
Journal of Medical Physics, Vol. 32, No. 1, 2007

34

Address for Correspondence:

Dr. Jan Hrabe

Center for Advanced Brain Imaging,

Nathan S. Kline Institute, 140 Old Orangeburg Road,

Orangeburg, NY 10962, U.S.A.

E-mail: hrabe@mail.magalien.com

Introduction

Most readers are probably aware of the diffusion tensor
imaging (DTI) method,[1] which is ubiquitous in the
contemporary medical MR literature. However, DTI is a
relatively recent advance in diffusion experiments. NMR
was used to measure diffusion long before MR imaging was
first proposed in the early 1970s. The undesirable influence
of self-diffusion on spin echo amplitudes was first recognized
by Hahn as early as 1950.[2] Carr and Purcell[3] further
extended Hahn’s idea by using multiple echoes as a means
of minimizing the diffusion effect. Shortly after these
momentous discoveries, Torrey[4] extended the basic MR
formalism of Bloch differential equations by including
additional terms to accommodate the diffusion effect.

Stejskal and Tanner in their seminal paper[5] introduced
pulsed gradients into the basic spin echo sequence, which
resulted in much improved sensitivity to diffusion in
comparison to the steady state gradients used previously.
They solved the Bloch-Torrey partial differential equations
for a symmetric pair of pulsed gradients and obtained the
well-known Stejskal-Tanner formula

S = S
0
e-bD, (1)

where
          

1b = γ2G2δ2 (τ -
  3

 δ). (2)

In Eqs. (1) and (2), S is the signal strength in a pulse
sequence with a pair of balanced diffusion-sensitizing
gradients of strength G, each of a duration δ and with a
delay τ between them. S

0
 is the signal strength in an identical

experiment but without the diffusion gradient pair. When
it can be safely assumed that δ << τ, the expression for b
(usually called b-value) simplifies to

b = γ2G2δ2 τ. (3)

Tanner and Stejskal were also the first to propose the idea
of measuring restricted diffusion of water molecules[6] by
varying the delay τ between the gradient pulses. They
discovered that the attenuation of signal from water
molecules restricted by cellular walls in their diffusion
movement was less pronounced than the signal from freely
moving molecules and used this method to estimate the
diameter of yeast cells.

Restricted diffusion plays a central role in DTI.
Geometrically complex biological environments, such as the
nervous tissue, can be characterized by two aggregate
parameters, α and λ.[7] The volume fraction α is simply a

Principles and limitations of NMR diffusion

measurements

Jan Hrabe, Gurjinder Kaur and David N. Guilfoyle

Center for Advanced Brain Imaging, Nathan S. Kline Institute Orangeburg, New York, USA

Received on: 08-11-06 Accepted on:  03-01-07

Original Article

ABSTRACT

Diffusion spectroscopy, imaging and particularly diffusion tensor imaging have become popular thanks to their numerous

clinical and research applications which span from brain stroke evaluation to fiber tracking. With a few exceptions, these
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the effects of various diffusion sequence parameters, and also the numerous important pitfalls, which are discussed in the

last section.
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percentage of the total tissue volume where molecules can
diffuse. For example, in a healthy brain, the extracellular
volume fraction is about 20% and the intracellular about
65%. The tortuosity parameter, λ, is more complicated.[8] It
describes geometrical hindrance of an environment relative
to an obstacle-free medium. If the obstacles exhibit some
directional preference, the hindrance becomes anisotropic,
that is, it depends on direction. For example, the molecules
diffuse more readily along the white matter fibers than across
them. In a macroscopically homogeneous and anisotropic
environment, the tortuosity takes the shape of a symmetric
tensor of the second order, which can be represented by a 3
x 3 matrix with six independent values. The tortuosity tensor
combines with the scalar free diffusion coefficient into a
tensor of apparent diffusion D. However, despite all this
complexity, Eqs. (1) and (2) or (3) are still used to calculate
signal attenuation due to diffusion along any single direction
of the diffusion gradient. The only real difference from the
homogeneous and isotropic case is that the experiment must
be repeated using at least six non-collinear directions of the
diffusion gradient to obtain six independent components
of the apparent diffusion tensor. It is therefore fair to
conclude that the pulse field gradient method proposed by
Stejskal and Tanner is at the heart of most modern DTI
experiments.

