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ABSTRACT
Background Autism spectrum disorder (ASD) is
characterised by impairments in social communication
and by a pattern of repetitive behaviours, with learning
disability (LD) typically seen in up to 70% of cases. A
recent study using the PPL statistical framework
identified a novel region of genetic linkage on
chromosome 16q21 that is limited to ASD families
with LD.
Methods In this study, two families with autism and/or
LD are described which harbour rare >1.6 Mb
microdeletions located within this linkage region. The
deletion breakpoints are mapped at base-pair resolution
and segregation analysis is performed using
a combination of 1M single nucleotide polymorphism
(SNP) technology, array comparative genomic
hybridisation (CGH), long-range PCR, and Sanger
sequencing. The frequency of similar genomic variants in
control subjects is determined through analysis of
published SNP array data. Expression of CDH8, the only
gene disrupted by these microdeletions, is assessed
using reverse transcriptase PCR and in situ hybridisation
analysis of 9 week human embryos.
Results The deletion of chr16: 60 025 584e61 667 839
was transmitted to three of three boys with autism and
LD and none of four unaffected siblings, from their
unaffected mother. In a second family, an overlapping
deletion of chr16: 58 724 527e60 547 472 was
transmitted to an individual with severe LD from his
father with moderate LD. No copy number variations
(CNVs) disrupting CDH8 were observed in 5023 controls.
Expression analysis indicates that the two CDH8
isoforms are present in the developing human cortex.
Conclusion Rare familial 16q21 microdeletions and
expression analysis implicate CDH8 in susceptibility to
autism and LD.

INTRODUCTION
Autism spectrum disorder (ASD) is a clinically
heterogeneous condition characterised by impair-
ments in social communication and by a pattern of
repetitive behaviours. There is strong evidence of
genetic heritability. Learning disability (LD) is
typically observed in up to 70% of cases, depending
on ascertainment,1 while epilepsy is reported in
over 20%.2 3

An accumulating body of evidence suggests that
ASD may result from aberrant synaptic connec-
tions.4 For example, rare variants involving neuro-
ligin and neurexin genes, which encode proteins
that interact across the synaptic cleft, have been
implicated in autism susceptibility.5 6 In addition,
disruption of SHANK3, a gene that encodes a post-
synaptic scaffolding protein that interacts with the
neuroligins, has also been found at low frequency in
some,7 8 but not all, ASD cohorts.9

Linkage analysis has traditionally been used to
search for genetic loci involved in autism suscepti-
bility. The large number of loci described to date10

in part reflects the complex genetic architecture
underlying the condition. However, it is likely that
subtle differences exist between clinical cohorts in
terms of ascertainment strategies, inclusion/exclu-
sion criteria, as well as the population backgrounds
from which subjects are taken. In the presence of
locus heterogeneity, these factors, together with
simple sampling variability, can lead to very
different mixtures of genetic subtypes across
studies. Such differences may also act to confound
replication.
To address these issues, a reanalysis of the Autism

Genome Project (AGP) consortium’s linkage data
has recently been undertaken, using the PPL
analytical framework.11e13 This study identified
a novel susceptibility locus on 16q21 coming from
the low IQ ASD subgroup. We were interested to
note that this linkage peak overlaps a rare deletion
found in an individual with autism and learning
disability, detected as part of our recent genome-
wide copy number variation (CNV) scans.6 14

Although 1.64 Mb in size, this microdeletion
involves a single gene, cadherin 8 (CDH8). In this
study, we describe the genetic characterisation of
this rare microdeletion, further clinical evaluation
and segregation analysis in this large nuclear family.
The inheritance pattern seen, together with an
absence of similar microdeletions in over 5000
control subjects and the hypothesised involvement
of other cadherin genes in ASD and related neuro-
developmental disorders,15e17 led us to conclude
that this rare microdeletion may be acting as an
autism predisposition factor in this family. To
extend these findings, we also assessed the expres-
sion pattern of this gene in the developing human
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brain, describe a second family with an overlapping microdeletion
disrupting CDH8, and sequence additional individuals with ASD.

