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Abstract

The three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine

betaine and the stress-induced compound g-aminobutyric acid when expressed in heterologous systems. The aim

of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using

single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline,

transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were

analysed. AtProT2 was shown to facilitate uptake of L- and D-proline as well as [14C]glycine betaine in planta,

indicating a role in the import of compatible solutes into the root. Toxic concentrations of L- and D-proline resulted in
a drastic growth retardation of AtProT-overexpressing plants, demonstrating the need for a precise regulation of

proline uptake and/or distribution. Furthermore evidence is provided that AtProT genes are highly expressed in

tissues with elevated proline content—that is, pollen and leaf epidermis.
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Introduction

Organic solutes that accumulate at high concentrations

in the cytoplasm in response to abiotic stress without inter-

fering with primary metabolism are classified as ‘compati-

ble’ solutes. The best known compatible solutes in plants

are proline, glycine betaine, sugars, and polyols (Yancey,

2005; Verbruggen and Hermans, 2008). How exactly

compatible solutes fulfil their protective role during stress is
still a matter of debate; it appears that there exists a range

of mechanisms such as supporting osmotic adjustment,

protection of cellular structures, and regulation of cellular

redox potential (Hare et al., 1998). High levels of com-

patible solutes are found not only under stress conditions,

but also in plant organs that undergo dehydration as part

of their development, such as pollen and seeds (Krogaard

and Andersen, 1983; Chiang and Dandekar, 1995; Mondal
et al., 1998; Schwacke et al., 1999; Schmidt et al., 2007).

The key enzyme of proline biosynthesis, D1-pyrroline-5-

carboxylate synthetase (P5CS), is encoded by two differen-

tially regulated genes in Arabidopsis thaliana (Strizhov et al.,

1997). AtP5CS1 is required for proline accumulation

following osmotic stress, whereas AtP5CS2 is associated

with embryo development (Székely et al., 2008).

The presence of compatible solutes in the phloem sap

indicates that long-distance transport might be important

for metabolism and/or stress tolerance (Girousse et al.,
1996; Mäkelä et al., 1996). Likewise, uptake of compatible

solutes from the soil can improve the plant’s resistance to

adverse environmental conditions (Räsänen et al., 2004).

Although transporters for polyols (Klepek et al., 2005),

glycine betaine, and proline (Rentsch et al., 1996; Schwacke

et al., 1999) have been identified, their physiological role is

poorly understood.

Amino acid transporters mediating the transport of
proline have been identified in different gene families

(Rentsch et al., 2007; Lehmann et al., 2010). The family of

proline transporters (ProTs), with three members in
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Arabidopsis, transports proline, but no other proteinogenic

amino acids (Rentsch et al., 1996). Although the ProTs were

originally described as proline-selective transporters, later

studies showed that in contrast to other amino acid

permeases, ProTs from Arabidopsis, sugar beet, the man-

grove Avicennia marina, and tomato, as well as barley

ProT2 also transport glycine betaine (Rentsch et al., 1996;

Schwacke et al., 1999; Waditee et al., 2002; Grallath et al.,
2005; Yamada et al., 2009; Fujiwara et al., 2010). The tomato

ProT1, barley ProT2, and the three Arabidopsis ProTs also

recognize the stress-related compound c-aminobutyric acid

(GABA), though the affinity of the AtProTs and HvProT2

for GABA is lower than for proline or glycine betaine

(Breitkreuz et al., 1999; Grallath et al., 2005; Fujiwara et al.,

2010). The plasma membrane localization of AtProTs

(Grallath et al., 2005), HvProT2 (Fujiwara et al., 2010), and
sugar beet ProT (BvBet/ProT1; Yamada et al., 2009) suggests

a function as a cellular uptake system in proline- and glycine

betaine-accumulating species.

Although the intracellular localization, substrate selectiv-

ity, and affinity of the three Arabidopsis ProTs are similar,

differences in expression indicate different roles in planta

(Grallath et al., 2005). AtProT1:GUS staining was detected

in the phloem of all organs analysed, suggesting a role in
long-distance transport of proline (Grallath et al., 2005).

AtProT2:GUS staining is found in the epidermis and cortex

in roots and is detectable in leaves only after wounding.