Unfortunately, there is an important caveat. A single
imaging voxel in a nervous tissue often includes
compartments with different diffusion properties both on
a cellular level (e.g., intracellular and extracellular
compartments) and on a larger scale (e.g., several crossing
axonal bundles). Spins can also migrate from one
compartment to another during the measurement. These
complications violate the assumption of a macroscopically
homogeneous and anisotropic environment with a single
compartment. They may result in a non-Gaussian behavior
of the diffusion signal for which the second order diffusion
tensor no longer represents an adequate description.

DTI has become a very popular MR imaging modality and
is developing into an important tool for non-invasive study
and characterization of the brain white matter. It has been
applied to the study of many neurological brain disorders such
as schizophrenia, cocaine addiction, HIV infection,
alcoholism, geriatric depression and Alzheimer’s disease. An
overview of theoretical issues surrounding the DTI technique
can be found in.[9-11] A review of DTI applications in
neuroscience is presented in.[12]

It is our view that good understanding of the Stejskal-
Tanner formulae (Eqs. (1), (2) and (3)) is essential for
sensible design or interpretation of any MR diffusion
experiment. Unfortunately, the derivation in a completely
general case is nontrivial as it involves either solving the
Bloch-Torrey partial differential equations[4,5] or integration

Figure 1: A 1D diffusion model with discrete steps in space (∆∆∆∆∆x) and time
(∆∆∆∆∆t). The numbers signify how many pathways to that particular
destination exist. Total number of all pathways is calculated on the right
margin. See text for a detailed explanation.
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in a complex plane.[13,14] The goal of this report is to present
a detailed derivation of Eqs. (1) and (3) using the simplest
possible model of one-dimensional (1D) diffusion. While
this approach lacks the complete generality afforded by the
Bloch-Torrey description, it does preserve all important
aspects of the physics involved and it does not require
familiarity with higher mathematics beyond the binomial
theorem and l’Hôpital’s rule.

The simplest diffusion model
This section reviews a connection between Gaussian

diffusion and random walks under very simple
circumstances. A comprehensive treatment can be found,
e.g., in.[15] We shall consider a 1D diffusion of a particle,
e.g., a hydrogen atom, along the x-axis. At time t = 0, the
atom will be located at a position x = 0 [Figure 1]. We will
allow it freedom of movement of a very limited kind: during
every constant time interval ∆t, it may move either left or
right, with equal probabilities p

l 
= p

r
 =

 2
1 . The amount of

movement is restricted to a jump of a constant size ∆x. It is
obvious that the atom cannot get anywhere else than to
positions x = 0, ±∆x, ±2∆x, .... We want to know the
probabilities that it will be found at any of these positions
at times t = 0, ∆t, 2∆t, ....

Let us monitor the atom’s progress step by step. Figure 1
shows that the atom is at position x = 0 at time t = 0 with
certainty P(0, 0) = 1. Proceeding to time t = ∆t, there is
one possible pathway to the left and one to the right, a total
of two possibilities. The next time step is only slightly more
complicated. At time t = 2∆t, the atom can be at one of
three positions. A single pathway leads to each of the two
peripheral positions but there are two different pathways
(that is, two possibilities) leading to the center position.
The number of pathways to the center position is equal to
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the sum of pathways for the previous positions from where
the center position could be reached, that is, 1+1 = 2. The
total number of all possible pathways is four.

The pattern of possible pathways is built up further in
every time step. Counting the possible pathways, we end
up with a number pattern called the Pascal triangle.
Interestingly, these numbers also represent multiplication
factors in the binomial theorem:

                       
  n

(a + b)n =∑ ( n )an-kbk.      (4)
     k=0   

k

A general case at time t = n∆t is depicted in the lower
part of Figure 1. There are (n

k   
) ways to get to a position

placed k steps from the left-most position. The total number
of all pathways grows by a factor of 2 at each time step. We
can verify this observation using the binomial theorem, Eq.
(4), with a = b = 1:
 
n                                   n

∑ ( n )1n-k1k =∑ (n)= (1+1)n= 2n.
k=0   

k
            k=0   

k

The probability P(k, n) of finding an atom at a position
placed k steps from the extreme left edge after n time steps
is calculated as a number of pathways leading to it, divided
by the total number of all possible pathways:

P (k,n)=
1 

( n ).      (5)

              
2n

  
 
k

This is a special case of the binomial distribution (also called
Bernoulli distribution). The reason why the simple left-right
jump pattern represents a fairly adequate 1D diffusion
model rests in the central limit theorem of the probability
theory, which mandates that the binomial distribution
asymptotically approaches the Gaussian distribution if n
becomes very large. The resemblance can already be seen
for n = 30 in Figure 2.

