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ABSTRACT

Pseudoknots are an essential feature of RNA tertiary structures. Simple H-type pseudoknots have been studied extensively in
terms of biological functions, computational prediction, and energy models. Intramolecular kissing hairpins are a more complex
and biologically important type of pseudoknot in which two hairpin loops form base pairs. They are hard to predict using free
energy minimization due to high computational requirements. Heuristic methods that allow arbitrary pseudoknots strongly
depend on the quality of energy parameters, which are not yet available for complex pseudoknots. We present an extension of
the heuristic pseudoknot prediction algorithm DotKnot, which covers H-type pseudoknots and intramolecular kissing hairpins.
Our framework allows for easy integration of advanced H-type pseudoknot energy models. For a test set of RNA sequences
containing kissing hairpins and other types of pseudoknot structures, DotKnot outperforms competing methods from the
literature. DotKnot is available as a web server under http://dotknot.csse.uwa.edu.au.
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INTRODUCTION

Pseudoknots are versatile structural elements that are abun-
dant in both cellular and viral RNA. The first pseudoknots
were experimentally identified in the early 1980s in tRNA-
like structures in plant viruses (Rietveld et al. 1982, 1983).
Subsequently, the pseudoknot folding principle was estab-
lished (Pleij et al. 1985) and, over the years, many pseudo-
knots with an astonishing number of diverse functions have
been discovered. Pseudoknots are known to participate in
protein synthesis, genome and viral replication, and ribo-
zyme structure and function (Staple and Butcher 2005;
Brierley et al. 2007, 2008; Giedroc and Cornish 2009).
H-type pseudoknots form when unpaired bases in a hairpin
loop bond with unpaired bases outside the loop and have
been found essential in the context of programmed -1 ribo-
somal frameshifting, telomerase RNA, and viral internal ribo-
some entry sites.

Simple H-type pseudoknots are the best-studied group of
RNA pseudoknots and constitute the vast majority of entries

in the pseudoknot database Pseudobase (van Batenburg et al.
2001). However, this should not lead to the conclusion that
different types of pseudoknots are less frequent or less im-
portant in RNA three-dimensional folding and function. A
more complex pseudoknot forms when unpaired bases in
a hairpin loop bond with unpaired bases in another hairpin
loop (Fig. 1). This type of pseudoknot is called an intra-
molecular kissing hairpin, H-H type pseudoknot, or loop-
loop pseudoknot. The hairpin loops can also be located in
different RNA molecules, which is referred to as an inter-
molecular kissing hairpin, RNA-RNA interaction, or a kissing
complex (Brunel et al. 2002). Intramolecular kissing hairpins
have been reported in different virus families as essential
features for viral replication (Melchers et al. 1997; Verheije
et al. 2002; Friebe et al. 2005). Kissing hairpins have also been
found in some hammerhead ribozymes (Song et al. 1999;
Gago et al. 2005), the Varkud satellite ribozyme (Rastogi et al.
1996), or as part of the signal recognition particle (Larsen and
Zwieb 1991).

Due to the crossing of three stems, intramolecular kissing
hairpin prediction is more complex than prediction of sim-
ple H-type pseudoknots. Most discoveries of kissing hair-
pins have been made in the laboratory with little aid of
computational methods due to the lack of practical pre-
diction algorithms. General kissing interactions are hard to
predict as it leaves the field of secondary structure prediction,
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both in terms of the computational complexity and the
energy model. Given an RNA sequence, the minimum free-
energy (MFE) secondary structure without crossing base
pairs can be calculated in O(n3) time and O(n2) space un-
der an additive energy model using dynamic programming
(Zuker and Stiegler 1981; Lyngsø et al. 1999). Free-energy
minimization, including general pseudoknots, has been
proven to be an NP-complete problem (Lyngsø and
Pedersen 2000a). By restricting the types of pseudoknots that
can be predicted, polynomial-time dynamic programming
methods can be achieved. Rivas and Eddy (1999) introduced
pknots for MFE structure prediction, including a broad class
of pseudoknots such as chains of pseudoknots and kissing
hairpins which take O(n6) time and O(n4) space. More
practical algorithms run in O(n5) or O(n4) time, depending
on the pseudoknot target class; however, kissing hairpins
are not included in the recursion schemes (Akutsu 2000;
Dirks and Pierce 2003; Reeder and Giegerich 2004). A tree-
adjoining grammar algorithm by Uemura et al. (1999) using
O(n5) time and O(n4) space allows pseudoknot chains of
length three under a very simple energy model. Lyngsø and
Pedersen (2000b) give a high-level description of a dynamic
programming algorithm using O(n5) time and O(n3) space,
which can predict kissing hairpins. A dynamic programming
method requiring O(n5) time and O(n4) space for MFE
structure prediction was presented by Chen et al. (2009) and
includes kissing hairpins and chains of four overlapping
stems. Apart from pknots, no implementations are readily
available for MFE structure prediction, including intramo-
lecular kissing hairpins.