AtProT3 expression is restricted to the epidermis in leaves

(Grallath et al., 2005). The expression of ProT family

members is often associated with increased levels of proline.

For example, tomato ProT1 transcripts are found exclu-

sively in pollen that has high concentrations of proline
(Schwacke et al., 1999). Transcript levels of Arabidopsis

ProT2 and of the three mangrove ProT homologues in-

crease in response to salt stress, as do the concentrations of

proline and glycine betaine, respectively (Chiang and

Dandekar, 1995; Rentsch et al., 1996; Hibino et al., 2001;

Waditee et al., 2002). Salt stress also increases mRNA levels

of HvProT in barley roots (Ueda et al., 2001). Despite these

correlative changes, a role for ProTs in the translocation of
proline or glycine betaine has been demonstrated only

recently. Transgenic Arabidopsis lines overexpressing

HvProT showed reduced shoot biomass and decreased

proline accumulation (Ueda et al., 2008). Conversely, root

cap-specific expression of HvProT resulted in increased

accumulation of proline in the root tip and enhanced root

elongation (Ueda et al., 2008).

To reveal the contribution of individual Arabidopsis ProTs
to the distribution of proline within the plant, the focus of

the present study was on organs and growth conditions

known to be associated with AtProT expression. Using

atprot knockout plants and overexpressing lines, it is

demonstrated that AtProT1 and AtProT2 mediate proline

transport in planta. It is shown that proline is unevenly

distributed between the lower leaf epidermis and the re-

mainder of the leaf, and that proline is the major free amino
acid in mature Arabidopsis pollen, correlating with high

expression of AtProT3 and AtProT1, respectively.

Materials and methods

Plant growth and transformation

Arabidopsis thaliana L. ecotype Columbia (Col-0) or Wassilewskija
(Ws) and mutant lines were cultivated in a growth chamber under
a photoperiod of 16 h of light (100–150 lmol m�2 s�1) and 8 h of
darkness. Plants were grown in soil with a day/night temperature
of 22 �C/18 �C at 65%/60% relative humidity.
The following Arabidopsis T-DNA insertion lines were used in this

work: atprot1-1 (Salk_018050, ecotype Columbia), atprot2-1 (4B14,
Feldmann line, ecotype Wassilewskija), atprot2-2 (CSJ1230,
Wisconsin, ecotype Wassilewskija), atprot2-3 (Salk_067508, ecotype
Columbia), and atprot3-2 (Salk_083340, ecotype Columbia),
(Wisconsin lines: Arabidopsis Knockout Facility of the University
of Wisconsin, Krysan et al., 1999; Salk lines: Alonso et al., 2003;
Feldmann lines: PCR screening of mutants obtained from the ABRC
stock center, Columbus, OH, USA, according to Krysan et al.,
1996). The insertion sites were verified by sequencing flanking
regions which were amplified by PCR using T-DNA left border
primers (for Salk lines, 5#-GCGTGGACCGCTTGCTGCAACT-3#;
for Feldmann line, 5#-GATGCACTCGAAATCAGCCAATTT-
TAGAC-3#; for Wisconsin line, 5#-CATTTTATAATAACGCT-
GCGGACATCTAC-3#) and gene-specific primers (for atprot1-1,
5#-GGCAACAGTGAGGCAACCAGT-3# and 5#-CATAGCTTT-
TGCATAGCATTC-3#; for atprot2-1, 5#-GCAGTTGAACAATTC-
GATCTCGAAGTCCC-3# and 5#-GAAGCAAACATTGAGCCA-
ATGCCATAGC-3#; for atprot2-2, 5#-GTGTGAAAGCTTAAGT-
GTTGAAGAACTTG-3# and 5#-ACCCTAGTTTTCGCTATTAG-
GTCAAGACT-3#; for atprot2-3, 5#-TAAACAGTGCCTATGTGT-
TG-3# and 5#-AGATCGATGACACTGACCTGT-3#; for atprot3-2,
5#-ACAATAACCATTTGGAGAGG-3# and 5#-GAAAACTAGT-
GTAGCGGC-3#). Lines were back-crossed twice with the wild-type
and selfed to isolate homozygous lines. Double and triple knockout
lines were generated by crossing homozygous single atprot mutants
(Col-0 background).
Plants were transformed by Agrobacterium tumefaciens-

(GV3101 pMP90) mediated gene transfer using the floral dip
method (Clough and Bent, 1998).
For axenic culture, surface-sterilized Arabidopsis seeds were

vernalized at 4 �C in the dark for 2 d. Plants were cultivated for
10 d in square plates (12 cm) with 70 ml of AM medium per plate
[2.2 g l�1 MS salts (Murashige and Skoog, 1962), 1% sucrose]. The
medium contained 0.05% MES (pH 5.7) and was solidified with
0.7% agar.

