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Abstract
The angular synchronization problem is to obtain an accurate estimation (up to a constant additive
phase) for a set of unknown angles θ1, …, θn from m noisy measurements of their offsets θi − θj
mod 2π. Of particular interest is angle recovery in the presence of many outlier measurements that
are uniformly distributed in [0, 2π) and carry no information on the true offsets. We introduce an
efficient recovery algorithm for the unknown angles from the top eigenvector of a specially
designed Hermitian matrix. The eigenvector method is extremely stable and succeeds even when
the number of outliers is exceedingly large. For example, we successfully estimate n = 400 angles

from a full set of  offset measurements of which 90% are outliers in less than a second
on a commercial laptop. The performance of the method is analyzed using random matrix theory
and information theory. We discuss the relation of the synchronization problem to the
combinatorial optimization problem Max-2-Lin mod L and present a semidefinite relaxation for
angle recovery, drawing similarities with the Goemans-Williamson algorithm for finding the
maximum cut in a weighted graph. We present extensions of the eigenvector method to other
synchronization problems that involve different group structures and their applications, such as the
time synchronization problem in distributed networks and the surface reconstruction problems in
computer vision and optics.

1 Introduction
The angular synchronization problem is to estimate n unknown angles θ1, …, θn ∈ [0, 2π)
from m noisy measurements δij of their offsets θi − θj mod 2π. In general, only a subset of

all possible  offsets are measured. The set E of pairs {i, j} for which offset
measurements exist can be realized as the edge set of a graph G = (V, E) with vertices
corresponding to angles and edges corresponding to measurements.

When all offset measurements are exact with zero measurement error, it is possible to solve
the angular synchronization problem iff the graph G is connected. Indeed, if G is connected,
then it contains a spanning tree and all angles are sequentially determined by traversing the
tree while summing the offsets modulo 2π. The angles are uniquely determined up to an
additive phase, e.g., the angle of the root. On the other hand, if G is disconnected, then it is
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impossible to determine the offset between angles that belong to disjoint components of the
graph.

Sequential algorithms that integrate the measured offsets over a particular spanning tree of
the graph are very sensitive to measurement errors, due to accumulation of the errors. It is
therefore desirable to integrate all offset measurements in a globally consistent way. The
need for such a globally consistent integration method comes up in a variety of applications.
One such application is the time synchronization of distributed networks [17,23], where
clocks measure noisy time offsets ti − tj from which the determination of t1, …, tn ∈ ℝ is
required. Other applications include the surface reconstruction problems in computer vision
[13,1] and optics [30], where the surface is to be reconstructed from noisy measurements of
the gradient to the surface and the graph of measurements is typically the two-dimensional
regular grid. The most common approach in the above mentioned applications for a self
consistent global integration is the least squares approach. The least squares solution is most
suitable when the offset measurements have a small Gaussian additive error. The least
squares solution can be efficiently computed and also mathematically analyzed in terms of
the Laplacian of the underlying measurement graph.

There are many possible models for the measurement errors, and we are mainly interested in
models that allow many outliers. An outlier is an offset measurement that has a uniform
distribution on [0, 2π) regardless of the true value for the offset. In addition to outliers that
carry no information on the true angle values, there also exist of course good measurements
whose errors are relatively small. We have no a-priori knowledge, however, which
measurements are good and which are bad (outliers).

In our model, the edges of E can be split into a set of good edges Egood and a set of bad
edges Ebad, of sizes mgood and mbad respectively (with m = |E| = mgood + mbad), such that

(1)

Perhaps it would be more realistic to allow a small discretization error for the good offsets,
for example, by letting them have the wrapped normal distribution on the circle with mean
θi − θj and variance σ2 (where σ is a typical discretization error). This discretization error
can be incorporated into the mathematical analysis of Section 4 with a little extra difficulty.
However, the effect of the discretization error is negligible compared to that of the outliers,
so we choose to ignore it in order to make the presentation as simple as possible.

It is trivial to find a solution to (1) if some oracle whispers to our ears which equations are
good and which are bad (in fact, all we need in that case is that Egood contains a spanning
tree of G). In reality, we have to be able to tell the good from the bad on our own.

The overdetermined system of linear equations (modulo 2π)

(2)

can be solved by the method of least squares as follows. Introducing the complex-valued
variables zi = eιθi, the system (2) is equivalent to
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(3)

which is an overdetermined system of homogeneous linear equations over ℂ. To prevent the
solution from collapsing to the trivial solution z1 = z2 = ··· = zn = 0, we set z1 = 1 (recall that
the angles are determined up to a global additive phase, so we may choose θ1 = 0), and look
for the solution z2, …, zn of (3) with minimal ℓ2-norm residual. However, it is expected that
the sum of squares errors would be overwhelmingly dominated by outlier equations, making
least squares least favorable to succeed if the proportion of bad equations is large (see
numerical results involving least squares in Table 3). We therefore seek for a solution
method which is more robust to outliers.

Maximum likelihood is an obvious step in that direction. The maximum likelihood solution
to (1) is simply the set of angles θ1, …, θn that satisfies as many equations of (2) as possible.
We may therefore define the self consistency error (SCE) of θ1, …, θn as the number of
equations not being satisfied

(4)

As even the good equations contain some error (due to angular discretization and noise), a
more suitable self consistency error is SCEf that incorporates some penalty function f

(5)

where f: [0, 2π) ∈ ℝ is a smooth periodic function with f(0) = 0 and f(θ) = 1 for |θ| > θ0,
where θ0 is the allowed discretization error. The minimization of (5) is equivalent to
maximizing the log likelihood with a different probabilistic error model.

The maximum likelihood approach suffers from a major drawback though. It is virtually
impossible to find the global minimizer θ1, …, θn when dealing with large scale problems (n
≫1), because the minimization of either (4) or (5) is a non-convex optimization problem in a
huge parameter space. It is like finding a needle in a haystack.