Due to the computational complexity of dynamic pro-
gramming for pseudoknot prediction, heuristic algorithms
have been developed. A number of heuristic RNA structure
prediction methods explicitly include kissing hairpins.
FlexStem is a heuristic algorithm with the ability to fold
overlapping pseudoknots, i.e., intramolecular kissing hair-
pins (Chen et al. 2008). HFold is based on the MFE folding
for secondary structures and hierarchically calculates a joint
structure using the available bases from a given secondary
structure. The predicted structure may contain pseudo-
knots and (nested) kissing hairpins (Jabbari et al. 2008). A

range of heuristic RNA structure pre-
diction algorithms cover general types
of pseudoknots and may, therefore, im-
plicitly predict kissing hairpins. How-
ever, the pseudoknot target class re-
mains elusive and there are no specific
energy parameters for kissing hairpins.
For example, simple kissing hairpins
can be predicted by iterated stem add-
ing procedures such as iterated loop
matching (ILM) and HotKnots (Ruan
et al. 2004; Ren et al. 2005; Andronescu
et al. 2010). It must be noted that the
underlying energy parameters may not

be tuned for kissing hairpin prediction, and thus only very
stable kissing hairpins are likely to be predicted.

Here, we present an extension of the heuristic pseudo-
knot search method DotKnot for prediction of H-type
pseudoknots (Sperschneider and Datta 2010). DotKnot was
initially designed as a specialized H-type pseudoknot folding
method which returns only the detected pseudoknots for a
given sequence. Our main contributions reported here are
the following:

d Efficient prediction of a wider class of pseudoknots,
namely intramolecular kissing hairpins.

d Prediction of a global structure to allow for performance
evaluation with widely used algorithms for secondary
structure prediction including pseudoknots.

d Prediction of a number of near-optimal pseudoknot and
kissing hairpin candidates for further investigation by the
user.

The main idea of the DotKnot method is to assemble
pseudoknots in a constructive fashion from the secondary
structure probability dot plot calculated by RNAfold
(McCaskill 1990; Hofacker et al. 1994). Using a low-proba-
bility threshold, pseudoknotted stems can be seen in the dot
plot. From the set of stem candidates found in the dot plot,
DotKnot derives a candidate set of secondary structure ele-
ments, H-type pseudoknots, and kissing hairpins. The pres-
ence of the structure elements in the global structure is
verified using maximum weight independent set calculations.

There are two main advantages of this heuristic ap-
proach. First, it is very efficient and therefore practical for
longer RNA sequences. This is important as kissing loop
interactions are known to stabilize the overall tertiary folding
and are often long-range interactions. In contrast, kissing
hairpin prediction using dynamic programming suffers from
high computational requirements. For example, pknots is
only able to run for sequences shorter than, say, 150 nt.
Second, practical dynamic programming methods are fairly
restricted with regards to the underlying additive energy
model; however, nonadditive H-type pseudoknot energy
models have been developed that are based on the important

FIGURE 1. Intramolecular kissing hairpin structure and its representation as crossing
intervals on the line.
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interference between opposite stems and loops (Gultyaev
et al. 1995; Cao and Chen 2006, 2009). Heuristic methods
such as DotKnot, which construct a number of pseudoknot
candidates, allow for easy integration of such nonadditive
H-type pseudoknot energy models, which can drastically
improve prediction accuracy.

In the remainder of this paper, we evaluate the perfor-
mance of DotKnot and several other methods from the

literature and discuss the results for
kissing hairpin prediction in detail.
Afterward a description of the algorith-
mic framework of the DotKnot method
is given and we show how DotKnot
derives a global structure and near-
optimal pseudoknots.

RESULTS

Kissing hairpin prediction can be han-
dled by an extended version of Dot-
Knot, pknots, and FlexStem. These
methods are chosen for the evaluation

because they employ specific energy parameters for kissing
hairpins. The secondary structure prediction algorithm
RNAfold is also included in the testing to compare results
to a hierarchical folding approach where the kissing in-
teraction is added by hand after obtaining the MFE
structure. Note that only those algorithms that are freely
available are compared. No implementation is available
for a dynamic programming method for kissing hairpin

TABLE 2. Summary of prediction results using an extended version of DotKnot

Sequence DotKnot pknots FlexStem RNAfold

ID Nt S PPV MCC r S PPV MCC r S PPV MCC r S PPV MCC r

ArcFul-SRP 45 100 100 1 1/1 31.1 31.1 0.3 0/0 37.5 40 �0.15 0/0 0 0 �0.66 0/0
310 92.7 92.7 0.84 1/1 * * * * 71.8 78.2 0.49 0/0 80.9 82.4 0.6 0/0

Bsub-SRP 43 93.3 100 0.93 1/1 60 100 0.64 0/0 33.3 33.3 �0.29 0/0 0 0 �0.7 0/0
270 82.3 91.9 0.73 1/1 * * * * 14.6 15.7 �0.49 0/0 64.6 68.1 0.3 0/0

Hs-SRP 40 93.3 87.5 0.73 1/1 73.3 100 0.72 0/0 66.7 66.7 0.17 0/0 73.3 100 0.72 0/0
299 33.3 36.5 �0.19 1/1 * * * * 22.9 26.4 �0.33 0/0 64.8 70.1 0.37 0/0

Mjann-SRP 45 100 100 1 1/1 100 100 1 1/1 40 40 �0.07 0/0 0 0 �0.6 0/0
330 95 97.5 0.91 1/1 * * * * 79.3 80.7 0.55 0/0 86.8 89.7 0.73 0/0

Halo-SRP 45 66.7 76.9 0.47 0/0 60 75 0.37 0/0 66.7 83.3 0.52 0/0 60 75 0.37 0/0
303 12.4 11.1 �0.47 1/2 * * * * 9 7.7 �0.5 0/0 55.1 49 0.16 0/0