DNA and RNA work

For overexpression in Arabidopsis, the AtProT1-cDNA and AtProT2-
cDNA including 5’- and 3’-untranslated region sequences were
isolated from pFL61 (Minet et al., 1992; Rentsch et al., 1996) and
introduced into the SmaI and XbaI sites of pBinAR (Bevan, 1984).
Extraction of total RNA and RNA gel blot analysis were

performed according to a phenol–SDS extraction method and
a formaldehyde–formamide protocol, respectively (Ausubel et al.,
1994). The fragments used for detection were labelled with
[a-32P]dCTP using the Megaprime Kit (Amersham). For detection
of AtProT1 expression, a 464 bp sequence was amplified from the
AtProT1 cDNA using the primers 5#-GAGAATTCAGGCTC-
TAATGGTAAGAC-3# and 5#-CATATGAGTACATGGACA-
CA-3#. AtProT2 and AtP5CS expression was detected using the
entire cDNAs for the labelling procedure. The fragment amplified
from the AtP5CS1-cDNA might detect AtP5CS1 and AtP5CS2
mRNA due to high homology of the transcripts. For detection of
AtPDH (proline dehydrogenase) a 1600 bp fragment of the
AtPDH1 cDNA was amplified using a gene-specific primer 5#-
CCCAACCTCTGATCTCC-3# and a vector primer, possibly also
detecting AtPDH2 transcripts.
For expression analysis of AtProT3, reverse transcription was

performed using the RETROscript Kit (Ambion) with 2 lg of
total RNA. The primers 5#-ACAATAACCATTTGGAGAGG-3#
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and 5#-AAATCCAACTAAGAATAAATACG-3# were used
to amplify a full-length transcript of AtProT3 by reverse
transcription-PCR (RT-PCR).

Amino acid analysis

The content of free proline in the leaf was determined as described by
Bates et al. (1973). For HPLC analysis, free amino acids from mature
and germinated pollen were extracted as described by Bieleski and
Turner (1966) and analysed by ARC (Analytical Research and
Services, University of Bern) according to Bidlingmeyer et al. (1984).

Preparation of Arabidopsis leaf epidermis

Arabidopsis plants were grown under long-day conditions for 3–4
weeks. The salt treatment was performed 24 h prior to the
experiment by adding NaCl solution to the plants until a concen-
tration of ;200 mM NaCl was reached in the pot. After the leaf
margin had been removed using a razor blade, the leaf was placed
between two pieces of double-sided adhesive tape attached to
a strip of plastic wrap. Tissues were separated by detaching the
pieces of tape and immediately frozen in liquid nitrogen. A sample
was composed of 10 leaves harvested from 10 individual plants
[resulting in fresh weights of 10–20 mg (epidermis) and 60–100 mg
(rest of the leaf)].

[14C]Glycine betaine uptake

Sixteen seedlings per genotype (64 seedlings in total) were grown
for 10 d in square plates (12 cm) containing 70 ml of AM medium
(0.6% agar). Per plate, 16 agar plugs (7 mm) were removed with
a cut plastic pipette. To reach a final concentration of 500 lM
glycine betaine, each of the holes was filled with 150 ll of labelling
solution {14.6 mM glycine betaine, 1.3 lM [14C]glycine betaine
(2 TBq mol�1) in liquid AM}. After 24 h the radioactivity was
equally distributed in the plate (not shown). At each time point (6,
24, and 48 h) 10 seedlings per genotype were removed and washed
thoroughly at 4 �C with AM containing 500 lM glycine betaine.
For scintillation counting, seedlings were solubilized overnight
using 500 ll of SOLUENE 350 (Perkin Elmer�). After addition of
4 ml of scintillation cocktail ULTIMA GOLD� XR (Perkin
Elmer�) the samples were counted using a Beckman LS6500
scintillation counter.

