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Abstract

As genotyping technology has progressed, genome-wide association studies (GWAS) have
matured into efficient and effective tools for mapping genes underlying human phenotypes.
Recent studies have demonstrated the utility of the GWAS approach for examining
pharmacogenomic traits, including drug metabolism, efficacy, and toxicity. Application of GWAS
to pharmacogenomic outcomes presents unique challenges and opportunities. In the current
review, we discuss the potential promises and potential caveats of this approach specifically as it
relates to pharmacogenomic studies. Concerns with study design, power and sample size, and
analysis are reviewed. We further examine the features of successful pharmacogenomic GWAS,
and describe consortia efforts that are likely to expand the reach of pharmacogenomic GWAS in
the future.
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INTRODUCTION

Since 2005, genome-wide association studies (GWAS) have matured into a powerful tool to
identify single nucleotide polymorphisms (SNPs) that can be reproducibly associated with a
variety of human phenotypes. Currently, well over 300 papers have reported significant

*Address for Correspondence: Alison A Motsinger-Reif, Ph.D., Bioinformatics Research Center, Department of Statistics, 840 Main
Campus Drive, CB 7566, North Carolina State University, Raleigh NC, 27695-7566, USA, TEL: 919-515-3574, FAX: 919-515-7315,
motsinger@stat.ncsu.edu.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Motsinger-Reif et al.

Page 2

associations of common variants with a range of phenotypes and diseases [1]. These
successes have provided numerous insights into the relationship among genetic variants,
biological pathways, and human traits, as well as shown how proper study design and
analysis can lead to the success of GWAS. A key lesson from this first generation of GWAS
is that no single approach will be appropriate for all phenotypes [2].

The genetics of drug-response outcomes, broadly referred to here as pharmacogenetic/
pharmacogenomic outcomes, are a particular category of phenotypes that present unique
challenges and opportunities in gene discovery [3]. In this review we discuss the advantages
and limitations of GWAS as applied to pharmacogenomic outcomes. Some of these
challenges are variations on general concerns for disease gene identification, whereas others
are unique to pharmacogenomic outcomes.

Like studies of disease phenotypes, the success of any pharmacogenomic GWAS will
depend on the effect size and allele frequency of genetic variants that influence the trait, the
sample size available to detect those variants, the population under study (treatment
protocol, dosage, patient features including self-reported race/ethnicity, etc.), and study
design (observational study or randomized controlled trial). Unlike most disease phenotypes,
pharmacogenomic outcomes often have clear, clinically defined phenotypes and well
understood mechanisms that may underlie variation in drug response, including known
systems of transport and metabolism, as well as sites of drug action. In addition, larger
genetic effects may exist for pharmacogenomic traits than for disease phenotypes, providing
greater statistical power for genetic association studies.

An important potential limitation for pharmacogenomic GWAS is sample size. GWAS for
traits like height or QT or complex diseases like diabetes need and benefit from large
numbers and currently mega-meta-analyses are identifying and validating associated loci.
Such large sample sets are generally not possible for pharmacogenomic outcomes since they
usually include by definition both a disease (often with low prevalence) as well as a well-
curated drug response phenotype (which further reduces the available study population).

In this article, we discuss key issues for GWAS, including the strengths and limitations of
this approach. We then elucidate issues of heightened importance in GWAS of
pharmacogenomic traits. We discuss appropriate study designs and analysis strategies, and
describe lessons from successful pharmacogenomic GWAS. We end with a discussion of
ongoing efforts to develop consortia for the purpose of obtaining large sample sizes for drug
response outcomes.

PROMISES

There are clear, well-understood advantages to a genome-wide association approach to
phenotype association discovery. GWAS are conventionally intended as an unbiased scan of
the genome, interrogating the majority of common genetic variation for disease association.
In contrast to a candidate gene approach, whether narrow or broad in scope, GWAS allow
the identification of totally novel susceptibility factors that promise to provide us with better
biological understanding of phenotypes [4]. There are many candidate mechanisms that
drive variability in drug responses: metabolism, transport, targets, target partners,
immunologic pathways (e.g. for allergic reactions), etc. that have directed many successful
candidate gene studies [5],However, they cannot identify genes outside of the current
knowledge of those mechanisms. GWAS allow such novel discovery.