TheCel-SRP 45 100 93.8 0.93 1/1 33.3 33.3 �0.14 0/0 0 0 �0.57 0/0 33.3 38.5 �0.14 0/0
318 78.2 78.2 0.56 1/1 * * * * 53.6 53.6 0.13 0/0 70 68.8 0.38 0/0

CoxB3 121 60 63.6 0.37 1/1 71.4 86.2 0.66 0/0 80 71.8 0.56 0/0 71.4 71.4 0.51 0/0
Echo6 121 97 86.5 0.86 1/1 72.7 68.6 0.49 0/0 84.8 71.8 0.61 0/0 81.8 79.4 0.67 0/0
Ent69 121 62.9 56.4 0.3 1/2 71.4 67.6 0.45 0/0 71.4 62.5 0.39 0/0 62.9 66.7 0.4 0/0
HCV 75 48.3 60.9 0.07 0/0 69 83.3 0.45 0/0 72.4 80.8 0.42 0/0 69 87 0.52 0/0

343 44.8 52 0.44 0/0 * * * * 48.3 51.9 0.45 0/0 44.8 46.4 0.4 0/0
PRRSV 66 40 58.8 0.05 1/1 72 94.7 0.64 0/0 44 55 �0.03 0/0 72 94.7 0.64 0/0

459 40 34.5 0.33 1/1 * * * * 0 0 �0.09 0/0 28 14.3 0.13 0/0
WNV 96 85.7 90.9 0.74 1/1 62.9 73.3 0.38 0/0 80 87.5 0.64 0/0 82.9 90.6 0.71 0/0
satRPV 72 81.8 81.8 0.68 1/1 77.3 77.3 0.58 0/0 59.1 76.5 0.47 0/0 59.1 68.4 0.39 0/0
NeuroVS 87 66.7 50 0.21 1/1 87.5 77.8 0.69 0/0 50 42.9 0.03 0/0 50 42.9 0.03 0/0

176 88.1 89.7 0.78 0/0 * * * * 72.9 81.1 0.57 0/0 83.1 86 0.7 0/0
CChMVd 74 78.3 62.1 0.33 1/1 60.9 51.9 0.11 0/0 30.4 25.9 �0.28 0/0 60.9 53.8 0.15 0/0
PLMVd 75 65.6 95.5 0.51 1/1 71.9 92 0.5 0/0 81.3 100 0.73 0/0 81.3 89.7 0.53 0/0
EColi-P6 212 83.6 76.1 0.64 1/1 * * * * 49.2 46.9 0.14 0/0 24.6 25.9 �0.18 0/0
HCoV229E 54 100 100 1 1/1 79.2 100 0.66 0/0 70.8 89.5 0.31 0/0 79.2 100 0.66 0/0

224 100 100 1 1/1 * * * * 79.2 79.2 0.76 0/0 79.2 90.5 0.83 0/0

In each sequence, one kissing hairpin has been reported in the literature. We use pknots version 1.05, FlexStem version 1.3 and the RNAfold
web server (Gruber et al. 2008). The * symbol means that we were not able to run the algorithm to completion due to computational
requirements. The ratio r = (number of correctly predicted kissing hairpins) / (number of predicted kissing hairpins) is also reported.

TABLE 1. RNA types and sequences used for kissing hairpin prediction

RNA Type Sequence ID Reference

SRP RNA ArcFul-SRP, Bsub-SRP, Hs-SRP,
Mjann-SRP, Halo-SRP,
TheCel-SRP

Zwieb and Müller (1997)

Viral RNA CoxB3, Echo6, Ent69, HCV,
PRRSV, WNV, HCoV229E

Wang et al. (1999), Friebe et al. (2005),
Verheije et al. (2002), Shi et al.
(1996), Herold and Siddell (1993)

Ribozyme satRPV, NeuroVS, CChMVd,
PLMVd, EColi-P6

Song et al. (1999), Rastogi et al.
(1996), Gago et al. (2005), Bussiere
et al. (2000), Harris et al. (2001)

Pseudoknot prediction including kissing hairpins
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prediction described in Lyngsø and Pedersen (2000b), Chen
et al. (2009), and HFold (Jabbari et al. 2008).

The test set for the kissing hairpin prediction evaluation
is shown in Table 1. The number of kissing hairpins de-
scribed and verified in the literature is fairly limited. For
long RNA sequences including kissing hairpins, such as the
signal recognition particle RNA (SRP RNA), structure pre-
diction is also performed for the short sequence exactly
harboring the kissing hairpin. This is done in order to com-
pare prediction results to the computationally expensive
pknots and to observe whether prediction accuracy improves
for all methods if a short kissing hairpin sequence is given.

For each kissing hairpin reference structure in the test
set, the predicted base pairs are analyzed and results are
shown in Table 2. The number of correctly and incorrectly
predicted base pairs in the global structure is counted (TP
and FP). The number of base pairs in the reference struc-
ture that were not predicted is also reported (FN). Sensitivity
S is defined as S = 100 3 (TP/TP + FN), positive predictive
value (PPV) as PPV = 100 3 (TP/TP + FP), and Matthews
correlation coefficient (MCC) as:

MCC =
ðTP 3 TN� FP 3 FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞ

p

The Matthews correlation coefficient is in the range from -1
to 1, where 1 corresponds to a perfect prediction and -1 to
a prediction that is in total disagreement with the reference
structure.