Pollen harvest and in vitro pollen germination

Mature pollen was harvested in bulk from several trays of
flowering plants onto a nylon mesh (mesh size 15 lm), using a
vacuum cleaner as described by Johnson-Brousseau and McCormick
(2004). For germination, the pollen was transferred to an agar
medium (pH 6.0) composed as described in Fan et al. (2001), but
without myo-inositol. The pollen was transferred to the medium
(5.5 cm plates) either by dipping the nylon mesh onto the agar
surface or by placing the mesh on the medium (in the case of
subsequent RNA extraction) and germinated in a humid chamber
at 28 �C for 6 h. Due to this experimental set-up, the fresh weight
of germinated pollen could not be determined. The extraction
yielded similar amounts of amino acids per g pollen fresh weight
from Col-0 and atprot1-1 plants. The relative amount of an amino
acid was determined as the mean of three samples, each extracted
from several nylon meshes with pollen.

Results

Characterization of atprot T-DNA insertion and
35S:AtProT-overexpressing lines

An overview of the T-DNA insertion sites is given in

Fig. 1A. AtProT transcript levels were determined in tissues

where high expression of the respective gene had been

shown (Rentsch et al., 1996; Grallath et al., 2005; see

below). RNA gel blot analysis showed that in the atprot1-1

mutant (Fig. 1B) and the three atprot2 lines (atprot2-1,
atprot2-2, and atprot2-3, Fig. 1B), the respective transcripts

cannot be detected and thus the insertion lines can be

considered as null mutants. In the atprot3-2 mutant, no

full-length transcript of AtProT3 could be amplified by RT-

PCR (Fig. 1B). A fragment of ;1000 bp downstream of the

insertion site that contains an open reading frame was

transcribed (data not shown), but expression of the

Fig. 1. Molecular characterization of atprot T-DNA insertion

mutants and AtProT-overexpressing lines. (A) Schematic

representation of the exon–intron structure of AtProT1, AtProT2,

and AtProT3 including the T-DNA integration sites. Genomic

sequences were drawn to scale. Black boxes represent exons.

The distance of the insertion site from the exon–intron border was

verified by sequencing and is indicated as nucleotides in paren-

theses. (B) Expression of AtProT genes in several T-DNA insertion

lines examined by northern blot (AtProT1 and AtProT2) or RT-PCR

(AtProT3). RNA was isolated from pollen (AtProT1), salt-stressed

seedlings (AtProT2), or leaves (AtProT3). A dashed line separates

individual gels. The lanes of the RNA gel blot analysis of AtProT2

expression were regrouped for clarity. (C) RNA gel blot analysis of

35S:AtProT1 and 35S:AtProT2 lines (leaf tissue). Autoradiographic

pictures in B and C have been adjusted in brightness levels.
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respective 3’ end fragment did not complement the proline

transport-deficient Saccharomyces cerevisiae mutant strain

22574d, suggesting that the truncated AtProT3-2 transcript

did not produce a functional protein in plants (data not

shown; Jauniaux et al., 1987). Double and triple insertion

lines were generated using the lines atprot1-1, atprot2-3, and

atprot3-2. Additionally, lines overexpressing AtProT1 or

AtProT2 under control of the constitutive 35S promoter
were generated. Two lines of each construct were selected

for further analyses, one line showing moderately

(35S:AtProT1-59, 35S:AtProT2-14) and one line showing

strongly (35S:AtProT1-6, 35S:AtProT2-26) increased

AtProT mRNA levels in the T3 generation (Fig. 1C).

When grown in soil or axenically, none of these single,

double, and triple knockout mutants and overexpression

lines showed phenotypical differences (e.g. shoot size and
development, root length, flowering time). Also, the proline

content of shoots and roots of plants grown in axenic

culture and of rosette leaves of plants grown in soil did not

differ between wild-type, knockouts, and overexpressing

lines (not shown).

