Agrobacterium-mediated stable transformation of Arabidopsis

Fig. 1. Specificity of BAM1 for chloroplast thioredoxin isoforms.

Activation kinetics of oxidized BAM1 were analysed by measuring

PNPG5-depedent activity after incubation of the pre-oxidized

enzyme in the presence of 0.5 mM reduced DTT alone or plus

1 lM thioredoxins. Activities obtained under same conditions

but in the absence of BAM1 were subtracted. Symbols: full

circles, thioredoxin f1; open circles, thioredoxin m1; open squares,

thioredoxin m2; open triangles, thioredoxin m3; full triangles,

thioredoxin m4; full squares, thioredoxin x; stars, thioredoxin y1

and half full squares, thioredoxin y2.
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plants. Second generation (T2) transgenic lines were analysed

weekly during the whole growing season by means of YFP

fluorescence and histochemical GUS staining.

Both YFP and GUS plants showed clear expression of

BAM1 in roots starting from the first week of growth until

full development (Figs 3, 4). Expression was restricted to

tips of developed roots and stele (Figs 3, 4). BAM1 is thus

not restricted to chloroplasts but is also present in
heterotrophic tissues. These results are qualitatively con-

firmed by publicly available microarray data which show, in

addition, that BAM1 may be the major b-amylase among

plastid-targeted isoforms in roots (see Supplementary

Fig. S1 at JXB online). BAM3, which predominates in

leaves and controls starch degradation in the night (Fulton

et al., 2008), is almost undetectable in roots.

How BAM1 could be regulated in roots is unclear. Both

thioredoxin f and m (de Dios Barajas-Lopez et al., 2007)
and y1 (Collin et al., 2003), all active with BAM1, were

found to be expressed in roots, and amyloplasts are known

to contain all the necessary components (ferredoxin:NADP

reductase, ferredoxin, ferredoxin:thioredoxin reductase) for

a NADPH-dependent, thioredoxin-mediated regulatory sys-

tem (Balmer et al., 2006). However, NTRC is also present

in heterotrophic plastids (Michalska et al., 2009) and is

proposed to play a major role in regulating starch bio-
synthesis in amyloplasts by activating ADP-glucose pyro-

phosphorylase (Michalska et al., 2009). This picture might

be more complicated if NTRC might concomitantly activate

a starch-degrading enzyme like BAM1 in the same plastids,

but more data are necessary to address this point.

Besides roots, the expression of BAM1 in photosynthetic

tissues was very peculiar. In the aerial portion of 7-d-old

YFP seedlings, BAM1 was exclusively expressed in guard
cells of cotyledons and first leaf (Fig. 3). Specific expression

in guard cells was confirmed in GUS plants analysed from

10–24 d of growth, although it was also observed in

vascular tissues on occasion (Fig. 4). In one-week-older

plants (31 d), coincident with the emergence of the

inflorescence, strong GUS activity made its appearance in

mesophyll cells and leaf veins (Fig. 4).

The unexpected finding that the BAM1 promoter drove
reporter genes expression in guard cells fits with the in

vitro observation that BAM1 is reductively activated by

thioredoxins. Similar to roots, BAM1 transcripts in guard

cells are also the most abundant among plastid-targeted

b-amylases (BAM1 to 4), as shown by microarray data (see

Fig. 3. Localization of YFP fluorescence under the control of the BAM1 promoter, in a representative 7-d-old seedling. (A–C) Shoot;

(D–F) cotyledon (magnification of the portion delimited by the blue rectangle); (G–I) first leaf (magnification of the portion delimited by

the red rectangle); (L–N) primary root tip; (O–Q) developing secondary root.

Fig. 2. Activation of BAM1 by NTRC. Activation of oxidized BAM1

(0.5 lM) was analysed by measuring PNPG5-dependent activity

after 3 h of incubation at room temperature in the presence of

NTRC (5 lM) and 0.5 mM NADPH. The release of p-nitrophenol

from PNPG5 in the absence of BAM1 was null. Data represent

mean values 6SD of three independent experiments made on

different BAM1 preparations.
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Supplementary Fig. S2 at JXB online). Little is known about

thioredoxins in guard cells, but the promoter of pea thiore-

doxin f was shown to be active in guard cells of transgenic

Arabidopsis (de Dios Barajas-Lopez et al., 2007) and micro-

array data suggest that the whole set of thioredoxins,

including f-type isoforms may be expressed in guard cells.