RESULTS

Structures with kissing hairpins

Signal recognition particle (SRP) RNA

The signal recognition particle (SRP)
is a protein-RNA complex and partic-
ipates in the translocation of proteins
across membranes (Keenan et al. 2001).
At the center is the SRP RNA, which
typically consists of around 300 nt. A
number of SRP RNA sequences with
predicted secondary structures are avail-
able, for example for Archaeoglobus ful-
gidus, Bacillus subtilis, Homo sapiens,
Methanococcus jannaschii, Halobacterium
halobium, and Thermococcus celer (Zwieb
and Samuelsson 2000). Tertiary kissing

interactions have been established close
to the 59-end using phylogenetic analysis
and molecular modeling (Larsen and
Zwieb 1991; Zwieb and Müller 1997).
The highly conserved kissing hairpin
is a compact structure (Fig. 2). We eval-
uated the predictions for these six SRP
RNA sequences and also for the cor-

responding six short sequences exactly harboring the kissing
interaction. DotKnot predicts a kissing hairpin for all se-
quences except for the short Halobacterium halobium SRP
RNA and shows the highest MCC for nine of the 12 sequences.
Both DotKnot and pknots give perfect predictions (MCC = 1)
for the Methanococcus jannaschii kissing hairpin and DotKnot
also perfectly predicts the kissing hairpin in Archaeoglobus
fulgidus. The prediction results for all four methods are poor
for the long Halobacterium halobium SRP RNA. For the short
sequence stretch, DotKnot returns a pseudoknot with lower
free energy than the kissing hairpin. However, the desired
kissing hairpin structure is found as the best near-optimal
pseudoknot with lowest free energy (MCC = 1).

Viral replication

A kissing hairpin involving the poly(A)-tail is essential
for synthesis of negative-strand RNA in the enteroviral
39-UTR, e.g., in the Coxsackie B3 virus (Melchers et al.
1997). This tertiary structure element is highly conserved
amongst members of the enteroviruses (Mirmomeni et al.
1997). The three sequences Coxsackie B3 virus, human
echovirus 6, and human enterovirus 69 are chosen as a test
set (Wang et al. 1999; Gardner et al. 2009). DotKnot
predicts kissing hairpins in all of the three sequences and
shows the best prediction for human echovirus 6 (MCC =
0.86). FlexStem and pknots predict no kissing hairpins and
show a significantly lower MCC than DotKnot for the
structure; however, pknots returns the best predictions for
Coxsackie B3 virus and human enterovirus 69.

Initiation of negative-strand synthesis using a long-range
kissing loop structure forming between coding and noncoding

FIGURE 2. Bacillus subtilis SRP RNA kissing hairpin structure as found in the Signal
Recognition Particle Database (Zwieb and Müller 1997).

FIGURE 3. Long-range kissing hairpin interactions between coding and noncoding regions in
the (A) hepatitis C virus (HCV) and (B) porcine reproductive and respiratory syndrome virus
(PRRSV).

Sperschneider et al.

30 RNA, Vol. 17, No. 1



regions has been proposed for other virus families such as
Flaviviridae and Nidovirales (Fig. 3). A kissing interaction has
been established in the hepatitis C virus (HCV) involving the
NS5B coding region and 39-UTR (Friebe et al. 2005). In
the porcine reproductive and respiratory syndrome virus
(PRRSV), a hairpin loop in the ORF7 region bonds with
another hairpin loop in the 39-NCR (Verheije et al. 2002).
The kissing hairpins in HCV and PRRSV are long-range
interactions that span 219 nt and 315 nt, respectively.

For the HCV long-range kissing hairpin, FlexStem and
DotKnot predict nested structures with MCCs of 0.45 and
0.44, respectively. However, it is worth noting that the
desired kissing hairpin structure is found as the best near-
optimal pseudoknot with lowest free energy by DotKnot.
For the PRRSV long-range interaction, DotKnot returns
a short-range kissing hairpin structure involving one of the
two hairpins and has the highest MCC of 0.33. Amongst
the top three near-optimal pseudoknots with lowest free
energy, DotKnot returns the reference long-range kissing
hairpin involving both hairpins. To allow for a performance
evaluation of pknots, results were also obtained for short
sequences where the long loop between the coding and
noncoding region is removed. For the short HCV sequence,
RNAfold has the highest MCC as it correctly predicts most
base pairs of the kissing hairpin stems S1 and S3. No kissing
hairpin is predicted by DotKnot, pknots, and FlexStem.
DotKnot predicts an H-type pseudoknot for the HCV se-
quence and has the lowest MCC amongst the kissing hairpin
prediction algorithms. For the short PRRSV sequence,
pknots and RNAfold correctly identify the noncrossing
kissing hairpin stems S1 and S3, missing only one base pair.
DotKnot is the only method which predicts a kissing
hairpin for the PRRSV sequence; however, with lower
MCC than the noncrossing predictions returned by pknots
and RNAfold.

A compact kissing hairpin in the West Nile virus 39-NCR
is likely to be involved in viral replication (Shi et al. 1996).

This structure element was suggested to
be conserved in other flaviviruses, such
as dengue virus (involving G-A base
pairs) and yellow fever virus; however,
further phylogenetic and structural in-
vestigation is needed. DotKnot returns a
kissing hairpin structure and shows the
highest MCC of 0.74 for all methods.
A pseudoknotted MFE structure is re-
turned by pknots and FlexStem predicts
a noncrossing secondary structure with
lower MCC than RNAfold.