GWAS have distinct advantages as compared to more traditional linkage based approaches
[6]. There are three key general advantages of GWAS approaches for gene identification,
each of which are exaggerated for pharmacogenomic outcomes:
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«  Case-control cohorts are generally less expensive and easier to collect than
extended pedigrees or nuclear families. This is especially true in drug response
studies where it is rare for multiple family members to have well-characterized
responses to drug challenges, i.e formal linkage analysis has not been feasible for
drug response phenotypes. GWAS do not require the ascertainment of
pharmacogenomic interventions in related individuals.

» Association studies have higher statistical power to detect small to modest genetic
effects as compared to linkage studies [6]. For pharmacogenomic studies,
especially for rare toxicities where sample sizes are limited, this advantage in
power may be the difference between success and failure in gene mapping.

»  Because linkage disequilibrium (LD) typically stretches over tens of kilobases as
opposed to several megabases [6], association signals are more finely localized
than linkage signals, which should lead to more rapid identification of causal
variants by rapidly narrowing down regions for follow up in functional studies —
critical for novel mechanistic insights — and, thus, to more rapid translation of
findings.

There are additional advantages to GWAS that are more specific to pharmacogenomic
outcomes. First, GWAS provide context for understanding the relative importance of genetic
contributors to pharmacogenomic traits that may otherwise be unavailable. The genetic
component of human phenotypes can be assessed by estimating heritability (the proportion
of variation in a trait due to genetic factors) through methods such as variance components
analysis, segregation analysis, etc. Each of these methods requires family data, which, as
noted above, is usually difficult to collect for pharmacogenomic outcomes [7].

Another specific application of GWAS in pharmacogenomics is the ability to rule out — with
pre-specified confidence intervals — contributions by unidentified genes to a drug response
phenotype. Because pharmacogenomic GWAS can directly investigate the role of genetic
variation on clinical outcomes, the findings from pharmacogenomic GWAS can be more
rapidly translated to clinical practice. As translation to the bedside is one of the goals of
pharmacogenomic gene mapping [8], it is important to ensure that any unanticipated
important genetic contribution to variability in a drug response is not missed [9]. Of equal
importance is the identification of novel mechanisms, both for drug response and/or adverse
drug reactions. So, having identified variants in gene X or Y as contributors to a variable
drug response, it is key to ensure that there is no other important genetic contributor before
mounting a trial. Understanding the influence of genetic variants in drug response can limit
unanticipated variability in a drug treatment [9]. The role of GWAS in this process is
evident in the evaluation of the genetic component of warfarin dosing [9]. The strong
association of variants in VKORCI and CYP2C9for stable warfarin dosing were well
established [10-12], but before the National Heart, Lung and Blood Institute (NHLBI) in the
United States would mount a large clinical trial it was important to determine if there were
other genetic variants that also had large effects on stable warfarin dosing. GWAS [13, 14]
have now ruled out large contributions by other loci, thereby allowing clinical trials to
proceed [15]. Similarly, a GWAS for clopidogrel effect on ADP-induced platelet
aggregation identified only one associated locus, at CYP2C9/19, laying the groundwork for
design of clinical trials [16]. As genotyping platforms with increased SNP density become
available, the coverage of genetic variation in the human genome will become more
complete, providing greater confidence that clinically important genetic effects on
pharmacogenomic traits will not be missed. Thus while many variants in drug metabolism
genes have been shown to confer large clinical effects, that have often been identified
without GWAS (e.g. by well informed candidate gene studies), even GWAS with “negative”
results add this crucial additional information [17].
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CONSIDERATIONS

Common Disease Common Variant Hypothesis

Despite the advantage of GWAS studies discussed above, there are important caveats that
must be remembered in their design and application. While many of these caveats are true of
GWAS in general, the impact of these concerns may be different in pharmacogenomic
studies than in general trait mapping.