In this paper we take a different approach and introduce two different estimators for the
angles. The first estimator is based on an eigenvector computation while the second
estimator is based on a semidefinite program (SDP) [38]. Our eigenvector estimator θ ̂1, …,
θ ̂n is obtained by the following two-step recipe. In the first step, we construct an n × n
complex-valued matrix H whose entries are

(6)

where . The matrix H is Hermitian, i.e. Hij = H ̄ji, because the offsets are skew-
symmetric δij = −δji mod 2π. As H is Hermitian, its eigenvalues are real. The second step is
to compute the top eigenvector v1 of H with maximal eigenvalue, and to define the estimator
in terms of this top eigenvector as
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(7)

The philosophy leading to the eigenvector method is explained in Section 2.

The second estimator is based on the following SDP

(8)

(9)

(10)

where Θ ≽ 0 is a shorthand notation for Θ being a Hermitian semidefinite positive matrix.
The only difference between this SDP and the Goemans-Williamson algorithm for finding
the maximum cut in a weighted graph [18] is that the maximization is taken over all
semidefinite positive Hermitian matrices with complex-valued entries rather than just the
real-valued symmetric matrices. The SDP-based estimator θ ̂1, …, θ ̂n is derived from the
normalized top eigenvector v1 of Θ by the same rounding procedure (7). Our numerical
experiments show that the accuracy of the eigenvector method and the SDP method are
comparable. Since the eigenvector method is much faster, we prefer using it for large scale
problems. The eigenvector method is also numerically appealing, because in the useful case
the spectral gap is large, rendering the simple power method an efficient and numerically
stable way of computing the top eigenvector. The SDP method is summarized in Section 3.

In Section 4 we use random matrix theory to analyze the eigenvector method for two
different measurement graphs: the complete graph and “small-world” graphs [39]. Our
analysis shows that the top eigenvector of H in the complete graph case has a non-trivial
correlation with the vector of true angles as soon as the proportion p of good offset
measurements becomes greater than . In particular, the correlation goes to 1 as np2 → ∞,
meaning a successful recovery of the angles. Our numerical simulations confirm these
results and demonstrate the robustness of the estimator (7) to outliers.

In Section 5 we prove that the eigenvector method is asymptotically nearly optimal in the
sense that it achieves the information theoretic Shannon bound up to a multiplicative factor
that depends only on the discretization error of the measurements 2π/L, but not on m and n.
In other words, no method whatsoever can accurately estimate the angles if the proportion of
good measurements is . The connection between the angular synchronization problem
and Max-2-Lin mod L [3] is explored in Section 6. Finally, Section 7 is a summary and
discussion of further applications of the eigenvector method to other synchronization
problems over different groups.

2 The Eigenvector Method
Our approach to finding the self consistent solution for θ1, …, θn starts with forming the
following n × n matrix H
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(11)

where . Since

(12)

it follows that Hij = H ̄ji, where for any complex number z = a + ib we denote by z ̄ = a − ιb its
complex conjugate. In other words, the matrix H is Hermitian, i.e., H* = H. We choose to set
the diagonal elements of H to 0 (i.e., Hii = 0).

Next, we consider the maximization problem

(13)

and explain the philosophy behind it. For the correct set of angles θ1, …, θn, each good edge
contributes

to the sum in (13). The total contribution of the good edges is just the sum of ones, piling up
to be exactly the total number of good edges mgood. On the other hand, the contribution of
each bad edge will be uniformly distributed on the unit circle in the complex plane. Adding
up the terms due to bad edges can be thought of as a discrete planar random walk where
each bad edge corresponds to a unit size step at a uniformly random direction. These random
steps mostly cancel out each other, such that the total contribution of the mbad edges is only

. It follows that the objective function in (13) has the desired property of
diminishing the contribution of the bad edges by a square root relative to the linear
contribution of the good edges.

Still, the maximization problem (13) is a non-convex maximization problem which is quite
difficult to solve in practice. We therefore introduce the following relaxation of the problem

(14)

That is, we replace the previous n individual constraints for each of the variables zi = eιθi to
have a unit magnitude, by a single and much weaker constraint, requiring the sum of squared
magnitudes to be n. The maximization problem (14) is that of a quadratic form whose
solution is simply given by the top eigenvector of the Hermitian matrix H. Indeed, the
spectral theorem implies that the eigenvectors v1, v2, …, vn of H form an orthonormal basis

Singer Page 5

Appl Comput Harmon Anal. Author manuscript; available in PMC 2012 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for ℂn with corresponding real eigenvalues λ1 ≥ λ2 ≥ … ≥ λn satisfying Hvi = λivi. Rewriting
the constrained maximization problem (14) as

(15)

it becomes clear that the maximizer z is given by z = v1, where v1 is the normalized top
eigenvector satisfying Hv1 = λ1v1 and ||v1||2 = n, with λ1 being the largest eigenvalue. The
components of the eigenvector v1 are not necessarily of unit magnitude, so we normalize
them and define the estimated angles by

(16)

(see also equation (7)).

The top eigenvector can be efficiently computed by the power iteration method that starts

from a randomly chosen vector b0 and iterates . Each iteration requires just a
matrix-vector multiplication that takes O(n2) operations for dense matrices, but only O(m)
operations for sparse matrices, where m = |E| is the number of non-zero entries of H
corresponding to edges in the graph. The number of iterations required by the power method
decreases with the spectral gap that indeed exists and is analyzed in detail in Section 4.