Because the atoms move to the left and to the right with
the same probability, they are equally likely to be on either
side of the central position x = 0 at any time step. In other
words, the mean value of the position is always

<x> = 0. (6)

The mean position is therefore not very helpful in trying to
estimate how far the atoms really moved because the positive
and negative signs of the x-coordinate simply cancel out in
the averaging. Instead, we can calculate the mean square
distance from the origin, which is always positive. For our
simple diffusion model, it can be obtained by mathematical
induction: n = 1 at time t = ∆t and the distance from origin
is either x = +∆x or x = -∆x. The average square of distance
is then simply

σ2(∆t)=<x2(∆t)>= 
(∆x)2 + (-∆x)2

=∆x2.

              
                              2

Moving on to time t =(n -1)t, we can calculate the effect of
the n-th time step:

σ2(n∆t)=<
 
(x((n -1)∆t)+∆x)2 +(x((n -1)∆t) -

 
∆x)2>                                           2

        = <x2((n -
 
1)∆t)+∆x2>

        = σ2((n -
 
1)∆t)+∆x2.

It is clear that the mean square distance grows by the amount
of ∆x2 in every time step:

σ2(n∆t)= <x2(n∆t)> = n∆x2.

Index n represents progress of time and the mean square
distance thus increases linearly with time. To make this
relationship more explicit, we define a diffusion constant
D as

      ∆x2

D = (7)
     

2∆t

and rewrite the equation for mean square distance in a more
familiar form

σ2(n∆t)=2Dn∆t. (8)

This is the Einstein’s famous formula for 1D diffusion in a
“discrete form”. However, it is equally valid for a
“continuous” 1D diffusion. A transition to continuous time
and space variables can be made by taking smaller and
smaller time steps ∆t and smaller and smaller spatial steps
∆x while taking care to preserve the value of the diffusion
constant. This is easily arranged by always choosing

∆x = √2D∆t.      (9)

The time interval ∆t then approaches zero and n goes to
infinity in such a way that

Hrabe J, et al.: Principles and limitations of NMR diffusion measurements

Figure 2: Discrete binomial distribution (stepped line) together with the
corresponding continuous Gaussian distribution (smooth line). Note the
similarity even for a very low n = 30. Indeed, these distributions are
asymptotically identical.
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t = n∆t

still shows the correct diffusion time. In this way, a generally
valid result for Gaussian diffusion is finally obtained:

σ2(t) = 2Dt.    (10)

The NMR diffusion signal
The principle of NMR diffusion measurement is depicted

in Figure 3. Let us begin with a qualitative description of
diffusion on the NMR signal. First, an RF pulse turns all
the equilibrium magnetization M

0
 into the transverse plane,

perpendicular to the main static magnetic field B
0
. The

magnetization vector will rotate around it at angular
frequency ω=  dφ given by the Larmor equation:

 dt

ω = γ B
0
, (11)

where γ is the gyromagnetic ratio (γ =2π x 42.576 rad
s-1 T-1 for a hydrogen proton).

After the excitation, a short and strong gradient G is
applied along the x-axis, changing the constant main field
B

0
 to a spatially variable field B(x) = B

0
 + Gx. Larmor

frequencies therefore become different at different places
along the x-axis. When the gradient is switched off again,
some phase differences will have accumulated between the
spins at different positions. At this point, we just wait for a
period equal to the diffusion time τ = n∆t. Then an opposite
but otherwise identical gradient, -G, is applied. If the atoms
did not change their positions during the diffusion time,
all the phase differences would be perfectly reversed and
the magnetization would be fully restored (apart from the
neglected relaxation effects). This is the situation

exemplified by the center atom in Figure 3. However, if the
spins move, the second gradient finds them at different
locations than the first one and the phases will be reversed
“incorrectly”. The result is a phase dispersion in the
measured sample and loss of signal when all the spins are
eventually summed up to form the magnetization vector.
Faster diffusion (larger D) means that the spins have bigger
chance to travel farther and therefore experience larger
magnetic field changes due to diffusion gradients. This
causes larger spread in the phases and therefore results in a
smaller signal.