Ribozymes

During genome replication, the ham-
merhead ribozyme in the satellite RNA
of cereal yellow dwarf virus (satRPV)
can alternatively form a compact kissing

hairpin structure to inhibit self-cleavage (Song et al. 1999).
DotKnot correctly identifies the kissing hairpin and has the
highest MCC of 0.68. pknots has the second-highest MCC
of 0.58 and predicts a H-type pseudoknot as the MFE
structure. RNAfold shows the lowest MCC for all methods
due to competing secondary structure elements.

Rastogi et al. (1996) report a kissing interaction in the
Neurospora VS ribozyme. The pseudoknot is required for
self-cleavage activity and forms in the presence of magne-
sium. In particular, the kissing interaction involves a hair-
pin loop within a multiloop structure. For the short
Neurospora VS ribozyme sequence exactly harboring the
kissing hairpin, DotKnot is the only method that predicts
a kissing interaction (MCC = 0.21). A higher MCC of 0.69
is achieved by pknots for prediction of a noncrossing
secondary structure. For the longer sequence, none of the
algorithms predict a kissing hairpin. DotKnot returns a
structure without any pseudoknots or kissing hairpins, yet
it has the highest MCC of 0.78 for all methods. In par-
ticular, it perfectly predicts the multiloop structure using
the MWIS calculations, whereas FlexStem and RNAfold have
a lower MCC for their secondary structure predictions.

Viroids are 250–400-nt-long single-stranded RNAs that
infect plants. Viroids are much smaller than viruses and
contain no protective protein coat; therefore, the RNA sec-
ondary and tertiary structure of a viroid is critical for its life
cycle and infection of the host cell. The group A peach
latent mosaic viroid (PLMVd) and chrysanthemum chlo-
rotic mottle viroid (CChMVd) can form hammerhead

FIGURE 4. (A) The peach latent mosaic viroid (PLMVd) P8 pseudoknot is a kissing
interaction between the P6 and P7 stems. The proposed structure for the complete 338-nt-
long PLMVd viroid is described in Bussiere et al. (2000). (B) DotKnot predicts the minimal
kissing interaction, however misses parts of stem S1 due to a bulge loop (MCC = 0.51). (C)
FlexStem predicts the noncrossing stems, but no kissing interaction (MCC = 0.73).

FIGURE 5. Human coronavirus 229E (HCoV-229E) long-range
kissing hairpin.

Pseudoknot prediction including kissing hairpins
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ribozymes and have been proposed to fold into a branched
secondary structure containing a kissing loop interaction
(Bussiere et al. 2000; Gago et al. 2005). DotKnot is the only
method which predicts kissing hairpins for both sequences
and has the highest MCC for the CChMVd structure. For
the PLMVd kissing hairpin, FlexStem achieves the highest
MCC by correctly predicting the noncrossing stems S1 and
S3. In contrast, DotKnot correctly identifies the kissing
interaction S2, but does not predict parts of stem S1 because
it is interrupted by a bulge loop. A comparison of the
prediction results is shown in Figure 4.

Ribonuclease P (RNase P) is a ribozyme which cleaves
precursor tRNA molecules. Archaeal and bacterial RNase P
RNA structure is highly conserved. The Escherichia coli
RNase P RNA contains a kissing hairpin structure (P6)
nested within a pseudoknot (P4) (Westhof and Altman
1994; Brown 1999; Harris et al. 2001). Only the minimal
sequence stretch covering the kissing hairpin P6 is used in
the test set, as pseudoknots with internal crossing structures
are not considered in the DotKnot algorithm. DotKnot
predicts the kissing hairpin interaction with the highest
MCC of 0.64. In contrast, RNAfold has a low MCC of -0.18
for the predicted MFE secondary structure. FlexStem pre-
dicts two pseudoknots for the sequence (MCC = 0.14).

Programmed -1 ribosomal frameshifting

Programmed -1 ribosomal frameshifting in some group 1
coronaviruses is facilitated by a long-range kissing hairpin
(Fig. 5). The kissing hairpin has been confirmed in human
coronavirus 229E (HCoV-229E) (Herold and Siddell 1993)
and has been suggested for other group 1 members, such as
TGEV, HCoV-NL63, and PEDV using phylogenetic anal-
ysis (Eleouet et al. 1995; Baranov et al.
2005; Plant et al. 2005). One should
note that the TGEV frameshifting site
has the potential to fold into a three-
stemmed pseudoknot, as observed in the
SARS coronavirus (Plant et al. 2005). For
both the long and short HCoV-229E
sequences, DotKnot returns the kissing
hairpin with MCC of 1. All other
methods do not find the kissing hairpin
and have significantly lower predictive
accuracy.

Structures without kissing hairpins

A test set for RNA structures without
kissing hairpins is used to assess the pre-
diction of false positive kissing hairpins by
DotKnot and to evaluate the prediction
results for a number of methods from the
literature. The test set contains pseudo-
knot-free sequences (5S rRNA, tRNA, and
miRNA) and sequences which contain

one or more pseudoknots and are reported in the
pseudoknot database Pseudobase (Table 3; van Batenburg
et al. 2001). The sequence lengths range from 52 nt to 419
nt. Predictions are obtained from the practical dynamic
programming algorithm pknotsRG (Reeder and Giegerich
2004), the heuristic methods HotKnots (Ren et al. 2005;
Andronescu et al. 2010), and FlexStem (Chen et al. 2008),
as well as the secondary structure prediction algorithm
RNAfold (Hofacker et al. 1994). Results are shown in
Table 4.