METHODS
Clinical details for family 3099
The Autism Diagnostic Interview-Revised (ADI-R)18 and the
Autism Diagnostic Observation Schedule (ADOS)19 were
administered when subjects were between 12e15 years of age.
All three affected children met criteria for autism on the ADI
and the ADOS. All three had word and phrase delay and in one
affected child (3099_006) there is a history of regression. This
child lost many skills, in particular language, over the course of
6 months, and took a year to regain them. Vineland Adaptive
Behaviour Scales20 scores were below 50 on all domains of
socialisation, communication, and daily living skills for all three
children with autism. Cognitive testing with the Ravens21 was
performed on two of the three boys and provided IQ scores in
the 70e75 range. The eldest affected son (3099_006) was
assessed as having intellectual disability by clinical judgement
and was in treatment for language delay and learning disabil-
ities. There was no evidence of epilepsy or associated medical
problems at the time of assessment, but all three had a head
circumference at the 90th to 97th centile, in spite of heights in
the normal range. The mother and one unaffected sibling
(3099_009) also have large head circumferences (>95th centile).
The mother had three previous miscarriages (around 12 weeks
gestation) and was phenotypically normal. There were no
reports of neurodevelopmental disorder in her extended family.
The father, who is separated from the family, was reported to
have a normal developmental history and personality, but to
have developed a psychiatric disorder as an adult. His first cousin
is reported to have had autism. There was no other history of
developmental disability, mental illness or epilepsy in the
immediate family; however, the mother (3099_002) and youn-
gest son (3099_009) have osteoarthritis.

Clinical details for family 09
The proband (09_003) was evaluated at 20 years 11 months of
age as part of a study on learning disability. On the ADI-R, he
had a score of 6 on social interaction, 6 on communication, and
0 on repetitive behaviours. On module 4 of the ADOS, he scored
3, 1, and 2 on the social, communication, and play sections,
respectively. Therefore on neither measure does he qualify for
a diagnosis of autism or ASD. However, his IQ was below 45 on
the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and
scores on the Vineland Adaptive Behaviour Scales showed
significant impairment on all scales. He was reported to have
had language delay as a child. There was no history of epilepsy
or other comorbid medical problems. However, peripheral palsy
of the right 7 facial nerve and obesity (body mass index (BMI) of
31.9 kg/m2) were reported at age 11 and 14 years, respectively.
The father scored in the borderline range on the IQ tests (66 for
verbal IQ and 77 for performance IQ). The younger brother
demonstrated typical IQ scores, but was reported to have been
in treatment for language delay and learning disabilities between
the ages of 7 and 11 years.

CNV characterisation and segregation analysis
In order to validate themicrodeletion in family 3099 and carry out
segregation analysis, long-range PCR was performed using the
BIO-X-ACT long DNA polymerase kit (BIOLINE, London, UK)
using the manufacturer ’s suggested protocol. Primers GCTATC-
CAGTAGGAAGTGAAACA and AATGAGTATAAGAATCAAA-
GATGTGA were designed following visual inspection of

1M-single single nucleotide polymorphism (SNP) array data from
a recent genome-wide CNV scan,14 within BeadStudio (Illumina,
San Diego, California, USA). The 3023 bp deletion-spanning
amplicon was purified using exonuclease I (NEB, Ipswich,
Massachusetts, USA) and SAP (USB, Cleveland, Ohio, USA) and
then sequenced using BigDye v3.1 (Applied Biosystems, Foster
City, California, USA). We note that this CNV was initially
detected based on Affymetrix 10K SNP data and reported as a de
novo event (see supplemental table 3 in Szatmari et al6). Higher
resolution data from the current Illumina 1M scan indicate that it
is in fact inherited from the mother.
For family 09, a combination of high resolution array based

comparative genomic hybridisation (aCGH), using NA10851
(male) and NA15510 (female) as control DNAs, and quantitative
PCR experiments, was first performed to help resolve the
microdeletion breakpoints (data not shown). Long range PCR
across the deletion was then carried out using primers
CCACATCCTTTCACACATGAGAA and TAGCTGCTTTCC-
CACATATCAT. The 4610 bp deletion spanning amplicon was
then purified and sequenced as described above.