AtProT2 mediates uptake of glycine betaine from the
rhizosphere

Heterologous expression of the AtProTs in S. cerevisiae

demonstrated that the affinity for glycine betaine is higher

than for L-proline (Grallath et al., 2005). Glycine betaine

does not seem to be metabolized in Arabidopsis and no

transporter other than the AtProTs has been reported to

mediate transport of glycine betaine. As AtProT2 expression

was primarily found in the cortex and epidermis of the roots

(Grallath et al., 2005), a role for AtProT2 in the uptake of

proline or glycine betaine into roots was suggested.
The uptake of [14C]glycine betaine in seedlings of wild-

type plants, atprot2-3 mutant, triple knockout (atprot1-1

atprot2-3 atprot3-2), and 35S:AtProT2-26 lines showed that

uptake was time dependent and highest in the overexpress-

ing line (Fig. 2). Wild-type seedlings accumulated more

[14C]glycine betaine than the atprot2 or the triple knockout

mutant. No significant difference was observed between the

latter. The overexpressing line accumulated three times as
much [14C]glycine betaine as the wild type, which in turn

imported 4.5 times the amount detected in atprot2 knockout

plants, indicating that AtProT2 is the main uptake system

for glycine betaine in roots.

AtProT1 and AtProT2 transport L-proline in planta

Some D-amino acids such as D-serine or D-alanine have been

shown to be detrimental for plant growth and development

(Erikson et al., 2004). Transport studies using heterologous

expression systems demonstrated that AtProT2 transports
D- and L-proline at similar rates (Breitkreuz et al., 1999; CG

and DR, unpublished).

It was found that D-proline inhibited Arabidopsis root

growth in a dose-dependent manner and differences in

D-proline transport between wild-type and mutant plants

were assessed. Two independent atprot2 mutants and the

respective wild-type plants were germinated on AM medium

and transferred to AM medium supplemented with 8 mM
D-proline. D-Proline inhibited root growth of atprot2 seed-

lings to a lesser extent than growth of wild-type roots

(Fig. 3A), indicating that the loss of AtProT2 activity

decreased the net uptake of D-proline. Growth of the triple

knockout line resembled that of the atprot2 mutant (not

shown).

Similarly, plants overexpressing AtProT1 or AtProT2

were grown on AM medium supplemented with 4 mM
D-proline and compared with the wild type (Fig. 3B). All

genotypes showed a strong phenotypic response to

D-proline. Shoot growth and root elongation were reduced

in wild-type plants, while development of all tested

35S:AtProT lines was arrested shortly after unfolding of

cotyledons (Fig. 3B).

Previous studies have demonstrated that high concentra-

tions of exogenous L-proline also impair Arabidopsis growth
(Hellmann et al., 2000; Mani et al., 2002). When plants were

grown on AM medium containing 50 mM L-proline, shoot

and root development was moderately inhibited in wild-type

seedlings, whereas chlorosis and early cessation of growth

was observed in 35S:AtProT plants (Fig. 3B). Taken

together these results demonstrate that AtProT1 and

AtProT2 mediate proline transport in planta.

High proline level in Arabidopsis leaf epidermis

Zúñiga et al. (1989) demonstrated that in barley seedlings,

proline distributes unevenly between leaf epidermis and
mesophyll in water-stressed but not in control plants,

whereas the concentration of glycine betaine is elevated in

the epidermis of both stressed and unstressed barley leaves.

As AtProT3 is expressed in the lower epidermis but not in

the mesophyll of leaves (Grallath et al., 2005), proline

Fig. 2. Uptake of [14C]glycine betaine. Time-dependent uptake

of 500 lM [14C]glycine betaine in Col-0, atprot2-3, triple

knockout (atprot1-1 atprot2-3 atprot3-2), and 35S:AtProT2-26

(OE) seedlings. Values represent the mean of 10 separately

measured seedlings 6SD. Comparable results were obtained in

several biologically independent experiments. The differences

between the wild type and all three mutant lines are statistically

significant (one-way ANOVA, Scheffé test).
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distribution between the lower epidermis and the remaining

leaf tissues was determined under control and under salt

stress conditions, but found to be comparable in the wild
type and the atprot3-2 mutant (Fig. 4). Interestingly, the

concentration of proline in the lower epidermis was 1.5–2

times higher than the average concentration in the remain-

ing leaf tissues (Fig. 4). Upon salt treatment, proline

concentrations increased in particular in the remaining leaf

tissues, so that the difference in concentrations between the

lower epidermis and remaining leaf tissues was no longer

observed (Fig. 4).