Guard cell metabolism is highly specialized for the

accumulation of solutes (including malate and sucrose),
which are required to support stomatal opening during the

day. Since direct sugar production via carbon assimilation

in guard cells is low (Outlaw and De Vlieghere-He, 2001),

the source of sucrose and carbon skeletons in the light

might rather depend on starch breakdown, with an addi-

tional supply from surrounding cells (Outlaw, 2003). In fact,

the rate of starch breakdown in guard cells was found to be

correlated with the degree of stomatal aperture (Outlaw and
Manchester, 1979), and thioredoxin-dependent BAM1 may

well be involved in this process since chloroplast thioredox-

ins are reduced in the light by Photosystem I. On the other

hand, when stomata are closed during darkness, osmotically

active carbohydrates (including sucrose) might be stored as

insoluble starch in chloroplasts and it makes sense that

under these conditions the starch-degrading enzyme BAM1

would be inactivated by oxidized thioredoxins. In order to

test these hypotheses, an Arabidopsis mutant impaired in

BAM1 expression was analysed.

BAM1 knockout mutants have no sex phenotype but
increased starch content in guard cells in the light and
reduced stomata opening

A T-DNA insertion line in which BAM1 expression is

virtually nil, as confirmed by RT-PCR experiments on
homozygous lines (T3) using gene-specific primers (see Supple-

mentary Fig. S3 at JXB online), was used in these experi-

ments. The presence of the T-DNA insertion within BAM1

coding sequence was also supported by PCR experiments on

genomic DNA (see Supplementary Fig. S3 at JXB online).

Total leaf starch content was qualitatively detected by

iodine staining in 24-d-old plants grown on hydroponics. As

expected, starch increased during the day and decreased
during the night and no significant differences were

observed between the wild type and the mutants (see

Supplementary Fig. S4 at JXB online), confirming that

BAM1 did not contribute significantly to primary starch

degradation in mesophyll cells of young Arabidopsis plants

(see also Kaplan and Guy, 2005; Fulton et al., 2008).

Total b-amylase activity measured in the leaves of these

plants was also similar, although the redox-sensitive portion
of this activity was slightly higher in wild-type plants (38%)

than in the mutants (24%) (Fig. 5). Clearly, BAM1 does not

Fig. 4. Localization of BAM1promoter::GUS activity during different

stages of Arabidopsis development. The figure shows a typical

expression pattern obtained from two independent experiments

(scale bar¼100 lm). (A, A’) 10-d-old plants; (B, B’) 17-d-old

plants; (C, C’) 24-d-old plants; (D, D’) 31-d-old plants;

(E, E’) 38-d-old plants; (G, G’) 45-d-old plants.

Fig. 5. Beta-amylase activity in wild-type and bam1 plants, hydro-

ponically grown under normal conditions. Total PNPG5-activity was

measured on soluble proteins extracted from leaves after 1 h of

incubation in the presence of 20 mM reduced DTT. Redox-sensitive

activity was obtained by subtracting from total PNPG5-activity the

same activity measured after 1 h of incubation with oxidized DTT.

Values are the means 6SE (n¼30 independent protein extractions).

Statistical analysis by ANOVA underlined significant differences

(P <0.001) between wild-type and bam1 plants. A Duncan’s Test was

conducted to compare means and statistically significantly different

values (P <0.05) are indicated by different letters in the graphs.
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control the starch degradation pathway of young Arabidopsis

leaves. This result is not surprising, however, since BAM1 is

mostly expressed in guard cells in these 24-d-old plants.

Studies on chloroplast b-amylases have shown that only

plants mutated in bam3 or bam4, but not bam1 or bam2,

displayed the characteristic sex phenotype, together with an

elevated starch content during the night (indicative of

diminished starch depolymerization in mesophyll cells)

(Kaplan and Guy, 2005; Fulton et al., 2008). However, the

fact that BAM1 can partially take over the BAM3 role in

starch degradation under particular conditions (e.g. the

down-regulation of BAM3) is indicated by the fact that

bam1/bam3 double mutants showed a more severe sex

phenotype than the bam3 mutants (Fulton et al., 2008). In

light of our current results, it is tempting to explain the

different phenotypes (bam1, bam3, bam1/bam3 mutants) by

supposing that a lack of BAM3 might drive the expression

of BAM1 in the mesophyll of young plants, where it would

normally be restricted to guard cells.

Interesting phenotypic differences between wild-type and

bam1 plants were discovered by focusing our attention on

guard cells. As depicted in Fig. 6, in normal growth

conditions and after 6 h of light, guard cells of bam1

knockout plants clearly contained more starch than wild-

type leaves. Moreover, stomata were wide open in wild-type

plants, much more than in bam1 mutants. In spite of these

effects, hydroponically grown bam1 plants did not show any

macroscopic phenotype suggesting that, at least in our

experimental conditions, the residual functionality of sto-

mata guaranteed normal growth.