We can now proceed to a quantitative description and
calculate the NMR signal using the simple diffusion model
introduced earlier. The diffusion starts at time t = 0 from
the position x = 0. At time t = τ = n∆t, the atom has
undergone a total of k steps to the right and k_ steps to the
left:

k + k_= n.

Its position measured in ∆x steps from x = 0 is therefore

k
x
 = k - k_ = k - (n - k)=2k - n.

The probability of finding it at x = k
x 
∆x is given by Eq. (5),

using the steps to the right (index k) to measure the position.

The atom located at x = x
0
 when the first gradient is

switched on has its phase φ changed by

∆φ 0= ω(x
0
)δ = γB(x

0
)δ = γGx

0
δ,

where we took advantage of the Larmor Eq. (11) and
assumed that the gradient time δ was very short so that the
atom did not significantly move during the gradient
application. The effect of the main field (γB

0
δ) was left out

because it is the same for any atom regardless of its position,
its movement or the gradient strengths. During the diffusion
time τ, the atom moves to a new position x

0
 + k

x
∆x. The

second (negative) gradient then alters the phase again, this
time by

∆φ
1
 = ω(x

0
+k

x
∆x)δ = γB(x

0
+ k

x
∆x)δ = -γGx

0
δ -

 
γGk

x
∆xδ.

Assuming the phase was zero in the beginning (φ = 0 at
t = 0), it is now, at t = τ,

φ(k
x
)=∆φ

0
 +∆φ

1
 = -γGk

x
∆xδ.

Clearly, the result does not depend on the original position
x

0
 and we can therefore safely return to the assumption

x
0
 = 0.

To compute the NMR signal, it is necessary to sum up all
the phase-shifted magnetization vectors from all possible

Figure 3: Nuclei diffusing in the presence of a balanced gradient pair G
and -G. The two gradients are separated by a diffusion time interval τττττ
and are very short (δδδδδ << τ τ τ τ τ ). Relaxation effects are omitted for simplicity.
A diffusion gradient changes the phase of a spin depending on its position
along the x-axis. S0 is the signal obtained without any diffusion gradients,
S is the signal attenuated due to phase dispersion caused by the diffusion
gradient pair and φφφφφ      is the phase.

Hrabe J, et al.: Principles and limitations of NMR diffusion measurements
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positions using the corresponding probabilities as weighting
factors. If the equilibrium magnetization is M

0
, the available

signal S at t = τ  is
   

  n

S=∑   1 (n)M
0
 cos(φ(2k - n)),    (12)

  k=0  
2n

   
k

where we substituted k
x
 = 2k -

 
n for the phase function

parameter.

This sum is best tackled using the Euler theorem

exp(iα) = cos(α)+ i sin(α).

Abbreviating

α = -γG∆xδ

and employing again Eq. (4), we derive
   

  
           

 n                                                                                                 n

S= 
Μ0 ∑ (n)exp(i(2k - n)α)=   

    M
0         ∑ (n)exp(i2kα)

      2
n  

 k=0  
  k           2n exp(inα) k=0

   k

   
  

                       
                        n

  = 
       Μ0           ∑ (n)(exp(i2α))k1n-k

  2
n(exp(iα))n

     k=0  
   k

  = M
0((1+exp(i2α))

n

 = M
0((exp(-iα) + exp(iα))n

            
2exp(iα)

                 
2

  
= M

0
 cosn(α) = M

0
 cosn(γG δ∆x).

The NMR signal undergoes various stages of
amplification, filtering and other transformations. It is
therefore not possible to measure M

0
 in absolute terms. We

can remedy this unfortunate drawback of NMR by
measuring the same sample twice: once without the
diffusion gradients, to obtain unattenuated signal S

0
, and

once with them, to obtain signal S. The M
0
 term in the

signal will stay the same but the attenuation term will
disappear from S

0
. We then calculate the ratio of the signals

with and without the diffusion gradients:

S   
=

 M0
 cosn(γGδ∆x)

= cosn(γGδ∆x).
S

0
               M

0

The last step is to eliminate the ∆x and express the result in
terms of experimentally accessible variables. We substitute
                                                           