For our test set of pseudoknot-free structures, DotKnot
predicts spurious H-type pseudoknots and kissing hairpins
in three of the 12 sequences. For the nested structures, the
dynamic programming methods pknotsRG and RNAfold
show the highest average MCCs of 0.59 and 0.57, re-
spectively. DotKnot and HotKnots both have an average
MCC of 0.55, and FlexStem achieves 0.52.

For our test set of pseudoknotted structures, false
positive kissing hairpins are predicted in one of the viral
39-UTR structures (ORSV), in the Escherichia coli tmRNA,
and the turnip yellow mosaic virus (TYMV) tRNA-like
structure. No spurious hairpins are predicted for any of the
remaining sequences in the test set. It should be noted that
for the Escherichia coli tmRNA and TYMV sequences,
prediction of false positive kissing hairpins leads to a higher
MCC for the DotKnot predictions.

Our test set includes H-type pseudoknots as well as more
complex pseudoknot foldings. For example, the ribozyme
structures consist of double pseudoknots and nested pseu-
doknots feature in the cricket paralysis virus (CrPv) and
Plautia stali intestine virus (PSIV) IRES elements. DotKnot
is only able to fold H-type pseudoknots and kissing hairpins,

TABLE 3. RNA types and sequences used for pseudoknot prediction without
kissing hairpins

RNA Type Sequence ID Reference

5S rRNA 5SEColi, 5SDMob, 5SHsap,
5STther

Cannone et al. (2002)

tRNA DC0010, DC2720, DS0220,
DT5090

Sprinzl et al. (1998)

miRNA ath-mir159c, bta-mir29c,
cfa-mir105b, sofmir156

Griffiths-Jones et al. (2006)

Ribozyme drz-Agam-1-1, drz-Agam-2-1,
drz-Tatr-1, HDV, HDVanti

Webb et al. (2009), Ferre-D’Amare et al.
(1998), van Batenburg et al. (2001)

IRES CrPV, PSIV Hellen (2007), Pfingsten et al. (2006)
39-UTR NeRNV, TMV, ORSV Koenig et al. (2005), van Belkum et al.

(1985), Gultyaev et al. (1994)
tmRNA EColi-tmRNA, LP-tmRNA Williams (2000)
Viral tRNA-like LRSVbeta, TYMV Solovyev et al. (1996), Matsuda and

Dreher (2004)
Telomerase Human-telo, Tetra-telo Theimer and Feigon (2006)
Riboswitch SamII Gilbert et al. (2008)
Retrotransposon R2retro-Sc, R2retro-Spy Kierzek et al. (2009)
Frameshifting BWYV, MMTV, SARS-CoV,

VMV
van Batenburg et al. (2001)
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whereas HotKnots and FlexStem cover general pseudoknot
interactions; yet, DotKnot shows the highest MCC for five of
the seven complex pseudoknot structures. Furthermore,
DotKnot has the highest MCC for the 39-UTR, tmRNA,
viral tRNA-like, telomerase, and frameshifting structure
predictions in our test set. For all pseudoknotted structures,
DotKnot shows the highest average MCC of 0.68. Lower
average MCCs are achieved by pknotsRG (0.41), FlexStem
(0.28), RNAfold (0.2), and HotKnots (0.2).

DISCUSSION

The general pseudoknot prediction problem is intractable
due to the vast structure search space. Dynamic program-
ming methods for MFE structure prediction including
pseudoknots need to achieve a reasonable balance between

the complexity of allowed pseudoknots and computational
requirements. A number of heuristic methods include
a broad class of pseudoknots which may cover multiple
crossing stems or nested pseudoknots. However, it might
not be desirable to include arbitrarily complex pseudoknots
in an RNA prediction algorithm due to the lack of
thermodynamic parameters and knowledge about steric
requirements. On the other hand, if a biologically relevant
pseudoknot class such as kissing hairpins is known, it can
easily be included as a predefined structure type in pseu-
doknot search programs such as DotKnot.

DotKnot outperforms pknots, FlexStem, and RNAfold
for our test set of kissing hairpins. Except for three se-
quences, DotKnot returns a kissing hairpin structure as the
result and has the highest average MCC of 0.56 for the test
set. In contrast, the dynamic programming method pknots

TABLE 4. Summary of prediction results using an extended version of DotKnot

Sequence DotKnot pknotsRG HotKnots FlexStem RNAfold

ID nt PK S PPV MCC r S PPV MCC r S PPV MCC r S PPV MCC r S PPV MCC r

5SEColi 120 0 100 100 1 0/0 100 100 1 0/0 100 100 1 0/0 92.1 79.5 0.7 0/1 100 100 1 0/0

5SDMob 133 0 95.6 87.8 0.81 0/0 100 88.2 0.86 0/0 100 88.2 0.86 0/0 95.6 84.3 0.76 0/0 100 88.2 0.86 0/0

5SHsap 119 0 29.7 32.4 �0.15 0/1 29.7 34.4 �0.14 0/0 29.7 34.4 �0.14 0/0 29.7 34.3 �0.11 0/0 29.7 37.9 �0.05 0/0

5STther 120 0 25.6 27 �0.2 0/0 20.5 23.5 �0.27 0/0 20.5 23.5 �0.27 0/0 25.6 22.7 �0.5 0/0 20.5 21.6 �0.31 0/0