Altogether, our data strongly suggest that BAM1 plays

an important role in the process of starch degradation

occurring in guard cell chloroplasts in the light. Lack of

BAM1 impairs diurnal starch degradation in these special-

ized cells and, as a consequence, stomatal opening. The in

vitro properties of BAM1 are consistent with starch
degradation in guard cells being triggered in the light

through the activation of BAM1 by thioredoxins (prefera-

bly of the f-type), reduced in turn by Photosystem I through

ferredoxin:thioredoxin reductase.

BAM1 is induced in mesophyll cells of young plants
under osmotic stress

BAM1 promoter activity was analysed further under

osmotic stress conditions. To do this, 24-d-old BAM1pro-

moter::GUS and BAM1promoter::YFP plants, grown hy-

droponically, were exposed to 450 mM mannitol treatments
(Figs 7, 8). GUS activity showed an initial response after

2 h and strong induction starting from 4 h of treatment

(Fig. 7). Induction of GUS activity was first localized in

veins, followed by a secondary GUS induction in mesophyll

cells. A similar induction pattern by osmotic stress of

BAM1 promoter activity in mesophyll cells besides guard

cells was observed in YFP plants (Fig. 8). Interestingly,

microarray data (see Supplementary Fig. S5 at JXB online)

Fig. 6. Starch content in guard cells and stomatal aperture analysis on wild-type and bam1 mutant plants. Leaves were collected from

plants hydroponically grown for 26 d, after 6 h of light exposure. Both measurements were performed throughout digital image processing.

After iodine staining, starch content (upper graph) was quantified as the total pixel area of the starch accumulations visible in chloroplasts of

single guard cells. Values are means 6SE (n¼72 guard cells). In the pictures on the right the typical starch accumulation observed in

wild-type and bam1 guard cells. In the lower graph, stomatal aperture measurement was determined as the ratio between width and length

of the stomatal pore. Values are means 6SE (n¼70 stomata). Statistical analysis by ANOVA and a Duncan’s Test (P <0.01) were

conducted. Statistically significant differences are indicated by three stars in the graphs.
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indicate that the same osmotic stress conditions which

induce BAM1 expression are symmetrically responsible for
the repression of BAM3 (see also Sparla et al., 2006). In

osmotically stressed plants (as well as in bam3 mutants),

BAM1 may thus become the major chloroplast b-amylase,

suggesting that under these particular conditions starch

degradation could be redox-regulated (i.e. light-activated)

like in guard cells.

Osmotic stress activates diurnal starch degradation in
the wild type but not in bam1 mutants

In parallel experiments the total b-amylase activity was

measured in wild-type and bam1 plants, both treated

with 450 mM mannitol for 4 h during the light period or

kept in nutrient solution. Mannitol treatment caused an

increase of about 50% of total b-amylase activity in wild-
type plants, but no significant changes in bam1 plants were

detected (Fig. 9). The redox-sensitive fraction of total

b-amylase activity under osmotic stress was also slightly

stimulated in wild-type plants while it remained unchanged

in bam1 plants. However, the increase in total b-amylase

activity of osmotically stressed wild-type plants (Fig. 9A)

could not be entirely ascribed to redox-sensitive b-amylases

(Fig. 9B) and apparently also involved other (redox-
insensitive) b-amylases. Although osmotic stress might lead

to unpredictable changes in the activities of the several

b-amylases (including the expected repression of BAM3

activity), it could safely be concluded that BAM1 is induced

under osmotic stress both at the gene (Figs 7, 8) and at the

activity level (Fig. 9). As a result, it is possible that BAM1

exerts a control on leaf starch degradation under osmotic

stress, and since this enzyme is strictly redox-regulated, this
would imply that leaf starch breakdown may occur in the

light under these specific conditions. To clarify this point,

the effect of osmotic stress on the capacity of accumulating

starch in leaves during the light period was measured in

wild-type and bam1 plants.

As depicted in Fig. 10, under normal growth conditions,

total starch content in wild-type and bam1 plants increased

3-fold during 8 h of illumination (starch was measured from
the 3rd to the 11th hour of the light cycle). Leaf starch

content was instead lower in wild type plants treated with

450 mM mannitol, the rate of starch accumulation being

24% less than in control conditions (Fig. 10). The observed

decrease of leaf starch accumulation could, in principle,

derive from two contrasting effects: either inhibition of

starch biosynthesis (possibly caused by a decrease in net

photosynthetic rate) or activation of starch degradation.
However, starch accumulation was not affected by osmotic

stress in bam1 plants which maintained exactly the same

rate observed in control conditions. Therefore, it seems

Fig. 7. Induction of BAM1promoter::GUS activity under control

conditions and in the presence of 450 mM mannitol. Treatment

was applied 3 h after beginning of the light period. GUS activity

was measured after 5 min, 1 h, 2 h, 4 h, 6 h, and 8 h of treatment

(scale bar¼100 lm).