    1 ∆x2

γGδ∆x = √ γ2G2δ2∆x2 = √2(γ2G2δ2n∆t)
n 2∆t

       
= √2(γ2G2δ2τ)

 D 
=√ 2bD ,

    n    n
where we introduced the so-called b-value,

b = γ2G2δ2τ,    (13)

a quantity which depends on the spectrometer hardware
and the pulse program controlling it but does not depend
on the diffusion constant. Note that the expression for the
b-value becomes more complicated if various NMR
sequence intricacies are taken into account. Most
importantly, we assumed that the diffusion gradients are
switched on for a negligible period of time in comparison
with the diffusion time. However, Eq. (13) does capture
the most important features—square dependency on the
gradient moment Gδ and linear dependency on the diffusion
time τ.

To summarize, the NMR signal from nuclei following our
simple diffusion model is attenuated due to phase
randomization as

 S  
= cosn(√ 2bD ).    

(14) S
0
                     n

This is a “discrete” form of the Stejskal-Tanner equation.
Eq. (14) offers the possibility to measure the diffusion
constant. This can be done by acquiring signals with and
without diffusion gradients and calculating D from Eq. (14).
Better still, one can obtain the signal many times with
different b-values and obtain D by a fitting procedure.

Continuous space and time
Almost everything is prepared for the continuous case in

Eq. (14). It remains to make the discretization steps finer
and finer to achieve, in the limit, a continuous change in
space and time. For some constant diffusion time τ = n∆t,
this is accomplished by simultaneously sending the ∆t to
zero and n to infinity, while keeping the D constant. The
space discretization step ∆x is always adjusted by Eq. (9)
and is therefore also gradually diminishing towards zero.

In Eq. (14), this step refinement procedure simply means
keeping b and D constant and calculating a limit for n→∞.
The calculation will employ l’Hôpital’s rule for limits of the
0
0 
   type.

We first simplify

lim cosn
 (√ 

2bD  )= lim en ln (cos(√ 2bD ))
n→ ∞       

           n   
        n→∞              

    
 n

and concentrate on the limit in the exponent:

lim
  ln (cos(√  2bD

 

 ))
 
n

n→ ∞  
                    1

     n

= lim
 [cos(√  2bD

 

 )]
-1 

sin (√  2bD
 

) 1 √ 
2bDn- 3

                     
n                             n      2             

  2

       
n→ ∞ 

                                         -n-2
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= -√ 
  bD  lim  

tan(√  2bD
 

 )
      

         n

                     
2

      
 n→ ∞

                  1

                              √  n

= -√ 
  bD  lim  [cos(√  2bD

 

)]
-2

 1
 √ 2bD n- 3

     
                                       n           

 
 

2
     

 2

                     
2

      
 n→ ∞

                                            1 
n-

  
3

                                                     2 
  

  
   2

                                 1
= - bD lim

 [cos(√ 
2bD  )]

2

                   

   n→ ∞ 

      
          n

= - bD.

The original limit can therefore be evaluated as

lim  cosn (√ 
 2bD ) = e- bD    (15)

             
   nn→ ∞

and used to generalize Eq. (14) for continuous space and
time by substituting Eq. (15) for its right side:

 
S      = e-bD.    (16)

 S0

This is the Stejskal-Tanner formula, labeled as Eq. (1) in
the introduction.

Practical application of Eq. (16) usually means taking its
natural logarithm

     
 Sln (      ) = -bD.    (17)

     S0

Diffusion constant D is then extracted either directly from
two experiments performed with and without the diffusion
gradients or preferably by linear fitting of a series of signals
acquired with different b-values.

Even though we derived the Stejskal-Tanner formula using
a very simple 1D diffusion model, it is valid more generally
and correctly describes NMR diffusion experiment in a
homogeneous 3D environment as long as the diffusion
behavior is Gaussian. Because this is not always the case, it
is prudent to refer to the diffusion coefficient obtained from
the Stejskal-Tanner formula as “apparent diffusion
coefficient”.

In a 3D case, it is the diffusion gradient vector
 G = (Gx,Gy,Gz) that determines the direction along which

diffusion is measured. Diffusion perpendicular to the
gradient vector does not alter the phase of magnetization
in any way and is therefore invisible. Essentially then, NMR
experiments measure a 1D diffusion along the diffusion
gradient vector.