DC0010 73 0 76.2 76.2 0.6 0/0 100 100 1 0/0 100 100 1 0/0 100 100 1 0/0 95.2 95.2 0.92 0/0

DC2720 71 0 35 31.8 �0.09 0/0 30 26.1 �0.21 0/0 30 26.1 �0.21 0/0 35 31.8 �0.13 0/0 35 29.2 �0.16 0/0

DS0220 87 0 96.3 86.7 0.83 0/1 48.1 46.4 0 0/0 48.1 44.8 �0.03 0/0 96.3 96.3 0.93 0/0 48.1 46.4 �0.02 0/0

DT5090 73 0 63.2 66.7 0.44 0/2 100 100 1 0/0 78.9 68.2 0.55 0/0 73.7 63.6 0.48 0/0 78.9 71.4 0.59 0/0

ath-mir159c 225 0 80.3 87.1 0.69 0/0 94.7 96 0.91 0/0 100 100 1 0/0 94.7 96 0.91 0/0 98.7 100 0.99 0/0

bta-mir29c 88 0 94.1 100 0.92 0/0 100 100 1 0/0 100 100 1 0/0 100 100 1 0/0 100 100 1 0/0

cfa-mir105b 80 0 86.7 96.3 0.8 0/0 100 100 1 0/0 93.3 96.6 0.88 0/0 63.3 73.1 0.34 0/0 100 100 1 0/0

sof-mir156 137 0 100 100 1 0/0 95.9 95.9 0.91 0/0 100 96.1 0.95 0/0 95.9 90.4 0.83 0/1 100 100 1 0/0

drz-Agam-1-1 82 1 75 95.5 0.72 1/1 82.1 82.1 0.64 1/1 57.1 66.7 0.3 0/0 89.3 86.2 0.72 1/1 57.1 66.7 0.3 0/0

drz-Agam-2-1 180 1 86.4 91.9 0.75 1/1 86.4 95 0.79 1/1 90.9 93.8 0.82 1/1 81.8 83.1 0.58 1/1 75.8 84.7 0.58 0/0

drz-Tatr-1 88 1 93.1 100 0.93 1/1 72.4 72.4 0.47 1/1 82.8 75 0.54 1/1 82.8 72.7 0.49 1/1 69 74.1 0.43 0/0

HDV 87 1 93.8 100 0.93 1/1 90.6 93.5 0.81 1/1 37.5 42.9 �0.13 0/0 84.4 79.4 0.57 1/1 37.5 42.9 �0.13 0/0
HDVanti 91 1 100 96.2 0.97 1/1 16 14.3 �0.46 0/0 16 14.3 �0.48 0/0 44 34.4 �0.11 1/1 16 14.3 �0.48 0/0

CrPV 190 2 63.6 63.6 0.37 2/2 52.7 52.7 0.21 0/0 45.5 51 0.15 0/0 34.5 31.7 �0.19 1/2 52.7 52.7 0.21 0/0

PSIV 194 2 70.7 69.5 0.46 0/0 72.4 68.9 0.46 0/0 72.4 71.2 0.49 0/0 39.7 45.1 0.03 0/1 72.4 66.7 0.42 0/0

NeRNV 198 5 70.4 64.4 0.44 5/7 48.1 44.8 0.09 1/2 5.6 5.2 �0.49 0/1 38.9 35 �0.04 1/1 31.5 31.5 �0.1 0/0

TMV 214 5 94.3 95.7 0.9 5/5 60 66.7 0.34 0/0 60 66.7 0.34 0/0 44.3 44.9 0.01 0/1 51.4 56.3 0.19 0/0

ORSV 419 11 71.3 70.3 0.44 9/10 48.5 50.4 0.07 5/5 41.2 45.9 0.01 0/0 39.7 39.7 �0.11 0/2 43.4 46.8 0.02 0/0

EColi-tmRNA 363 4 75 76.5 0.6 4/6 50 48.1 0.13 0/0 50 47.7 0.12 0/0 42.3 42.3 0.07 1/2 50 48.1 0.13 0/0

LP-tmRNA 406 4 56.1 54.5 0.31 4/8 30.8 28.7 �0.11 0/0 15.9 15.6 �0.27 0/2 34.6 36.6 0.04 0/0 38.3 34.5 �0.02 0/0

LRSVbeta 221 1 90.6 76.2 0.73 1/1 84.9 73.8 0.67 0/0 81.1 72.9 0.64 0/0 79.2 65.6 0.55 0/0 86.8 74.2 0.69 0/0

TYMV 110 2 46.7 42.4 0.1 1/3 46.7 41.2 0.07 1/1 33.3 30.3 �0.09 0/0 46.7 41.2 0.07 1/1 33.3 30.3 �0.09 0/0

Human-telo 210 1 76 67.9 0.57 1/1 54 42.9 0.17 1/1 70 55.6 0.38 0/0 34 22.7 0.23 0/1 64 48.5 0.27 0/0

Tetra-telo 159 1 73.7 70 0.58 1/1 65.8 56.8 0.4 0/0 60.5 53.5 0.34 0/0 42.1 35.6 0.06 0/0 71.1 61.4 0.48 0/0

SamII 52 1 78.6 91.7 0.77 1/1 78.6 91.7 0.77 1/1 42.9 54.5 0.22 0/0 92.9 92.9 0.89 1/1 42.9 54.5 0.22 0/0

R2retro-Sc 80 1 76.9 83.3 0.62 1/1 73.1 82.6 0.59 1/1 57.7 68.2 0.35 0/0 61.5 69.6 0.4 0/0 57.7 60 0.27 0/0

R2retro-Spy 80 1 76.9 80 0.58 1/1 65.4 63 0.31 1/1 80.8 77.8 0.59 1/1 80.8 70 0.45 1/1 73.1 82.6 0.59 0/0