Note that cycles in the graph of good edges lead to consistency relations between the offset
measurements. For example, if the three edges {i, j}, {j, k}, {k, i} are a triangle of good
edges, then the corresponding offset angles δij, δjk and δki must satisfy

(17)

because

A closer look into the power iteration method reveals that multiplying the matrix H by itself
integrates the information in the consistency relation of triplets, while higher order iterations
exploit consistency relations of longer cycles. Indeed,

(18)

The top eigenvector therefore integrates the consistency relations of all cycles.
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3 The semidefinite program approach
A different natural relaxation of the optimization problem (13) is using SDP. Indeed, the
objective function in (13) can be written as

(19)

where Θ is the n × n complex-valued rank-one Hermitian matrix

(20)

Note that Θ has ones on its diagonal

(21)

Except for the non-convex rank-one constraint implied by (20), all other constraints are
convex and lead to the natural SDP relaxation (8)–(10). This program is almost identical to
the Goemans-Williamson SDP for finding the maximum cut in a weighted graph. The only
difference is that here we maximize over all possible complex-valued Hermitian matrices,
not just the symmetric real matrices. The SDP-based estimator corresponding to (8)–(10) is
then obtained from the best rank-one approximation of the optimal matrix Θ using the
Cholesky decomposition.

The SDP method may seem favorable to the eigenvector method as it explicitly imposes the
unit magnitude constraint for eιθi. Our numerical experiments show that the two methods
give similar results (see Table 3). Since the eigenvector method is much faster, it is also the
method of choice for large scale problems.

4 Connections with random matrix theory and spectral graph theory
In this section we analyze the eigenvector method using tools from random matrix theory
and spectral graph theory.

4.1 Analysis of the complete graph angular synchronization problem

We first consider the angular synchronization problem in which all  angle offsets are
given, so that the corresponding graph is the complete graph Kn of n vertices. We also
assume that the probability for each edge to be good is p, independently of all other edges.
This probabilistic model for the graph of good edges is known as the Erdős-Rényi random
graph G(n, p) [9]. We refer to this model as the complete graph angular synchronization
model.

The elements of H in the complete graph angular synchronization model are random
variables given by the following mixture model. With probability p the edge {i, j} is good
and Hij = eι (θi−θj), whereas with probability 1 − p the edge is bad and Hij ~ Uniform (S1). It
is convenient to define the diagonal elements as Hii = p.
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The matrix H is Hermitian and the expected value of its elements is

(22)

In other words, the expected value of H is the rank-one matrix

(23)

where z is the normalized vector (||z|| = 1) given by

(24)

The matrix H can be decomposed as

(25)

where R = H − H is a random matrix whose elements have zero mean, with Rii = 0, and for
i ≠ j

(26)

The variance of Rij is

(27)

for i ≠ j and 0 for the diagonal elements. Note that for p = 1 the variance vanishes as all
edges become good.

The distribution of the eigenvalues of the random matrix R follows Wigner’s semi-circle law

[40,41] whose support is [ ]. The largest eigenvalue of R,
denoted λ1(R), is concentrated near the right edge of the support [2] and the universality of
the edge of the spectrum [34] implies that it follows the Tracy-Widom distribution [36] even
when the entries of R are non-Gaussian. For our purposes, the approximation

(28)

will suffice, with the probabilistic error bound given in [2].
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The matrix H = npzz*+R can be considered as a rank-one perturbation to a random matrix.
The distribution of the largest eigenvalue of such perturbed random matrices was
investigated in [29,11,15] for the particular case where z is proportional to the all-ones
vector (1 1 ··· 1)T. Although our vector z given by (24) is different, without loss of
generality, we can assume θ1 = θ2 = … = θn = 0, because the matrix zz* can be reduced to
the all-ones matrix by conjugation with the n × n diagonal matrix Z whose diagonal elements
are Zii = zi, i = 1, …, n. Thus, adapting [11, Theorem 1.1] to H gives that for

(29)

the largest eigenvalue λ1(H ) jumps outside the support of the semi-circle law and is
normally distributed with mean μ and variance σ2 given by

(30)

whereas for , λ1(H ) still tends to the right edge of the semicircle given at

.

Note that the factor of 2 that appears in (28) has disappeared from (29), which is perhaps
somewhat non-intuitive: it is expected that λ1(H ) > λ1(R) whenever np > λ1(R), but the
theorem guarantees that λ1(H ) > λ1(R) already for .

The condition (29) also implies a lower bound on the correlation between the normalized top
eigenvector v1 of H and the vector z. To that end, consider the eigenvector equation satisfied
by v1:

(31)

Taking the dot product with v1 yields

(32)

From  we obtain the lower bound

(33)

with λ1(H ) and λ1(R) given by (28) and (30). Thus, if the spectral gap λ1(H ) − λ1(R) is large
enough, then v1 must be close to z, in which case the eigenvector method successfully
recovers the unknown angles. Since the variance of the correlation of two random unit
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vectors in ℝn is 1/n, the eigenvector method would give above random correlation values
whenever

(34)

Replacing in (34) λ1(H ) by μ from (30) and λ1(R) by (28) and multiplying by  yields
the condition

(35)

Since , it follows that (35) is satisfied for

(36)

Thus, already for  we should obtain above random correlations between the vector of
angles z and the top eigenvector v1. We therefore define the threshold probability pc as

(37)

When np ≫ λ1(R), the correlation between v1 and z can be predicted by using regular
perturbation theory for solving the eigenvector equation (31) in an asymptotic expansion
with the small parameter . Such perturbations are derived in standard textbooks on
quantum mechanics aiming to find approximations to the energy levels and eigenstates of
perturbed time-independent Hamiltonians (see, e.g., [20, Chapter 6]). In our case, the
resulting asymptotic expansions of the non-normalized eigenvector v1 and of the eigenvalue
λ1(H) are given by

(38)

and

(39)

Note that the first order term in (38) is perpendicular to the leading order term z, from which
it follows that the angle α between the eigenvector v1 and the vector of true angles z satisfies
the asymptotic relation
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(40)

because ||Rz − (z*Rz)z||2 = ||Rz||2 − (z*Rz)2. The expected values of the numerator terms in
(40) are given by

(41)

and

(42)

where we used that Rij are i.i.d zero mean random variables with variance given by (27) and
that . Substituting (41)–(42) into (40) results in

(43)

which for p ≪ 1 and n ≫ 1 reads

(44)

This expression shows that as np2 goes to infinity, the angle between v1 and z goes to zero
and the correlation between them goes to 1. For np2 ≫ 1, the leading order term in the
expected squared correlation cos2 α is given by

(45)

We conclude that even for very small p values, the eigenvector method successfully
recovers the angles if there are enough equations, that is, if np2 is large enough.