In an isotropic environment, application of a diffusion
gradient along an arbitrary direction leads to the same signal
attenuation predicted by the Stejskal-Tanner formula. In
an anisotropic environment, at least six independent 1D
diffusion measurements are required to fully assess the six
independent components of the diffusion tensor. Each of
these measurements still obeys the Stejskal-Tanner formula
except that the diffusion coefficient D must be replaced by
a scalar quantity

             ˜D= u . D . u,

where
  G        G

u =    =
  √  G

2+G2+G2      G

             

x
      

 y 
       z

is a unit vector in the direction of the gradient, D is the
diffusion tensor, and the dot signifies scalar multiplication.
For example, in a coordinate system rotated to align u with
the x-axis,  D̃    becomes the Dxx component of the diffusion
tensor D. Eq. (13) for the b-value remains valid regardless
of the gradient direction or the coordinate system rotation,
as long as the gradient pulses are much shorter than the
diffusion time.

Diffusion measurement pitfalls
In this last section, we endeavor to briefly point out some

of the problems associated with NMR diffusion experiments.
Particular emphasis is placed on brain diffusion
measurements which have become very popular.

Subject motion
Because diffusion sequences are so sensitive to even

minute movement of spins, macroscopic sample motion is
the biggest enemy of diffusion experiments.[16] Multi-shot
sequences are virtually impossible to use in a living subject
because even a very small motion affects the signal phase,
making it difficult to combine the individual echoes into a
consistent dataset. The usual answer comes in the form of
single-shot echo planar imaging (EPI) which acquires the
entire image in about 100 ms. Although the EPI method
ensures much better phase consistency with respect to the
diffusion gradients, it brings a slew of its own problems:
low signal to noise ratio, low resolution and numerous
distortions. Not even EPI sequences are completely immune
to macroscopic motion, especially when the motion has
variable velocity in the form of linear acceleration or
rotation.[17]

Hrabe J, et al.: Principles and limitations of NMR diffusion measurements
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Imaging gradients
Although the diffusion gradient pair has dominant effect

on the randomly walking spins, any other gradient present
during the experiment also acts upon the magnetization
phase and thus alters the diffusion signal. Besides the diffusion
gradients, a typical MRI pulse sequence has a considerable
number of other gradients used for slice selection, phase
encoding, and readout. They can all act as additional and
unwanted diffusion gradients. Their effect on the b-value can
be estimated, given an accurate pulse sequence timing
diagram.[18] This is important whenever a precise quantitative
diffusion measurement is to be undertaken.

Local gradients
 Local magnetic field gradients due to inhomogeneities

of magnetic susceptibility not only enhance the T
2
*
 
  decay

but also act as small spatially variable diffusion gradients.
Unlike the pulse sequence gradients, the local gradients are
usually not known in any detail and their precise effect
therefore cannot be calculated. However, spin echo
sequences decrease this type of diffusion weighting.[3] It can
be shown that the b-value associated with the local parasitic
gradients diminishes with a number of spin echoes
squared.[19] Furthermore, alternation of the diffusion
gradient polarity in a multi-echo sequence minimizes the
effect of the background local gradients.[20]

Dependence on the diffusion time
The result of a diffusion experiment very much depends

on the diffusion time τ.[13] For example, if the diffusion time
was extremely short, most molecules would not collide with
any cellular walls or other obstacles and the process would
closely approximate free diffusion. Longer diffusion time
gives the molecules more opportunity to explore the
complex cellular environment and sample its geometric
tortuosity, as well as to move between the intracellular and
extracellular compartments. Dependency on the diffusion
time means that one cannot reasonably mix results obtained
with different diffusion times. This also implies that the
diffusion time should always be reported because data
interpretation is not possible without it. Unfortunately,
limited maximum gradient strength and the need to avoid
eddy currents often result in relatively long diffusion
gradients distributed throughout the sequence. It is
impossible to precisely define the diffusion time of such
sequences. Depending on the exact sequence design, such
experiments can become essentially qualitative in nature
and difficult to compare with those obtained by another
sequence. The results acquired with such sequences would
be truly quantitative only if the diffusion was strictly
Gaussian, that is, if the diffusion constant (or tensor) did
not depend on the diffusion time for the whole range of
the diffusion times involved (e.g., in an agar gel phantom).