Altered glutamate and arginine levels in germinating
pollen of the atprot1 mutant

Pollen has repeatedly been reported to contain a high

amount of free proline (Krogaard and Andersen, 1983;

Mondal et al., 1998; Schwacke et al., 1999). Consistently,

proline was found to be the most abundant amino acid in

mature and germinated Arabidopsis pollen, accounting for

60–65% of the free amino acid pool (Supplementary Fig. S1
available at JXB online; Fig. 5B). Previously, expression of

AtProT1 had been demonstrated in roots, leaves, and

flowers (Rentsch et al., 1996). The present analysis shows

that the AtProT1 transcript level is particularly high in

pollen compared with leaf and flower tissue (Fig. 5A).

Of the mRNA species present in mature pollen, many

appear to be translated into protein only upon the onset of

pollen germination (Mascarenhas, 1993). Two independent
pollen transcriptome analyses detected an increase in

AtProT1 transcript abundance during late stages of pollen

maturation, suggesting that AtProT1 functions in post-

pollination processes (Honys and Twell, 2004; Bock et al.,

2006). Based on these observations, expression of AtProT1

was compared between mature and in vitro germinated

pollen and found to decrease during pollen germination

(Fig. 5A). Mature pollen of Col-0 and atprot1-1 plants does
not differ in amino acid composition and content (Supple-

mentary Fig. S1 at JXB online). In contrast, germinating

pollen of atprot1-1 plants displayed minor differences

regarding the free amino acids—that is, a lower and higher

percentage of glutamate and arginine, respectively (Fig. 5B).

The high level of GABA in germinating pollen of both

genotypes might result from stress during in vitro germina-

tion and subsequent harvest (Shelp et al., 1999). Despite the
altered concentrations of glutamate and arginine in atprot1-1

mutant pollen, in vitro germination assays and an in vivo

transmission analysis did not reveal differences in germina-

tion rate or a significantly biased distribution of the AtProT1

alleles in the offspring (not shown).

Furthermore, transcript levels of AtP5CS (D1-pyrroline-

5-carboxylate synthetase), the enzyme catalysing the first

step in proline biosynthesis, and of AtPDH (proline
dehydrogenase), the enzyme catalysing the oxidation of

proline to pyrroline-5-carboxylate (P5C), were analysed by

Fig. 3. Growth on D-proline and high concentrations of D-proline.

(A) atprot2-1 and atprot2-3 seedlings and the respective wild-type

plants were germinated on AM medium and transferred to AM or

medium supplemented with 8 mM D-proline for 5 d. Scale bar

2 cm. (B) Growth of Col-0 and 35S:AtProT (OE) seedlings was

compared 10 d after germination on AM medium, AM supple-

mented with 4 mM D-proline and AM containing 50 mM L-proline.

Scale bar¼2 cm. (This figure is available in colour at JXB online.)

Fig. 4. Proline distribution within the leaf. The proline content in

the lower epidermis and in the rest of the leaf was determined in

wild-type and atprot3-2 plants by ninhydrin assay. Plants were

grown on soil for 3–4 weeks and watered normally or treated with

200 mM NaCl for 24 h prior to the analysis. Values represent the

mean of six samples 6SD.
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RNA gel blot in the atprot1-1 knockout (Fig. 5A). AtP5CS

transcripts were abundant in leaf and flower tissue but
could hardly be detected in pollen, in both Col-0 and

atprot1-1 plants. In contrast, expression of AtPDH was high

in pollen and decreased during pollen germination

(Fig. 5A); however, lower AtPDH mRNA levels might also

be caused by repression of PDH expression by sucrose

present in the germination medium (Hanson et al., 2008).

Similar results were obtained from several independent

batches of plants, suggesting that there are no major
differences in expression of AtP5CS and AtPDH between

wild-type and atprot1-1 plants.

Discussion

AtProTs mediate proline and glycine betaine transport
in planta

Evidence is provided that in planta, AtProTs transport

D- and L-proline or glycine betaine, which were previously

identified as substrates of AtProTs using heterologous

expression systems (Breitkreuz et al., 1999; Grallath et al.,

2005). First, the contribution of AtProT1 and AtProT2 to

proline transport in planta is demonstrated by treatment
with toxic concentrations of L-proline as well as D-proline,

which are the cause of severe growth defects in 35S:AtProT

plants. Secondly, after 6, 24, and 48 h seedlings of AtProT2-

overexpressing line accumulated more [14C]glycine betaine

than the wild type, which in turn contained more radio-

labelled substrate than the atprot2 and the triple knockout

plants. As the atprot2 mutant accumulates <25% of the

[14C]glycine betaine imported by the wild type, AtProT2
seems to be the main glycine betaine uptake system in roots.