Figure 1 shows the distribution of the eigenvalues of the matrix H for n = 400 and different
values of p. The spectral gap decreases as p is getting smaller. From (29) we expect a
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spectral gap for p ≥ pc where the critical value is . The experimental values of
λ1(H) also agree with (30). For example, for n = 400 and p = 0.15, the expected value of the
largest eigenvalue is μ = 67.28 and its standard deviation is σ = 0.93, while for p = 0.1 we
get μ = 50.15 and σ = 0.86; these value are in full agreement with the location of the largest
eigenvalues in Figures 1(a)–1(b). Note that the right edge of the semi-circle is smaller than

, so the spectral gap is significant even when p = 0.1.

The skeptical reader may wonder whether the existence of a visible spectral gap necessarily
implies that the normalized top eigenvector v1 correctly recovers the original set of angles
θ1, …, θn (up to a constant phase). To that end, we compute the following two measures of
correlation ρ1 and ρ2 for the correlation between the vector of true angles z and the
computed normalized top eigenvector v1:

(46)

The correlation ρ1 takes into account the rounding procedure (16), while ρ2 is simply the dot
product between v1 and z without applying any rounding. Clearly, ρ1, ρ2 ≤ 1 (Cauchy-
Schwartz), and ρ1 = 1 iff the two sets of angles are the same up to a rotation. Note that it is
possible to have ρ1 = 1 with ρ2 < 1. This happens when the angles implied by v1(i) are all
correct, but the magnitudes |v1(i)| are not all the same. Table 1 summarizes the
experimentally obtained correlations ρ1, ρ2 for different values of p with n = 100 (Table
0(a)) and n = 400 (Table 0(b)). The experimental results show that for large values of np2

the correlation is very close to 1, indicating a successful recovery of the angles. The third

column, indicating the values of  is motivated by the asymptotic expansion (45)
and seems to provide a very good approximation for ρ2 when np2 ≫ 1, with deviations
attributed to higher order terms of the asymptotic expansion and to statistical fluctuations
around the mean value. Below the threshold probability (ending rows of Tables 0(a) and
0(b) with np2 < 1), the correlations take values near , as expected from the correlation of
two unit random vectors in ℝn (  and ).

From the practical point of view, most important is the fact that the eigenvector method
successfully recovers the angles even when a large portion of the offset measurements
consists of just outliers. For example, for n = 400, the correlation obtained when 85% of the
offset measurements were outliers (only 15% are good measurements) was ρ1 = 0.97.

4.2 Analysis of the angular synchronization problem in general
We turn to analyze the eigenvector method for general measurement graphs, where the
graph of good measurements is assumed to be connected, while the graph of bad edges is
assumed to be made of edges that are uniformly drawn from the remaining edges of the
complete graph once the good edges has been removed from it. Our analysis is based on
generalizing the decomposition given in (25).

Let A be the adjacency matrix for the set of good edges Egood:

(47)
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As the matrix A is symmetric, it has a complete set of real eigenvalues λ1 ≥ λ2 ≥ … ≥ λn and
corresponding real orthonormal eigenvectors ψ1, …, ψn such that

(48)

Let Z be an n × n diagonal matrix whose diagonal elements are Zii = eιθi. Clearly, Z is a
unitary matrix (ZZ* = I). Define the Hermitian matrix B by conjugating A with Z

(49)

It follows that the eigenvalues of B are equal to the eigenvalues λ1, …, λn of A, and the
corresponding eigenvectors  of B, satisfying Bφl = λlφl are given by

(50)

From (49) it follows that

(51)

We are now ready to decompose the matrix H defined in (11) as

(52)

where R is a random matrix whose elements are given by

(53)

where δij ~ Uniform([0, 2π) for {i, j} ∈ Ebad. The decomposition (52) is extremely useful,
because it sheds light into the eigen-structure of H in terms of the much simpler eigen-
structures of B and R.

First, consider the matrix B defined in (49), which shares the same spectrum with A and
whose eigenvectors φ1, …, φn are phase modulations of the eigenvectors ψ1, …, ψn of A. If
the graph of good measurements is connected, as it must be in order to have a unique
solution for the angular synchronization problem (see second paragraph of Section 1), then
the Perron-Frobenius theorem (see, e.g., [22, Chapter 8]) for the non-negative matrix A
implies that the entries of ψ1 are all positive
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(54)

and therefore the complex phases of the coordinates of the top eigenvector φ1 = Zψ1 of B are

identical to the true angles, that is, . Hence, if the top eigenvector of H is highly
correlated with the top eigenvector of B, then the angles will be estimated with high
accuracy. We will shortly derive the precise condition that guarantees such a high
correlation between the eigenvectors of H and B.

The spectral gap Δgood of the good graph is the difference between its first and second
eigenvalues, i.e., Δgood = λ1(A) − λ2(A). The Perron-Frobenius theorem and the connectivity
of the graph of good measurements also imply that Δgood > 0.