Sanger sequencing CDH8 for 3099_006, 3099_007 and 3099_008
PCR was used to amplify all coding exons (1e11) and the 59-UTR
of CDH8. PCR products were purified using the ChargeSwitch
PCR Clean-Up Kit (Invitrogen, Eugene, Oregon, USA) and then
sequenced using the BigDye Terminator kit (v3.1), according to
manufacturers’ recommendations. To search for novel variants,
we compared results against dbSNP version 131.22 Primer
sequences are available in supplementary table 1. Further infor-
mation about thermocycling conditions is available on request.

CNV controls
We used data from 5023 control subjects of European ancestry:
2416 from the PopGen study,14 controls from theOntario Ottawa
Heart Control study23 or HapMap controls genotyped on the
Affymetrix 6.0 array; 1287 from the SAGE control project geno-
typed on the Illumina 1Mplatform14 24; and 1320 from theCHOP
paediatric control study genotyped on the Illumina 550 k array.25

RT-PCR
Reverse transcriptase PCR (RT-PCR) was performed using the
OneStep-RT PCR kit (Qiagen, Crawley, UK) according to the
manufacturer ’s protocol. Exact-match primers were designed to
the first coding exon and the 39-UTR of each of the isoforms. For
the shorter isoform, primer sequences corresponding to the
coding exon and 39-UTR were as follows: CDH8.RTPCR.F1
ACCGCTCCAAAAGAGGCTGG, and CDH8.R9 GCACAG-
CAGGTTGTTCCAC. For the longer isoform, the same forward
primer was used together with the reverse primer CDH8.
RTPCR.R2 TGACTGGTGCTAAACTTGCCTC. Exact match
primers GAPDH.F1 GAAGGTGAAGGTCGGAGTCA and
GAPDH.R1 TGGAAGATGGTGATGGGATT were designed in
the first and third coding exons of GAPDH, to serve as a positive
control. Total RNA from fetal brain and various regions of the
adult human brain was purchased (Stratagene, La Jolla, Cali-
fornia, USA) and 100 ng of RNA template was added to each
reaction. Thermal cycling conditions for products were as
follows: 508C for 30 min, 958C for 15 min, followed by 40 cycles
of 948C for 30 s, 528C for 30 s, and 728C for 2 min, with a final
extension at 728C for 10 min.

In situ hybridisation
In situ hybridisation was carried out on human fetal tissue
(9 weeks gestation) as described by Wilkinson.26 Probe regions
comprising the 39-UTR region of the short CDH8 isoform were
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amplified from whole brain cDNA using primers GAAAACCC-
GGCCAAGTAAATand CAGATTTCAATATTCACTTCCTACAA.
Probe regions comprising the 39-UTR region of the long CDH8
isoform were amplified using primers TCTACTCTGTTGGT-
GAAAGTGACA and TGTCTGTGGTGGTCAGGTAAA. Further
details are provided in the supplementary information.

RESULTS
Microdeletions involving CDH8 within a low IQ ASD linkage
region
A recent study reanalysing the AGP’s linkage data, using the PPL
statistical framework, has identified a new susceptibility locus
on chromosome 16q13-21 in the low IQ ASD subset. This
reaches a maximum PPL of 95.95% at rs1476307.13 This means
there is a 95.95% chance that this region contains an autism
susceptibility gene, based on the available data. The w6 Mb
region under the linkage peak, particularly in chromosome band
16q21 (distal to the peak of linkage), is relatively gene-poor. We
have discovered two large inherited microdeletions within this
linkage peak and overlapping the CDH8 gene, in two indepen-
dent families (figure 1).