A key assumption in GWAS is what is known as the common disease/common variant
hypothesis [18]. The common disease/common variant hypothesis proposes that most of the
genetic risk for common, complex diseases is attributable to relatively common (minor allele
frequency >0.05) polymorphisms [18]. The alternative to the common disease/common
variant hypothesis is that multiple rare variants cause disease at high prevalence in the
population through a variety of mechanisms, Such variants can represent genetic
heterogeneity of variants in a single gene, or multiple rare variants within genes in the same
pathway that have cumulative effects. These two hypotheses have important implications—
common variants are thought to impart subtle effects on gene function, often through
changes to gene regulation. Rare variants may have larger effects on gene function, such as
nonsynonymous variants that alter the amino acid sequence of the resulting protein, and as a
result lead to large changes in disease risk or trait values. As a result, it is likely that both
common and rare variants will contribute to common phenotypes, but the relative
proportions will influence the appropriate methods for discovering associated variants. The
GWAS approach is well powered to detect common variants with modest effects. GWAS is
less effective at testing rare variation, a problem that is confounded by the DNA microarrays
used in these studies, which have been designed to capture common variation. Even “next
generation” GWAS that will reliably interrogate (directly or indirectly) all variation with
minor allele frequency > 0.005 may be insufficient to identify enough of the contributory
variation to allow us to understand biology if most of that variation has minor allele
frequency < .005, as the sample sizes required to achieve sufficient statistical power for such
effects may be prohibitive. As “next generation” sequencing becomes more accessible, and
whole genome sequencing becomes more affordable, more rare variant analysis will be
possible in pharmacogenomics.

Sources of Bias

An important concern in GWAS studies for pharmacogenomics is of the potential for bias in
the selection of genetic variants [2]. Although large numbers of variants with low minor
allele frequency are included in the densest GWAS platforms, GWAS have little power,
given sample sizes available, to detect significant associations with low minor allele
frequency (MAF) SNPs. Additionally, it is widely recognized that genotype quality is not as
high for rare variants as it is for more common variants. Consequently, a common approach
is to not assess the significance of associations with rare variants (MAF < .01). This further
compounds the limited statistical power to detect associations with less common genetic
variants. Moreover, SNPs included on high throughput platforms must pass stringent tests
for ease of genotyping, which leads regions with gene duplications (and pseudogenes) to be
poorly represented on high-throughput genotyping products, and many of these — such as
CYPs or the HLA locus are precisely the genes of greatest interest for pharmacogenomic
study. The human cytochrome P-450 (CYP) family of genes that encodeenzymes active in
xenobiotic metabolism have been associated with a large number of pharmacogenomic
outcomes [19]. They are known to be highly polymorphic, with a wide range of allele
frequencies across populations, and contain complex structural variation, with unique
haplotypic structure and copy number variations [20]. The coverage of these types of
variation is limited on current GWAS genotyping platforms [21].
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Study Design

Experimental design is a crucial component of any successful GWAS, and
pharmacogenomic studies have different advantages and limitations than traditional disease
studies. The importance of proper definition and collection of phenotype data has become
increasingly appreciated in the context of GWAS [17]. An important advantage in
pharmacogenomic studies is that multiple response phenotypes are often collected within the
same study, such as efficacy and adverse events, allowing a broader dissection of trait
genetics in a single study.

However, because all pharmacogenomic outcomes are responses to the environmental
exposure of the drug and because these drugs are given in response to a disease condition,
there may be complex interactions between disease and drug response relevant in phenotype
definition. Precise definitions are essential for both the disease and drug response
phenotypes, which are often discrete diagnoses from these complex relationships. For
example, in some but not all cases, rare adverse drug reactions may represent a “tail”” of
response distributions and where to define that cut-off within the distribution can be a
challenge. The SEARCH Collaborative Group demonstrated a successful approach to
address this issue by combining subjects with both definite and incipient statin-induced
myopathy into a single case definition [22]. In other cases, a rare adverse reaction is an
unexpected outcome often unrelated to the desired mechanism of action [17].

One efficient use of resources to collect pharmacogenomic phenotypes is to collect samples
within the context of clinical trials, which streamlines the collection procedures. The use of
clinical trial data for GWAS studies is not only an efficient use of resources, but has the
advantage that similarly treated “controls” for the phenotype of interest are built into the
trials. However, because some trials are not designed for GWAS mapping, the study designs
used for collection may not be ideal for pharmacogenomic analysis (e.g. multiple drugs used
in treatment arms, etc) [23]. Obviously, this “challenge” is inherent to the treatment of
diseases like cancer or end stage congestive heart failure in which it would be unethical to
fail to treat patients with the current standard of care for this illness. If pharmacogenomic
efforts are sub-studies of clinical trials, sample sizes may decrease, which reduces the power
of the pharmacogenomic component. Because meeting recruitment targets is a primary goal
in most clinical trials, genomic and pharmacogenomic efforts are often included only as sub-
studies to which subjects may or may not consent; as a result, the power and generalizability
of genomic studies is compromised. Genetic studies added as an afterthought may be viewed
as creating a barrier to recruitment and are thus may not be a priority for sponsors.
Collecting drug response phenotypes in health care systems with electronic medical records
is another method of accruing subjects that is now being explored.