Next, we turn to analyze the spectrum of the random matrix R given in (53). We assume that
the mbad bad edges were drawn uniformly at random from the remaining edges of the
complete graph on n vertices that are not already good edges. There are only 2mbad nonzero
elements in R, which makes R a sparse matrix with an average number of 2mbad/n nonzero
entries per row. The nonzero entries of R have zero mean and unit variance. The spectral
norm of such sparse random matrices was studied in [25,24] where it was shown that with
probability 1,

as long as  as n → ∞. The implication of this result is that we can approximate
λ1(R) with

(55)

Similar to the spectral gap condition (29), requiring

(56)

ensures that with high probability, the top eigenvector of H would be highly correlated with
the top eigenvector of B. Plugging (55) into (56), we get the condition

(57)

We illustrate the above analysis for the small world graph, starting with a neighborhood
graph on the unit sphere S2 with n vertices corresponding to points on the sphere and m
edges, and rewiring each edge with probability 1− p at random, resulting shortcut edges.
The shortcut edges are considered as bad edges, while unperturbed edges are the good
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edges. As the original m edges of the small world graph are rewired with probability 1 − p,
the expected number of bad edges mbad and the expected number of good edges mgood
are given by

(58)

with relatively small fluctuations of .

The average degree of the original unperturbed graph is . Assuming uniform sampling
of points on the sphere, it follows that the average area of the spherical cap covered by the
neighboring points is . The average opening angle η corresponding to this cap
satisfies , or . Consider the limit m, n → ∞ while keeping the
ratio c = 4m/n2 constant. By the law of large numbers, the matrix  converges in this limit
to the integral convolution operator  on S2 (see, e.g., [7]), given by

(59)

where  is the characteristic function of the interval I.

The classical Funk-Hecke theorem (see, e.g., [28, p. 195]) asserts that the spherical
harmonics are the eigenfunctions of convolution operators over the sphere, and the
eigenvalues λl are given by

and have multiplicities 2l + 1 (l = 0, 1, 2, …), where Pl are the Legendre polynomials (P0(t)
= 1, P1(t) = t, …). In particular, , and the spectral gap of  is

. The spectral gap of A is approximately

(60)

Plugging (58) and (60) into (57) yields the condition

(61)

which is satisfied for p > pc, where pc is the threshold probability
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(62)

We note that this estimate for the threshold probability is far from being tight and can be
improved in principle by taking into account the entire spectrum of the good graph rather
than just the spectral gap between the top eigenvalues, but we do not attempt to derive
tighter bounds here.

We end this section by describing the results of a few numerical experiments. Figure 2
shows the histogram of the eigenvalues of the matrix H for small-world graphs on S2. Each
graph was generated by sampling n points β1, …, βn on the unit sphere S2 in ℝ3 from the
uniform distribution as well as n random rotation angles θ1, …, θn uniformly distributed in
[0, 2π). An edge between i and j exists iff 〈βi, βj 〉 > 1 − ε, where ε is a small parameter that
determines the connectivity (average degree) of the graph. The resulting graph is a
neighborhood graph on S2. The small world graphs were obtained by randomly rewiring the
edges of the neighborhood graph. Every edge is rewired with probability 1 − p, so that the
expected proportion of good edges is p.

The histograms of Figure 2 for the eigenvalues of H seem to be much more exotic than the
ones obtained in the complete graph case shown in Figure 1. In particular, there seems to be
a long tail of large eigenvalues, rather than a single eigenvalue that stands out from all the
others. But now we understand that these eigenvalues are nothing but the top eigenvalues of
the adjacency matrix of the good graph, related to the spherical harmonics. This behavior is
better visible in Figure 3.

The experimental correlations given in Table 2 indicate jumps in the correlation values that
occur between p = 0.15 and p = 0.2 for n = 100 and between p = 0.1 and p = 0.12 for n =
400. The experimental threshold values seem to follow the law  that holds for the

complete graph case (36) with . As mentioned earlier, (62) is a rather pessimistic
estimate of the threshold probability.

Also evident from Table 2 is that the correlation goes to 1 as 2mp2/n → ∞. We remark that
using regular perturbation theory and the relation of the eigenstructure of B to the spherical
harmonics, it should be possible to obtain an asymptotic series for the correlation in terms of
the large parameter 2mp2/n, similar to the asymptotic expansion (45).

The comparison between the eigenvector and SDP methods (as well as the least squares
method of Section 1) is summarized in Table 3 showing the numerical correlations for n =
200, ε = 0.3 (number of edges m ≈ 3000) and for different values of p. Although the SDP is
slightly more accurate, the eigenvector method runs faster.

5 Information Theoretic Analysis
The optimal solution to the angular synchronization problem can be considered as the set of
angles that maximizes the log-likelihood. Unfortunately, the log-likelihood is a non-convex
function and the maximum likelihood cannot be found in a polynomial time. Both the
eigenvector method and the SDP method are polynomial-time relaxations of the maximum
log-likelihood problem. In the previous section we showed that the eigenvector method fails
to recover the true angles when p is below the threshold probability . It is clear that even
the maximum likelihood solution would fail to recover the correct set of angles below some
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(perhaps lower) threshold. It is therefore natural to ask if the threshold value of the
polynomial eigenvector method gets close to the optimal threshold value of the exponential-
time maximum likelihood exhaustive search. In this section we provide a positive answer to
this question using the information theoretic Shannon bound [8]. Specifically, we show that
the threshold probability for the eigenvector method is asymptotically larger by just a
multiplicative factor compared to the threshold probability of the optimal recovery
algorithm. The multiplicative factor is a function of the angular discretization resolution, but
not a function of n and m. The eigenvector method becomes less optimal as the
discretization resolution improves.

We start the analysis by recalling that from the information theoretic point of view, the
uncertainty in the values of the angles is measured by their entropy. The noisy offset
measurements carry some bits of information on the angle values, therefore decreasing their
uncertainty, which is measured by the conditional entropy that we need to estimate.

The angles θ1, …, θn can take any real value in the interval [0, 2π). However, an infinite
number of bits is required to describe real numbers, and so we cannot hope to determine the
angles with an arbitrary precision. Moreover, the offset measurements are often also
discretized. We therefore seek to determine the angles only up to some discretization
precision , where L is the number of subintervals of [0, 2π) obtained by dividing the unit
circle is into L equally sized pieces.