Family 3099 is of European ancestry and comes from the
International Molecular Genetic Study of Autism Consortium
(IMGSAC) study cohort.27 Subject 3099_008 was included in
a recent CNV scan of 996 individuals with ASD.14 This indi-
vidual was found to carry an inherited heterozygous 1.64 Mb
microdeletion involving the whole CDH8 gene, but no other
genes. This microdeletion was transmitted from the unaffected
mother to the proband and his two brothers, all of whom
presented with both LD and ASD. The microdeletion was not
transmitted to the four unaffected siblings (figure 2A). Analysis
of a combination of chromosome 16 SNPs and microsatellites
indicates that the non-deleted paternal copy of CDH8 was also
shared identical-by-descent in all three affected children;

however, Sanger sequencing uncovered no novel exonic variants
in CDH8 on this chromosome. We validated the microdeletion
using long range PCR and then by Sanger sequencing the
breakpoint junction fragment (figure 2B). The absence of any
sequence similarities flanking the breakpoints suggests that this
chr16:60 025 584e61 667 839 microdeletion is likely to be a rare,
potentially ‘private’ mutation. A combination of SNPs and
microsatellite data from this family, generated in previous
studies,6 27 determined that the linkage signal from this family
alone reached the maximum possible for a pedigree of this size
(maximum logarithm of odds (LOD)¼1.7, maximising
model¼recessive).
Family 09 was discovered during an independent aCGH

genome-wide screen of a heterogeneous cohort of 80 Italian
children with generalised LD, based on Agilent 44 k technology.
All subjects were negative for karyotype and telomere-FISH
(fluorescent in situ hybridisation) abnormalities, as well as for
fragile-X. The family comprises parents and two sons, with
the deletion being transmitted from the father to both sons
(figure 2A). Neither child received a diagnosis of ASD; however,
the proband scored in the very low range for IQ with substantial
impairment, while the brother showed normal IQ but was
reported to have had a history of language delay and treatment for
learning disability. The father also scored in the borderline range
for IQ. The distal breakpoint of this 1.82 Mb deletion is situated
within the largest (120 kb) CDH8 intron, and all but one of the
coding exons (2e11) are removed. No other genes are disrupted
due to the large gene desert proximal toCDH8 (figure 1). Analysis
of chromosome 16 microsatellite markers showed that the
proband and his sibling did not share their non-deleted maternal
CDH8 haplotype (data not shown). The sequence surrounding
the observed chr16:58 724 527e60 547 472 deletion revealed
a 7 bp tandemduplication nearbywhichmay have occurred at the
same time as the larger deletion (figure 2C).

Figure 1 Schematic from the UCSC genome browser. Figure shows the position of the two inherited deletions overlapping CDH8, in relation to the
low IQ autism spectrum disorder (ASD) linkage peak from our recent analysis.13 The y axis indicates the PPL score. RefSeq gene coordinates are also
plotted beneath the chromosome band track. The region shown corresponds to 54e65 Mb on 16q12.2-21 (NCBI build 36 coordinates).
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CNV analysis of controls
There were no similar CNVs disrupting the CDH8 gene detected
in 5023 control subjects from published high resolution (550 k
and above) SNP array data. We note that the Database of
Genomic Variants (http://projects.tcag.ca/variation/) reports
a duplication of 23.7 kb in a single population control sample
(NA18852), involving a single coding exon of CDH8.28 This
CNV was detected using PennCNV analysis and involves just
four SNPs from the Illumina 550 k SNP array (supplementary
figure 1). However, numerous other studies (some using higher
resolution platforms29) have also examined this same DNA
sample and do not report the CNV, suggesting that it may be a
false-positive. We therefore tested this HapMap sample using
a combination of qPCR primer pairs and confirmed that there is a
normal copy number at this locus (see supplementary information).

Expression analysis
Although EpsteineBarr virus (EBV) transformed peripheral
blood lymphocytes were available for family 3099, we were
unable to amplify CDH8 transcripts using RT-PCR (data not
shown). This may be because this gene is not expressed in
lymphocytes. Therefore, we could not determine how strongly
the remaining copy of CDH8was expressed. However, using RT-
PCR on a commercially available RNA panel, expression of two
known isoforms of CDH8 was confirmed in various parts of
human the brain, particularly in the cortex (figures 3A,B). Both
isoforms were also detected in fetal brain, although the long
isoform was only just detectable (figures 3B).

A more complete, quantitative characterisation of CDH8
expression during early brain development was also carried
out using in situ hybridisation on sagittal brain sections from
a 9-week-old human embryo. These data showed expression of
the shorter CDH8 isoform towards the front of the cerebral
cortex (figure 3C), a similar pattern to other ASD candidate
genes such as CNTNAP230 and CDH10.17 The longer CDH8

isoform demonstrated a more posterior cortical expression at
this early developmental stage (figure 3D).