Sample size limitations are a challenge in any GWAS study, but are amplified in many
pharmacogenomic studies. Particularly when studying rare drugreactions or adverse events,
it is by definition not feasible to recruit thousands of patients with rare outcomes. This is a
particular limitation in pharmacogenomic GWAS studies as the replication of association
results in independent populations has become the “gold standard” for validation of results
[24]. If the collection of a reasonable sample size for a discovery cohort is at the edge of
practicality, this makes the collection of a well-powered replication cohort often impossible.
Consortia efforts (discussed below) have been motivated by this limitation, to combine
samples from across the world to increase power and potentially identify replication cohorts
to maximize power and provide validation to associated signals. However even the
establishment of networks of investigators cannot necessarily overcome these limitations,
and the field must look to creative approaches of validation/replication possibly involving
functional studies or examination of related intermediate phenotypes.
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There are unique “challenges” associated with validation/replication for pharmacogenomics.
Clinical trials are expensive, and every study is unique since they are designed to represent
an advance over previous studies to answer novel therapeutic questions. Therefore, in
pharmacogenomics greater emphasis may have to be placed on functional validation of
GWAS *“signals” and on biological plausibility. Additionally, one must recognize that the
larger the sample size, the more likely that features which confound the genotype/phenotype
relationship will be undocumented or uncontrolled, thus diluting the “purity” of the
phenotype and potentially reducing power [25].

Besides sample size, there are other practical limitations in study design for
pharmacogenomic studies. As mentioned previously, family based designs are generally
impractical with drug response outcomes, which means the field relies heavily on cohort or
case-control studies for GWAS [5]. While the number of cases may be limited by event
frequency as discussed above, finding and selecting appropriate controls presents additional
challenges. While GWAS of common diseases have taken advantage of the use of shared
controls across studies, this is not often possible in pharmacogenomic studies, as typically
controls must also be exposed to the drug of interest (though this may not be necessary in all
cases). Other matching criteria must also be considered, such as disease interactions,
population admixture, and additional environmental and clinical exposures.

ANALYSIS

As GWAS have become more prevalent, methodologies for the analysis and interpretation
of results have co-evolved. Many tools have been developed and evaluated in the context of
GWAS studies, and have resulted in the many successes seen to date. However, there are
still many challenges in the analysis strategies used for GWAS in general, as well as
particular challenges for pharmacogenomics, as discussed below.

Standard Analytical Approaches

The majority of previous GWAS studies have relied on the use of traditional statistical
methodologies for analysis, and several tools have become widely used in the field.
Software packages such as PLINK [26], have become very popular to implementing logistic
regression (for case-control or cohort studies), linear regression (for quantitative traits), and
family based association tests for GWAS studies.

After various types of corrections for multiple testing (Bonferroni, permutation approaches,
etc) results of these analyses are typically prioritized with replication strategies. For single
samples, the union of significant results from several analytical approaches (committee-
based approaches) or measures of reliability from internal model validation is often used
toprioritize robust signals. When more than one sample is available, multistage replication
strategies are often employed to discover, prioritize, and validate signals. Finally, when
multiple samples are available, meta-analysis is often used to obtain more comprehensive
measure of association signals [27]. Challenges in sample collection (discussed above) can
limit the use of such multistage replication and meta-analysis strategies in
pharmacogenomics. One alternative approach for replication, or at least prioritization, of
association signals in pharmacogenetic studies is to utilize non-clinical GWAS studies of
large collections of human tissue, cell lines, and genetic model organisms [28].

Detecting Complex Predictive Models

Such traditional approaches have been very powerful for identifying strong single-locus
associations (“low-hanging fruit”) for a wide range of phenotypes in both common diseases
and pharmacogenomic outcomes (reviewed below), and are typically applied in a way that
fits within the “unbiased” intentions of GWAS association studies. Despite the successes of
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these approaches, their limitations for detecting and prioritizing more complex models have
become a hot topic in the literature [29].