Before observing any of the offset measurements, the angles are uniformly distributed on {0,
1, …, L − 1}, that is, each of them falls with equal probability 1/L to any of the L
subintervals. It follows that the entropy of the i’th angle θi is given by

(63)

We denote by θn = (θ1, …, θn) the vector of angles. Since θ1, …, θn are independent, their
joint entropy H(θn) is given by

(64)

reflecting the fact that the configuration space is of size Ln = 2n log2L.

Let δij be the random variable for the outcome of the noisy offset measurement of θi and θj.
The random variable δij is also discretized and takes values in {0, 1, …, L − 1}. We denote
by δm = (δi1j1, …, δimjm) the vector of all offset measurements. Conditioned on the values of
θi and θj, the random variable δij has the following conditional probability distribution

(65)
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because with probability 1 − p the measurement δij is an outlier that takes each of the L
possibilities with equal probability , and with probability p it is a good measurement that
equals θi − θj. It follows that the conditional entropy H(δij | θi, θj) is

(66)

We denote this entropy by H(L, p) and its deviation from log2 L by I (L, p), that is,

(67)

and

(68)

Without conditioning, the random variable δij is uniformly distributed on {0, …, L − 1} and
has entropy

(69)

It follows that the mutual information I(δij; θi, θj) between the offset measurement δij and the
angle values θi and θj is

(70)

This mutual information measures the reduction in the uncertainty of the random variable δij
from knowledge of θi and θj. Due to the symmetry of the mutual information,

(71)

the mutual information is also the reduction in uncertainty of the angles θi and θj given the
noisy measurement of their offset δij. Thus,

(72)

Similarly, given all m offset measurements δm, the uncertainty in θn is given by

(73)
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with

(74)

A simple upper bound for this mutual information is obtained by explicit evaluation of the
conditional entropy H(δm|θn) combined with a simple upper bound on the joint entropy term
H(δm). First, note that given the values of θ1, …, θn, the offsets become independent random
variables. That is, knowledge of δi1j1 (given θi1, θj1) does not give any new information on
the value of δi2j2 (given θi2, θj2). The conditional probability distribution of the offsets is
completely determined by (65), and the conditional entropy is therefore the sum of m
identical entropies of the form (66)

(75)

Next, bounding the joint entropy H(δm) by the logarithm of its configuration space size Lm

yields

(76)

Note that this simple upper bound ignores the dependencies among the offsets which we
know to exist, as implied, for example, by the triplet consistency relation (17). As such, (76)
is certainly not a tight bound, but still good enough to prove our claim about the nearly
optimal performance of the eigenvector method.

Plugging (75) and (76) in (74) yields the desired upper bound on the mutual information

(77)

Now, substituting the bound (77) and the equality (64) in (73) gives a lower bound for the
conditional entropy

(78)

We may interpret this bound in the following way. Before seeing any offset measurement
the entropy of the angles is n log2 L, and each of the m offset measurements can decrease the
conditional entropy by at most I(L, p), the information that it carries.

The bound (78) demonstrates, for example, that for fixed n, p and L, the conditional entropy
is bounded from below by a linear decreasing function of m. It follows that unless m is large
enough, the uncertainty in the angles would be too large. Information theory says that a
successful recovery of all θ1, …, θn is possible only when their uncertainty, as expressed by
the conditional entropy, is small enough. The last statement can be made precise by Fano’s
inequality and Wolfowitz’ converse, also known as the weak and strong converse theorems
to the coding theorem that provide a lower bound for the probability of the error probability
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in terms of the conditional entropy, see, e.g., [8, Chapter 8.9, pages 204–207] and [16,
Chapter 5.8, pages 173–176].

In the language of coding, we may think of θn as a codeword that we are trying to decode
from the noisy vector of offsets δm which is probabilistically related to θn. The codeword θn

is originally uniformly distributed on {1, 2, …, 2n log2L} and from δm we estimate θn as one
of the 2n log2L possibilities. Let the estimate be θ ̂n and define the probability of error as Pe =
Pr{θ ̂n ≠ θn}. Fano’s inequality [8, Lemma 8.9.1, page 205] gives the following lower bound
on the error probability

(79)

Combining (79) with the lower bound for the conditional entropy (78) we obtain a weak
lower bound on the error probability

(80)

This lower bound for the probability of error is applicable to all decoding algorithms, not
just for the eigenvector method. For large n, we see that for any β < 1,

(81)

We are mainly interested in the limit m, n → ∞ and p → 0 with L being fixed. The Taylor
expansion of I(L, p) (given by (67)–(68)) near p = 0 reads

(82)

Combining (81) and (82) we obtain that

(83)

Note that n/m → 0, because m ≥ n log n in order to ensure with high probability the
connectivity of the measurement graph G. The bound (83) was derived using the weak
converse theorem (Fano’s inequality). It is also possible to show that the probability of error
goes exponentially to 1 (using the Wolfowitz’ converse and Chernoff bound, see [16,
Theorem 5.8.5, pages 173–176]).

The above discussion shows that there does not exist a decoding algorithm with a small
probability for the error for values of p below the threshold probability  given by
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(84)

Note that for L = 2, the threshold probability  of the eigenvector method in the

complete graph case for which  is 2 times smaller than . This is not a violation
of information theory, because the fact that the top eigenvector has a non-trivial correlation
with the vector of true angles does not mean that all angles are recovered correctly by the
eigenvector.

We turn to shed some light on why it is possible to partially recover the angles below the
information theoretic bound. The main issue here is that it is perhaps too harsh to measure
the success of the decoding algorithm by Pe = Pr{θ ̂n ≠ θn}. For example, when the decoding
algorithm decodes 999 angles out of n = 1000 correctly while making just a single mistake,
we still count it as a failure. It may be more natural to consider the probability of error in the
estimation of the individual angles. We proceed to show that this measure of error leads to a
threshold probability which is smaller than (84) by just a constant factor.