Fig. 8. Localization of YFP fluorescence in leaves of plants

transformed with BAM1promoter::YFP. (A) Representative control

leaf; (B) representative leaf after 10 h of 450 mM mannitol

treatment. Each image represents a 3D reconstruction from a Z

stack confocal acquisition.
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more likely that the observed decrease of starch accumula-

tion caused by osmotic stress in wild-type plants is
a consequence of the activation of starch degradation in the

light, rather than an inhibition of starch biosynthesis, which

was apparently not affected. In this framework, BAM1

activity seems to be at the onset of the starch degradation

pathway in the light. Since bam1 plants appeared to be less

tolerant to osmotic stress (see Supplementary Fig. S6 at

JXB online), leaf starch degradation catalysed by BAM1

may be part of the normal adaptation response to stress in
Arabidopsis. Maltose, the product of b-amylase activity, has

been reported to play a role as an osmoprotectant under

various stress conditions (Kaplan and Guy, 2004; Rizhsky

et al., 2004).

Conclusion

The present results are consistent with a scenario in which

BAM1, in photosynthetic cells, is a light-activated enzyme

involved in diurnal starch degradation under particular
conditions. In leaves of young, non-flowering plants BAM1

is mainly expressed in guard cells. Although the activity of

BAM1 in guard cells could not be directly assessed, efficient

activation of BAM1 by reduced thioredoxins in vitro (e.g.

thioredoxin f) strongly suggests that BAM1 in guard cells is

activated in the light, when thioredoxins are kept reduced

by Photosystem I, and inactivated at night. Consistently,

mutants lacking BAM1 contain large amounts of starch in
guard cells in the middle of the day, when starch

degradation could support stomatal opening. Stomatal

opening is indeed reduced when guard cells of bam1

mutants are filled with starch. The regulation of BAM1

thus perfectly matches the need of guard cells to produce

osmolytes from starch during the day, and insoluble starch

overnight when turgor release in guard cells induces the

stomata to close.

Although BAM1 has a marginal role in starch degrada-

tion in mesophyll cells (Fulton et al., 2008), this situation

clearly changes under osmotic stress, when BAM1
abruptly appears in mesophyll cells even in young plants,

apparently as a substitute for BAM3 which is symmetri-

cally repressed (Hruz et al., 2008; Sparla et al., 2006). In

this particular condition, primary starch accumulation

during photosynthesis is apparently counteracted by starch

hydrolysis catalysed by redox-regulated BAM1. Day-time

leaf starch breakdown triggered by BAM1 would produce

osmolytes (maltose) as an active response against the
osmotic stress.

In conclusion, starch degradation also clearly occurs in

the light, although in particular cell types and/or conditions,

and it is shown here that in both guard cells and osmotically

stressed mesophyll cells, diurnal starch degradation is

triggered by thioredoxin-regulated BAM1.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Fig. S1. Microarray data on the expres-

sion of BAM1, BAM2, BAM3, and BAM4 genes in root.
Supplementary Fig. S2. Microarray data on the expres-

sion of BAM1, BAM2, BAM3, and BAM4 genes in guard

and mesophyll cells.

Supplementary Fig. S3. Analysis of Arabidopsis line

(SALK_039895) carrying a T-DNA insertion within the

BAM1 coding sequence.

Supplementary Fig. S4. Starch content in wild-type and

bam1 plants.
Supplementary Fig. S5. Microarray data on the expres-

sion of BAM1, BAM2, BAM3, and BAM4 genes in plants

exposed to osmotic and salt-stress conditions.

Supplementary Fig. S6. Mannitol effect on wild-type and

bam1 plants.

Fig. 10. Starch content in wild-type and bam1 plants under

osmotic stress conditions. Twenty-six-day-old plants were

osmotically stressed 3 h after switching on the light, by adding

450 mM mannitol to the hydroponic solution. Starch was quantified

as described by Smith and Zeeman (2006). Five independent

experiments were performed. Data are means values 6SE (n¼15).

Fig. 9. Beta-amylase activity in wild-type and bam1 mutant

plants, hydroponically grown under normal conditions (control) or

in the presence of 450 mM mannitol for 4 h (mannitol). (A) Soluble

proteins extracted from leaves were incubated for 1 h in the

presence of 20 mM reduced DTT before measuring PNPG5-

activity; (B) redox-sensitive fraction obtained by subtracting from

total PNPG5-activity (A) the same activity measured after 1 h of

incubation with oxidized DTT. Values are the means 6SE (n¼30

independent protein extractions). Statistical analysis by ANOVA

underlined significant differences (P <0.001) between wild-type

and bam1 plants. A Duncan’s Test was conducted to compare

means and statistically significantly different values (P <0.05) are

indicated by different letters in the graphs.
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