Tissue compartments
The most common molecule used in NMR diffusion

measurements is, by a large margin, water. Because water is
ubiquitous in a living tissue, the detected signal typically
comprises a mixture of components from the extracellular
and intracellular compartments, generally of different
diffusion properties.[21] There is a lively debate about their
relative contributions under various circumstances, e.g.,
during ischemia. [22] The situation is considerably
complicated by the exchange of water between these
compartments. [23] The intracellular space may be
compartmentalized even further due to the presence of
organelles such as mitochondria.

Inhomogeneous voxels
The voxel size in most diffusion imaging experiments,

particularly in human imaging, is quite large in comparison
to many brain features. However, the Stejskal-Tanner
formula assumes constant D in the entire measured region.
If the voxel contains both grey matter and white matter or
if fiber tracts of different prevailing directions cross inside
it, the assumption of homogeneity is violated. Similarly to
the extracellular and intracellular contributions to the signal,
the diffusion signal becomes a mixture of two or more
compartments and the result will depend both on their
individual properties and the rates of exchange between
them.[24] However, the voxel partial volume effects can also
be useful, aiding the diffusion-based tissue segmentation.[25]

The degree to which diffusion is non-Gaussian can be
quantified with diffusional kurtosis imaging.[26] For example,
if the voxel environment comprises a number of separate
compartments, each with its own Gaussian diffusion,
kurtosis imaging can establish the degree of diffusion
coefficient variability inside this voxel.

Apportioning the DTI imaging time
Many brain regions, most notably the white matter tracts,

are significantly anisotropic. As we discussed earlier, the
Stejskal-Tanner formulae can still be used in this case but
the experiment has to be repeated with different gradient
directions. There is a considerable body of literature on the
optimum number and arrangement of the gradient vectors
used.[9-11] However, one should keep in mind that the
optimum choice depends to a large degree on the subject
under study and thus varies from one type of experiment to
another. For example, larger anisotropy may require more
sampling directions. In general, given a finite available
imaging time, the tradeoff is made by spending it on more
signal averages, more gradient directions, more different b-
values, or more different diffusion times. There is no simple
and universal answer to this puzzle.

Temperature and viscosity
Diffusion depends not only on the size of the diffusing

molecule (its Stokes hydrodynamic radius) and on geometric
tortuosity of the environment but also on temperature and
viscosity. Viscosity in turn also depends on temperature. The
overall effect is a faster diffusion at higher temperatures.[27,28]
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This dependency has to be taken into account, e.g., when
comparing human in-vivo data with in-vitro samples
examined at room temperature.

Larger molecules
It is perfectly feasible to measure diffusion of other

substances than water. Standard MR spectroscopic
techniques can be used, with addition of diffusion
gradients.[28] The attenuation of signal peaks corresponding
to the individual metabolites still obeys the Stejskal-Tanner
formulae. However, smaller gyromagnetic ratios of these
substances are reflected in smaller b-values (see Eq. (13)).
The only remedy is to use larger diffusion gradients.
Furthermore, because efficient signal detection requires that
the exponent bD does not become too small, larger and
slower metabolites require even larger b-values to
compensate for their lower diffusion coefficient and are
therefore particularly affected.

Scanner hardware
Diffusion sequences are very demanding on the scanner.

The gradient set is required to perform very accurately and
achieve perfect symmetry of the diffusion gradient pairs.[16]

Equally important is their spatial linearity. Because the b-
value depends on a square of the gradient, a nonlinearity of
5% over the subject head will translate into 10% error in
diffusion coefficient. Suppression of eddy currents is also
essential. They frequently produce observable artefacts quite
capable of ruining the diffusion experiment. Careful pulse
sequence design[29] and various post-processing
corrections[30,31] certainly help in this respect but the most
important factor is the quality of the scanner hardware and
its maintenance. Good performance on standard clinical
sequences in no way guarantees that the same system can
be successfully used for diffusion experiments.

The list presented above may create a somewhat
pessimistic impression regarding the ability of the NMR
diffusion method to obtain truly quantitative results,
particularly in living nervous tissue. However, despite all
the problems, much valuable and relevant information has
been extracted by their employment. Clearly, good
understanding of the Stejskal-Tanner formulae is crucial to
avoid suboptimal experimental designs and
misinterpretations of results.
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