Let  be the probability of error in the estimation of θ1. Again, we want to use
Fano’s inequality to bound the probability of the error by bounding the conditional entropy.
A simple lower bound to the conditional entropy H(θ1|δm) is obtained by conditioning on the
remaining n − 1 angles

(85)

Suppose that there are d1 noisy offset measurements of the form θ1 − θj, that is, d1 is the
degree of node 1 in the measurement graph G. Let the neighbors of node 1 be j1, j2, …, jd1
with corresponding offset measurements δ1j1, …, δ1jd1. Given the values of all other angles
θ2, …, θn, and in particular the values of θj1, …, θjd1, these d1 equations become noisy
equations for the single variable θ1. We denote these transformed equations for θ1 alone by
δ̃1, …, δ̃d1. All other m − d1 equations do not involve θ1 and therefore do not carry any
information on its value. It follows that

(86)

We have

(87)

because given θ1 these d1 equations are i.i.d random variables with entropy H(L, p). Also, a
simple upper bound on the d1 equations (without conditioning) is given by

(88)
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ignoring possible dependencies among the outcomes. From (87)–(88) we get an upper bound
for the mutual information between θ1 and the transformed equations

(89)

Combining (85),(86) (89) and (63) we get

(90)

This lower bound on the conditional entropy translates, via Fano’s inequality, to a lower
bound on the probability of error , and it follows that

(91)

is a necessary condition for having a small . Similarly, the condition for a small
probability of error in decoding θi is

(92)

where di is the degree of vertex i in the measurement graph. This condition suggests that we
should have more success in decoding angles of high degree. The average degree d̄ in a
graph with n vertices and m edges is . The condition for successful decoding of angles
with degree d̄ is

(93)

In particular, this would be the condition for all vertices in a regular graph, or in a graph
whose degree distribution is concentrated near d̄.

Substituting the Taylor expansion (82) into (93) results in the condition

(94)

This means that successful decoding of the individual angles may be possible already for
, where
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(95)

but the estimation of the individual angles must contain some error when . Note that
, so while for p values between  and  it is impossible to successfully decode

all angles, it may still be possible to decode some angles.

In the complete graph case, comparing the threshold probability of the eigenvector method

 given by (36) and the information theoretic threshold probability  (95) below
which no algorithm can successfully recover individual angles, we find that their ratio is
asymptotically independent of n and m:

(96)

Note that the threshold probability  is smaller than  for L ≤ 6. Thus, we may regard
the eigenvector method as a very successful recovery algorithm for offset equations with a
small modulo L.

For L ≥ 7, equation (96) implies a gap between the threshold probabilities  and ,
suggesting that the exhaustive exponential search for the maximum likelihood would
perform better than the polynomial time eigenvector method. Note, however, that the gap
would be significant only for very large values of L that correspond to very fine angular
resolutions. For example, even for L = 100 the threshold probability of the eigenvector

method would only be  times larger than that of the maximum likelihood. The
exponential complexity of O(mLn) of the exhaustive search for the maximum likelihood
makes it impractical even for moderate-scale problems. On the other hand, the eigenvector
method has a polynomial running time and it can handle large scale problems with relative
ease.

6 Connection with Max-2-Lin mod L and Unique Games
The angular synchronization problem is related to the combinatorial optimization problem
Max-2-Lin mod L for maximizing the number of satisfied linear equations mod L with
exactly 2 variables in each equation, because the discretized offset equations θi − θj = δij
mod L are exactly of this form. Max-2-Lin mod L is a problem mainly studied in theoretical
computer science, where we prefer using the notation “mod L” instead of the more common
“mod p”, to avoid confusion between the size of the modulus and the proportion of good
measurements.

Note that a random assignment of the angles would satisfy a  fraction of the offset
equations. Andersson, Engebretsen, and Håstad [3] considered SDP based algorithms for
Max-2-Lin mod L, and showed that they could obtain an -approximation
algorithm, where κ (L) > 0 is a constant that depends on L. In particular, they gave a very
weak proven performance guarantee of , though they concluded that it is most
likely that their bounds can be improved significantly. Moreover, for L = 3 they numerically
find the approximation ratio to be , and later Goemans and Williamson [19] proved
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a 0.793733-approximation. The SDP based algorithms in [3] are similar in their formulation
to the SDP based algorithm of Frieze and Jerrum for Max-k-Cut [14], but with a different
rounding procedure. In these SDP models, L vectors are assigned to each of the n angle
variables, so that the total number of vectors is nL. The resulting nL × nL matrix of inner
products is required to be semidefinite positive, along with another set of O(n2L2) linear and
inequality constraints. Due to the large size of the inner product matrix and the large number
of constraints, our numerical experiments with these SDP models were limited to relatively
small size problems (such as n = 20 and L = 7) from which it was difficult to get a good
understanding of their performance. In the small scale problems that we did manage to test,
we did not find any supporting evidence that these SDP algorithms perform consistently
better than the eigenvector method, despite their extensive running times and memory
requirements. For our SDP experiments we used the software SDPT3 [35,37] and SDPLR
[5] in MATLAB. In [3] it is also shown that it is NP-hard to approximate Max-2-Lin mod L
within a constant ratio, independent of L. Thus, we should expect an L-dependent gap
similar to (96) for any polynomial time algorithm, not just for the eigenvector method.

Max-2-Lin is an instance of what is known as unique games [10], described below. One
distinguishing feature of the offset equations is that every constraint corresponds to a
bijection between the values of the associated variables. That is, for every possible value of
θi, there is a unique value of θj that satisfies the constraint θi − θj = δij. Unique games are
systems of constraints, a generalization of the offset equations, that have this uniqueness
property, so that every constraint corresponds to some permutation.

As in the setting of offset equations, instances of unique games where all constraints are
satisfiable are easy to handle. Given an instance where 1 − ε fraction of constraints are
satisfiable, the Unique Games Conjecture (UGC) of Khot [26] says that it is hard to satisfy
even a γ > 0 fraction of the constraints. The UGC has been shown to imply a number of
inapproximability results for fundamental problems that seem difficult to obtain by more
standard complexity assumptions. Note that in our angular synchronization problem the
fraction of constraints that are satisfiable is .