As many successful GWAS have been published, the sum of the genetic contributions of
associated variants in many common traits is far below the estimated heritability of the
traits. These gaps in explained heritability are potentially clarified by several potential
etiologies. Low power to detect low effect sizes, the presence of rare variants contributing to
phenotypes, unmeasured nucleotide or structuralvariation, complex methylation/epigenetic
mechanisms, and gene-gene/gene-environment interactions are all hypothesized to
contribute to the unexplained trait variation [29]. In response to these limitations, new
analytical approaches are evolving to detect complex genetic risk models, discussed below.
These limitations are leading to refinement of methods for GWAS analysis, and these may
be especially appropriate for pharmacogenomic studies.

Expert-Knowledge Driven Analysis

While this “unbiased” intent of GWAS studies is to detect potentially new genetic
associations that might not have been considered as candidate genes, there has been a recent
appreciation for the fact that these simple analytical approaches ignore the large amount of
expert knowledge available for a particular outcome. In response, there has recently been
rapid development in the use of network and pathway analysis for analysis of GWAS data
[30-33]. Literature searches (automated or hand-curated), databases of previous results, etc.
are being exploited to improve the power of GWAS. Because there is much known about the
mechanism and metabolism of many of the drugs evaluated in pharmacogenomic studies,
there is very well directed guidance for such knowledge-driven analysis. The
Pharmacogenomics Knowledge Base (PharmGKB) [34]is an important resource and data
repository that summarizes and curates drug response/gene relationships via gene variant
annotation, hand-curated literature review, and important pharmacogenomic genes and
pathways. An example of the potential of pathway-based analysis is discussed below.

SUCCESSES IN PHARMACOGENOMICS

Arguably the most important demonstrations of the utility and challenges of GWAS studies
in pharmacogenomics are the empirical results of successful studies. A brief description of

the outcomes evaluated in pharmacogenomic GWAS and the strongest signals identified is

listed in Table 1. Details of each study can be found in the references provided.

The potential and drawbacks of an agnostic, unbiased approach for genetic association
studies in pharmacogenetics are illustrated by a GWAS of the activity of a well-known
polymorphic drug metabolizing enzyme, thiopurine methyltransferase(TPMT) in
lymphoblastoid cell lines from the HapMap project [35]. The goal of the experiment was to
assess whether the TPMT polymorphism could be “rediscovered” in this fashion [36].
Although common polymorphisms in TPMT were well tagged, and TPMT polymorphisms
were associated with TPMT activity, the GWAS indicated that 96 genes were ranked higher
than was TPMT itself. The extent to which these higher ranked genes are false vs. true
positives is not yet clear, but indicate the difficulty of using GWAS approaches even for
putatively monogenic traits.

An example of a GWAS for drug pharmacokinetics is provided by an analysis of
methotrexate clearance determined in over 3000 courses of the drug given to 434 children
with leukemia [37]. Many candidate gene studies have previously been conducted to identify
genetic variation associated with methotrexate pharmacokinetic variability, with limited
success. Using GWAS, the SLCO1B1 gene was represented by multiple polymorphisms in
several LD blocks, a finding that was replicated in an independent cohort of patients,
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suggesting that there are multiple mechanisms by which alteration of OATP1B1 (encoded
by SLCO1B1I) could affect methotrexate pharmacokinetics. Although methotrexate had been
shown to be an OATP1B1 substrate, it was a rather weak one [38, 39], and so the gene had
not risen to the top of candidate gene lists. This finding has implications for both toxicity to
methotrexate, and to possible drug interactions with widely used OATP1B1 substrates, such
as statins.

The utility of pathway-based analysis is demonstrated by Hartford et al. 2007 [40], who
performed a GWAS examining etoposide-induced leukemia with MLL. They prioritized
variant associations based on expression results, to identify alterations in three biological
pathways: adhesion, Wnt signaling and regulation of actin. Results in an independent
validation cohort confirmed the alterations in the adhesion pathway. None of the alterations
identified were significant based on traditional association analysis, demonstrating the
potential of more complex modeling to identify pathway-level associations.

While most of the published studies identified variants at a genome-wide significance level,
many of them found strong potential signals that did not stand up to traditional analyses [41—
43]. These negative results may represent true negative results, but it is highly likely that
many of these studies were limited by many of the challenges discussed above (power,
coverage, etc).

NETWORK EFFORTS

In order to address many of the limitations discussed above, particularly in regards to limited
sample sizes and lack of traditional replication cohorts, researchers are successfully
combining resources and establishing worldwide collaborations to support large-scale
GWAS. Given the complexities of drug response phenotypes, this approach seems
especially appealing in the application of GWAS to pharmacogenomics. By combining
cohorts from around the globe, pharmacogenomic studies will have higher power to detect
and validate response-determining variants.