DISCUSSION
To better account for different ASD subtypes and potential
clinical-site-specific confounders, reanalysis of existing ASD
linkage data has been carried out using the PPL statistical
framework. In this study we describe two 16q21 microdeletions
that are present within the novel linkage peak that was identi-
fied in the low IQ ASD subset.
The rarity of CNVs at this locus means it would be difficult to

gain evidence of aetiological relevance using a caseecontrol
experimental design. For example, in the AGP CNV study
cohorts,14 deletions of this region were seen in 1/996 cases (that
is the proband from family 3099), and 0/1287 controls. One
solution is to carry out global analysis on all rare CNVs present
in a study cohort, to gather statistical support for enrichments
of biological pathways. For example, analysis of rare CNVs in
the AGP cohort implicated genes involved with cellular prolifer-
ation, projection, motility, and GTPase/Ras signalling.14 Pathway
analyses can also integrate other datasets such as information on
mouse knockout phenotypes, as has been accomplished recently
for CNVs detected in learning disability.31 Nevertheless, in larger
pedigrees linkage analysis remains an additional way of
supporting disease involvement. The size of the nuclear family
3099 and segregation pattern seen for the 16q21 deletion strongly
suggests that this mutation plays an aetiological role. Given the
evidence for overlapping aetiology between ASD and general
intellectual disabilities and the detection of this linkage region
specifically in the low IQ subset of the ASD sample, family 09
represents additional corroboration of CDH8 as a susceptibility
gene for ASD and/or learning disability.
Although both deletions are large (>1.6 Mb), both disrupt

a single gene in this relatively gene-sparse region of 16q21
(figure 1). This gene (CDH8) spans 383 kb of genomic sequence

Figure 2 Deletions found in families
3099 and 09. (A) Pedigrees show the
segregation pattern for these two
deletions involving CDH8. Autism and
learning disability indicated in black
shading, learning disability alone
indicated in grey; del, 16q21 deletion;
wt, wild-type. Although individual
09_004 demonstrated typical IQ scores,
he was reported to have been in
treatment for language delay and
learning disabilities between the ages of
7 and 11 years. (B) Electropherogram
showing DNA sequence spanning the
chr16:60 025 584e61 667 839 (NCBI
build 36) deletion in family 3099. (C)
Electropherogram showing DNA
sequence spanning the
chr16:58 724 527e60 547 472 deletion
in family 09. The position of a 7 bp
tandem duplication is indicated.
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and encodes a classical type II cadherin. Cadherins are calcium
dependant cell adhesion molecules, many of which are expressed
in the brain. A recent genome-wide association study implicated
common variants between CDH9 and CDH10 on chromosome
5, in autism susceptibility.17 In this same study, pathway anal-
ysis implicated the whole family of cadherins (CDH1-25) and
this enrichment was enhanced when the cadherins were
grouped with the three neurexins and the five closely related
CNTNAP genes.17 A second study assessing both genome-wide
linkage and association did not implicate the CDH9-CDH10
locus.32 Common variants near the CDH7 gene have reproduc-
ibly been linked to bipolar disorder.33 De novo deletions over-
lapping CDH15, another member of this gene family, have been
detected in three individuals with ASD or ‘autistic features’.34

Alterations in CDH15 have also been linked to LD and impaired
cellecell adhesion.15 Meanwhile, in consanguineous kindreds,
rare deletions within larger blocks of homozygosity-by-descent
implicate protocadherin 10 in autism susceptibility.16 A
cadherin-rich region on 13q21 has also been implicated in

specific language impairment and previous autism studies.35 36

Finally, a de novo deletion in the affected member of a discon-
cordant monozygotic twin pair suggests CDH12 and CDH18
may be involved in schizophrenia.37 In mice, knockout of
the orthologous Cdh8 gene (w97% amino acid sequence iden-
tity to its human counterpart) results in abnormal synaptic
transmission.38