Charikar, Makarychev and Makarychev [6] presented improved approximation algorithms
for unique games. For instances with domain size L where the optimal solution satisfies 1 −
ε fraction of all constraints, their algorithms satisfy roughly L−ε/(2 − ε) and 
fraction of all constraints. Their algorithms are based on SDP, also with an underlying inner
products matrix of size nL × nL, but their constraints and rounding procedure are different
than those of [3]. Given the results of [27], the algorithms in [6] are near optimal if the UGC
is true, that is, any improvement (beyond low order terms) would refute the conjecture. We
have not tested their SDP based algorithm in practice, because, like the SDP of [3] it is also
expected to be limited to relatively small scale problems.

7 Summary and Further Applications
In this paper we presented an eigenvector method and an SDP approach for solving the
angular synchronization problem. We used random matrix theory to prove that the
eigenvector method finds an accurate estimate for the angles even in the presence of a large
number of outlier measurements.

The idea of synchronization by eigenvectors can be applied to other problems exhibiting a
group structure and noisy measurements of ratios of group elements. In this paper we
specialized the synchronization problem over the group SO(2). In the general case we may
consider a group G other than SO(2) for which we have good and bad measurements gij of
ratios between group elements

Singer Page 24

Appl Comput Harmon Anal. Author manuscript; available in PMC 2012 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(97)

For example, in the general case, the triplet consistency relation (17) simply reads

(98)

where e is the identity element of G.

Whenever the group G is compact and has a complex or real representation (for example,
the rotation group SO(3) has a real representation using 3 × 3 rotation matrices), we may
construct an Hermitian matrix that is a matrix of matrices: the ij element is either the matrix
representation of the measurement gij or the zero matrix if there is no direct measurement for
the ratio of gi and gj. Once the matrix is formed, one can look for its top eigenvectors (or
SDP) and estimate the group elements from them.

In some cases the eigenvector and the SDP methods can be applied even when there is only
partial information for the group ratios. This problem arises naturally in the determination of
the three-dimensional structure of a macromolecule in cryo-electron microscopy [12]. In
[32] we show that the common lines between projection images give partial information for
the group ratios between elements in SO(3) that can be estimated accurately using the
eigenvector and SDP methods. In [33] we explore the close connection between the angular
synchronization problem and the class averaging problem in cryo-electron microscopy [12].
Other possible applications of the synchronization problem over SO(3) include the distance
geometry problem in NMR spectroscopy [42,21] and the localization of sensor networks
[4,31].

The eigenvector method can also be applied to non-compact groups that can be
“compactified”. For example, consider the group of real numbers ℝ with addition. One may
consider the synchronization problem of clocks that measure noisy time differences of the
form

(99)

We compactify the group ℝ by mapping it to the unit circle t ↦ eιωt, where ω ∈ ℝ is a
parameter to be chosen not too small and not too large, as we now explain. There may be
two kinds of measurement errors in (99). The first kind of error is a small discretization error
(e.g., a small Gaussian noise) of typical size Δ. The second type of error is a large error that
can be regarded as an outlier. For example, in some practical application an error of size 10Δ
may be considered as an outlier. We therefore want ω to satisfy ω ≫ (1/10)Δ−1 (not too
small) and ω ≪ Δ−1 (not too large), so that when constructing the matrix

(100)

each good equation will contribute approximately 1, while the contribution of the bad
equations will be uniformly distributed on the unit circle. One may even try several different
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values for the “frequency” ω in analogy to the Fourier transform. An overdetermined linear
system of the form (99) can also be solved using least squares, which is also the maximum
likelihood estimator if the measurement errors are Gaussian. However, in the many outliers
model, the contribution of outlier equations will dominate the sum of squares error. For
example, each outlier equation with error 10Δ contributes to the sum of squares error the
same as 100 good equations with error Δ. The compactification of the group combined with
the eigenvector method has the appealing effect of reducing the impact of the outlier
equations. This may open the way for the eigenvector method based on (100) to be useful
for the surface reconstruction problems in computer vision [13,1] and optics [30] in which
current methods succeed only in the presence of a limited number of outliers.
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Figure 1.
Histogram of the eigenvalues of the matrix H in the complete graph model for n = 400 and
different values of p.
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Figure 2.
Histogram of the eigenvalues of the matrix H in the small-world model for n = 400, ε = 0.2,
m ≈ 8000, and different values of p.
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Figure 3.
Bar plot of the 25 largest eigenvalues of the matrix H in the small-world model for n = 4000,
ε = 0.2, m ≈ 8 · 105, and different values of p. The multiplicities 1, 3, 5, 7, 9 corresponding
to the spherical harmonics are evident as long as p is not too small. As p decreases, the high-
oscillatory spherical harmonics are getting “swallowed” by the semi-circle.
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Table 3

Comparison between the correlations obtained by the eigenvector method ρeig, by the SDP method ρsdp and by
the least squares method ρlsqr for different values of p (small world graph on S2, n = 200, ε = 0.3, m ≈ 3000).
The SDP tends to find low-rank matrices despite the fact that the rank-one constraint on Θ is not included in
the SDP. The rightmost column gives the rank of the Θ matrices that were found by the SDP. To solve the
SDP (8)–(10) we used SDPLR, a package for solving large-scale SDP problems [5]. The least squares solution
was obtained using MATLAB’s lsqr function. As expected, the least squares method yields poor correlations
compared to the eigenvector and the SDP methods.

p ρlsqr ρeig ρsdp rank Θ

1 1 1 1 1

0.7 0.787 0.977 0.986 1

0.4 0.046 0.839 0.893 3

0.3 0.103 0.560 0.767 3

0.2 0.227 0.314 0.308 4

0.15 0.091 0.114 0.102 5
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