The SEARCH Collaborative Group [22]demonstrates the success of such a collaboration.
The SEARCH Collaborative Group examined a rare outcome of statin therapy — myopathy,
defined as markedly elevated creatinine kinase. In its most extreme form, this can result in
the potentially fatal adverse effect of rhabdomyolysis, but these cases are exceedingly rare.
The SEARCH Collaboration also found that myopathy was rare (~0.1%) with low dose
simvastatin, so they focused their efforts on 98 cases identified in 6031 patients receiving
high doses (80 mg/day) of the drug. A GWAS that studied 85 of these cases and90 controls
identified rs4363657, in perfect LD with a known functional non-synonymous SNP in
SLCO1B1 at genome-wide significance. The 5-year incidence of myopathy was 18% in
individuals homozygous for the risk allele (2.1% of the study group), 3% in heterozygotes,
and 0.6% in those with no risk allele. The result was replicated in a separate cohort of
patients receiving a lower dose of 40 mg/day (relative risk 2.6 per C allele).

The success of this study illustrates several important points in the study design of
pharmacogenomic GWAS. First, large collaborative samples can provide a valuable
resource for collecting a critical mass of subjects with a rare phenotype. Second, rare
phenotypes are sampled from the extreme tail of drug response distributions. As a result,
genetic variants that influence these traits may have larger genetic effect sizes, and therefore
be detectable with small sample sizes, than more common outcomes. Third, similar
outcomes can sometimes be combined into a single case group. Here, in the initial
association phase, definite and incipient myopathy patients were considered together.
Fourth, replication of an association should take place in a similar population. In this study,
the replication cohort was treated with a lower dose, 40 mg of simvastatin daily as compared

Pharmacogenet Genomics. Author manuscript; available in PMC 2014 August 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Motsinger-Reif et al.

Page 9

to 80 mg in the initial group. We note that selecting cases from lower dose regimen for a
follow up study may be preferable to the converse (i.e., higher doses in the follow up cohort)
as those cases have a more extreme phenotype (by developing toxicity at a lower dose). This
can limit the dilution of the association signal in the confirmatory study.

Several additional pharmacogenomics consortia have been established to evaluate a number
of drug response outcomes, including the International Severe Irinotecan Neutropenia
Consortium (http://www.pharmgkb.org/views/project.jsp?pld=69), and the International
Tamoxifen Pharmacogenomics Consortium (http://www.pharmgkb.org/views/project.jsp?
pld=63). These groups have pooled data from around the world to investigate genetic
predictors of drug response with high power and comparison across global populations.
While the initial work of these consortia has typically been focused on candidate/known
genetic effects, they are moving towards GWAS. For example, the International Warfarin
Pharmacogenetics Consortia (IWPC) (http://www.pharmgkb.org/views/project.jsp?pld=56)
originally combined data for over 4000 individuals from 24 international sites, to develop
and test warfarin dosing algorithms [44], and are currently using the cohort data for a
GWAS (through the IWPC-GWAS consortium) to identify and confirm previous findings,
and potentially discover novel variants that explain potential trait variation across multiple
populations. Such collaborations are extremely important for rare events, such as adverse
events. Thelnternational Serious Adverse Events Consortium
(www.saeconsortium.org)represents one important effort in pharmacogenomics for adverse
events, pulling together commercial, academic, and industry partners to collect data for well-
powered GWAS.

These combined datasets represent exciting resources for pharmacogenomics GWAS, but
are not without challenges. Concerns with consistent data collection, storage, data-
ownership issues, etc. can be concerns in these collaborative efforts.

CONCLUSIONS

Genome-wide association studies have proven to be an exciting tool for gene mapping in
common human traits, and are demonstrating their potential in pharmacogenomic outcomes
as well. As pharmacogenomic GWAS mature, there is an increased appreciation for issues
that are specifically related to these unique phenotypes. Practical considerations, related to
study design and available sample sizes highlight the need for creative methods of
replication, beyond the traditional replication cohorts that are used for common disease
genetics, and the necessity of combining samples across consortia. The complex physiology
of drug response outcomes highlights the need for analytical methods that incorporate this
complexity, using the wealth of information available about drug mechanisms and pathways.
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