Neither deletion in this study appears to be fully penetrant.
Across both families, a total of 5/7 individuals with CDH8
deletions were affected with autism and/or learning disability.
This penetrance rate is similar to other recently described ASD
implicated CNVs, such as microdeletion of 15q13.3.39 Although
a normal IQ was observed for the brother carrying the deletion
in family 09, he did have language delay, which can be consid-
ered part of the spectrum of learning disability.
It may be that other rare mutations such as CNVs, SNPs or

indels elsewhere in the genome act to modulate the penetrance
and expressivity of the CDH8 deletions in the two families
described. For example, a recent study of individuals with

Figure 3 Expression analysis of CDH8. (A) Reverse transcriptase PCR (RT-PCR) analysis detected a 1760 bp amplicon corresponding to the short
CDH8 isoform. (B) RT-PCR analysis detected a 2514 bp product (boxed), corresponding to the longer CDH8 isoform. (C) In situ hybridisation performed
on sagittal sections through the head of a 9-week-old human embryo, for the short CDH8 isoform. (D) In situ hybridization for the longer isoform.
Arrows indicate cortical expression.
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developmental delay and the 16p12.1 microdeletion found
a higher than expected rate of large secondary CNVs, suggesting
a two-hit model.40 Although there were no other rare CNVs
with obvious aetiological relevance in the families described
here, the resolution of our study is such that we cannot rule out
smaller CNVs or other molecular features contributing to the
phenotype in a similar fashion. It may be that CDH8 is itself just
a risk factor for learning disability and this only leads to autism
together with certain genetic backgrounds. The macrocephaly in
family 3099 does not completely co-segregate with the deletion
and so might suggest an additional risk factor interacting with
the CDH8 deletion.

A recent study has identified DIAPH3 as a new autism
susceptibility gene by virtue of rare non-synonymous variants
lying in trans with a deletion.41 The sharing of non-deleted
paternal CDH8 haplotypes in the three affected siblings in
family 3099 made us consider the possibility that this 1.64 Mb
deletion was also unmasking rare variants in the remaining copy
of CDH8. Although sequence analysis did not detect any novel
exonic CDH8 variants in family 3099, we cannot exclude the
possibility of mutations in non-coding regions disrupting gene
regulation. Variation in the non-deleted copy of CDH8 could
potentially also explain the non-concordant phenotypes seen for
the two boys with 16q21 deletions in family 09.

In situ analysis shows that the two CDH8 isoforms have
a slightly different expression pattern, suggesting that they may
potentially play distinct roles in early cortical development. The
more anterior expression seen for the shorter CDH8 isoform
somewhat resembles the pattern seen for CNTNAP2 and
CDH10, other ASD susceptibility genes for which published in
situ expression data are available at 20 weeks of gestation.17 30

However, although comparison between 9 and 20 week brain
sections is difficult, we have shown that CDH8 is expressed
within the germinal zone of cortex rather than throughout the
entire cortex as seen for the other two ASD candidate genes.
Recent studies on CNTNAP2 show that common ASD associ-
ated variants in this gene influence brain morphology.42 Unfor-
tunately, we were unable to obtain brain scans for affected
individuals from our two families to assess whether CDH8
deletions had led to abnormal cortical folding.

Although we did not detect any rare exonic CDH8 changes in
26 individuals with ASD (data not shown), taken from families
who were contributing most to the original linkage signal,13

future studies should assess this locus for CNVs and rare
sequence-level variants in larger ASD cohorts and measure the
functional effects of these changes. Until additional, nonsense
point mutations or de novo disruptions to the CDH8 gene are
detected in further autism cohorts, we cannot exclude the
possibility that non-genic sequence motifs within this region
might be acting to regulate other neighbouring genes or distant
loci in trans. Nevertheless, the linkage seen at 16q21 in the low
IQ ASD subgroup and the segregation pattern seen for the
CDH8 deletion in family 3099 leads us to hypothesise that
disruption to this gene may influence susceptibility to autism
and/or learning disability. Disruption of CDH8 in two other
individuals with learning disability, the absence of similar
CNVs in controls, the expression of this gene in critical
regions of the developing cortex, and the role of other cadherin
genes in neurodevelopmental disorders are consistent with this
interpretation.
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