AtProT2 expression is found in the epidermis and cortex of

roots (Grallath et al., 2005), tissues which are involved in

the uptake and radial transport of substances from the root

medium. Because AtProT2 expression is induced under salt

stress (Rentsch et al., 1996), the acquisition of compatible

solutes from the rhizosphere might improve growth of
Arabidopsis under water stress, as observed for seedlings of

acacia (Räsänen et al., 2004), and is a common strategy

found among bacteria (Sleator and Hill, 2002).

The proline distribution within the leaf changes under
salt stress

The differential distribution of solutes between leaf tissues

such as epidermis, mesophyll, and vascular bundles has

been demonstrated in several plant species (Fricke et al.,

1994; Karley et al., 2000). Here, it was shown that in

Arabidopsis, the proline level in the lower leaf epidermis is

higher than in the rest of the leaf (Fig. 4). Compared with

mesophyll cells, the water status of cells in the lower

epidermis is constantly challenged by stomatal and cuticular
transpiration. Furthermore, a high vacuolar osmotic pres-

sure in epidermal cells requires a high solute content in the

cytosol, thus the concentration of compatible solutes is

expected to be elevated.

Under salt stress, this differential accumulation was no

longer observed, suggesting that the stress-related increase

of proline is stronger in the mesophyll or in the vasculature

than in the epidermis. In potato mesophyll cells, the cellular
increase in proline in response to osmotic stress is primarily

due to accumulation of proline in the chloroplast stroma

(Büssis and Heineke, 1998). An AtP5CS1–green fluorescent

protein (GFP) fusion protein has been reported to re-

localize from the cytosol into the chloroplasts when

Arabidopsis mesophyll cells are subjected to hyperosmotic

stress (Székely et al., 2008). Therefore, less accumulation of

proline in the epidermis under stress may also reflect the
general scarcity of chloroplasts in this tissue. However, the

highest increase in proline in water-stressed barley leaves

was detected in the vasculature and the epidermis, whereas

the proline level in mesophyll protoplasts remained rather

constant (Zúñiga et al., 1989), demonstrating species-

Fig. 5. Molecular and biochemical analysis of the atprot1-1 mutant. (A) Expression of AtProT1, AtP5CS, and AtPDH in different organs

of Col-0 and atprot1-1 plants examined by RNA gel blot analysis. The dashed line separates the half of the gel loaded with wild-type

RNA from that loaded with RNA from atprot1-1 plants, which was mirrored for clarity. The autoradiographic pictures have been adjusted

in brightness levels. (B) Free amino acid composition in germinated pollen of Col-0 and atprot1-1 plants. The relative amount of an amino

acid is given as the mean of three composite samples 6SD.
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dependent differences in the distribution of compatible solutes

under stress. To understand the physiological relevance of this

phenomenon, it would be important to dissect the contribu-

tion of proline synthesis and transport, for instance by

means of plants further impaired in the expression of

AtP5CS or AtLHT1, an amino acid and proline transporter

that is also expressed in the epidermis of Arabidopsis

(Hirner et al., 2006).

Loss of AtProT1 activity changes amino acid
composition in germinating but not in mature pollen

The accumulation of proline in Arabidopsis pollen argues
for a role in stabilizing cellular structures during dehydra-

tion, high and low temperatures, or as a metabolic pre-

cursor and source of energy, as was proposed for other

plants (Stanley and Linskens, 1974; Zhang and Croes, 1983;

Mutters et al., 1989; Lansac et al., 1996; Schwacke et al.,

1999). Székely et al. (2008) detected AtP5CS–GFP in

Arabidopsis pollen, suggesting that biosynthesis contributes

to proline accumulation. However, the low abundance of
P5CS transcripts in pollen of Arabidopsis and tomato

observed in other studies supports the idea that proline

accumulation is attributed to import processes, though

post-transcriptional regulation cannot be excluded

(Fig. 5A; Fujita et al., 1998; Schwacke et al., 1999).

Accumulation of proline which is independent of changes

of P5CS expression has also been reported for tissues other

than pollen—that is, in developing grapevine berries—again
pointing to the contribution of proline transport or

regulation at the post-transcriptional level (Stines et al.,

1999).

The present data show that AtP5CS transcripts are

present in flowers, but absent from pollen (Fig. 5A),

suggesting that the proline generated in other parts of the

flower may be imported into pollen. As pollen is symplasmi-

cally isolated, membrane transport is essential in sustaining
its development during maturation and germination. It

cannot be predicted whether transcripts that accumulate

late in pollen development, such as AtProT1 mRNA, are

translated in mature pollen, germinating pollen, or both

(Mascarenhas, 1990). Likewise, the concomitant accumula-

tion of AtPDH mRNA and high amounts of proline in

mature pollen (Fig. 5A, Supplementary Fig. S1 at JXB

online) suggests that AtPDH transcript abundance does not
reflect PDH activity. Proline degradation has been detected

in germinating pollen of Petunia (Zhang and Croes, 1983);

therefore, translation of PDH might only start with the

onset of pollen germination.

Germinated wild-type pollen differs from germinating

atprot1 pollen particularly in those amino acids that are

closely linked with proline metabolism (glutamate and

arginine). Glutamate is the metabolic precursor of GABA
and proline; it also represents the end-product of the

degradation of proline and arginine. Thus it appears that

during pollen germination the transport activity of AtProT1

affects amino acids other than proline, an effect that needs

to be further investigated.

How do AtProTs contribute to proline transport in the
plant?

None of the atprot T-DNA insertion lines (single, double,

or triple knockouts) and overexpression lines analysed

revealed differences in proline content, though the present

results do not exclude changes at the subcellular or tissue

level. Either transport of proline through AtProTs is not
involved in the regulation of proline levels in planta, or

plants can compensate for the lack or increase of AtProT

activity—that is, other amino acid transporters and/or the

regulation of proline metabolism might compensate for

alterations in proline distribution. The findings of Ueda

et al. (2008) suggest that metabolism responds to changes in

proline transport. Overexpression of HvProT in Arabidopsis

led to an increase in AtPDH expression and activity, parallel
to a decrease in proline content of leaves (Ueda et al., 2008).

The authors conjectured that enhanced accumulation of

proline in leaves of 35S:HvProT plants might induce elevated

AtPDH activity. Though altered expression of proline-

metabolizing enzymes was not observed in the present

mutant lines, altered proline transport may feed back directly

on the metabolic pathway or alter flow through the pathway,

keeping proline levels unchanged.
A functional overlap between AtProTs and transporters

from other families is probably one of the main reasons why

atprot mutants do not show a strong phenotype. The amino

acid permease AtAAP2, expressed in major veins of leaves

and stems (Hirner et al., 1998), or AtAAP3 in the root

phloem (Okumoto et al., 2004) might counterbalance the

altered AtProT1 activity in phloem tissue. In pollen, the

lack of AtProT1 may be compensated by carriers with
comparable expression patterns, for example by AtLHT5 or

AtLHT7 (Foster et al., 2008; Hruz et al., 2008). Similarly,

loss of AtProT2 function could be mitigated by the activity

of AtLHT1 or AtAAP1, which mediate amino acid uptake

into the root epidermis (Hirner et al., 2006; Lee et al., 2007;

Svennerstam et al., 2007). Interestingly, AtLHT1 expression

was also described in the leaf epidermis (Hirner et al., 2006),

suggesting partial functional redundancy with AtProT3. To
improve our understanding of their physiological signifi-

cance, future analyses could benefit from studying plants

impaired in the function of multiple transporters that show

overlapping expression patterns and substrate selectivity.

Supplementary data

Supplementary data are available at JXB online.

Figure S1 Free amino acid composition of mature Col-0

and atprot1-1 pollen. The relative amount of an amino acid
is given as the mean of four composite samples 6SD. Per

gram pollen fresh weight, the extraction yielded between

0.75 mmol and 0.95 mmol amino acids.
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Mäkelä P, Peltonen-Sainio P, Jokinen K, Pehu E, Setälä H,
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