BWYV 50 1 100 100 1 1/1 100 100 1 1/1 55.6 62.5 0.47 0/0 55.6 45.5 0.33 1/1 55.6 55.6 0.42 0/0

MMTV 49 1 100 100 1 1/1 100 100 1 1/1 0 0 �0.3 0/0 100 80 0.83 1/1 0 0 �0.3 0/0

SARS-CoV 82 1 92.3 100 0.93 1/1 92.3 92.3 0.85 1/1 73.1 65.5 0.36 0/0 69.2 64.3 0.34 1/1 73.1 65.5 0.36 0/0
VMV 68 1 100 82.4 0.87 1/1 50 41.2 0.18 0/0 50 41.2 0.18 0/0 100 60.9 0.66 1/1 50 41.2 0.18 0/0

PK corresponds to the number of pseudoknots in the sequence as reported in the literature. We use pknotsRG version 1.3, HotKnots version 2.0
with default parameters, FlexStem version 1.3, and the RNAfold web server (Gruber et al. 2008). The * symbol means that we were not able to
run the algorithm to completion due to computational requirements. The ratio r = (number of correctly predicted pseudoknots) / (number of
predicted pseudoknots) is also reported.
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only detects a kissing hairpin for one of the sequences and
has an average MCC of 0.46.

FlexStem predicts no kissing hairpins for any of the
sequences and has the lowest average MCC of 0.18. FlexStem
uses the same energy penalties as pknots for overlapping
pseudoknots such as kissing hairpins. The energy parameters
for pseudoknots estimated by pknots and adopted by
FlexStem might be the reason for the poor kissing hairpin
predictions. RNAfold has an average MCC of 0.31 for our
test sequences. For three of the SRP RNA sequences in our
test set, RNAfold does not predict any true positive base
pairs for the noncrossing stems. This shows that a hierarchi-
cal folding approach where kissing in-
teractions are searched for after obtain-
ing a MFE structure might not always be
successful. Thus, specialized pseudo-
knot folding methods which adopt spe-
cific energy parameters are needed for
RNA structure prediction including
pseudoknots.

DotKnot detects 23 out of 26 kissing
hairpins for our test set. This might lead

to the conclusion that introducing false
positive kissing hairpins is inevitable
due to the large number of candidates.
However, we find that for our negative
control set, DotKnot only predicts false
positive kissing hairpins in three of the
sequences and outperforms the compet-
ing algorithms for the set of pseudoknot-
ted structures. It must be noted that for
the pseudoknot-free sequences in our
test set, the free energy minimization
methods pknotsRG and RNAfold give
the best results. DotKnot is a heuristic
pseudoknot prediction method which
does not aim to compete with free-
energy minimization algorithms for sec-
ondary structure prediction. DotKnot
does not guarantee to find the MFE
structure given a sequence; however, we
find that it reliably predicts stable sec-
ondary structure elements which may
compete with pseudoknot formation.
DotKnot shows the best average MCC
for our test set of pseudoknotted se-
quences and is a practical pseudoknot
prediction tool for finding pseudoknots
in longer sequences. A comparison of
running times is given in Supplemen-
tal Table 1.

We think that the underlying energy
parameters for H-type pseudoknots
(Cao and Chen 2006, 2009) and kissing
hairpin parameters chosen by us are

the main reasons for the high predictive accuracy. An
RNA folding algorithm can only be as accurate as the qual-
ity of underlying energy parameters allows; therefore,
laboratory investigations into RNA energy parameters
such as long-range kissing hairpin interactions are highly
desirable. To overcome the approximate nature of RNA
energy parameters, one can gain confidence in predic-
tions by using comparative information. Pseudoknots are
known to be highly conserved and the DotKnot method
will be extended in the future to take into account
multiple alignment information using the probability
dot plots.

FIGURE 6. Extending DotKnot for the prediction of kissing hairpins. The structure returned
as an output may contain both H-type pseudoknots and kissing-hairpin–type pseudoknots. A
number of near-optimal H-type pseudoknots and kissing hairpins may also be reported.
MWIS stands for maximum weight independent set calculation.

FIGURE 7. Kissing hairpin prediction class where recursive secondary structure elements are
allowed in each of the five loops L1, L2, L3, L4, and L5.
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MATERIALS AND METHODS

In this section, we describe the basics of the DotKnot algorithm
and its extension to the prediction of a global structure, including
H-type pseudoknots and intramolecular kissing hairpins (Fig. 6).

The DotKnot algorithm

The basis of the DotKnot method is the secondary structure
probability dot plot calculated by RNAfold (Hofacker et al. 1994).
From the dot plot, a set of promising stems is extracted using the
base pair probabilities and stored in the dictionary Ds. Note that
by setting a low-probability threshold, potential pseudoknot stems
can be discovered. Using the stem dictionary Ds, noncrossing sec-
ondary structure elements with low free energy are assembled
using maximum weight independent set (MWIS) calculations.
Stems interrupted by bulges or internal loops are stored in dic-
tionary Ds

L and multiloops are stored in dictionary Ds
M. Stems and

secondary structure elements are then used to construct recursive
H-type pseudoknots. H-type pseudoknot energies are evaluated
with the aid of advanced energy models (Cao and Chen 2006,
2009). The presence of the H-type pseudoknots is verified using
a MWIS calculation on the set of all possible structure elements.
Outer stems may include nested pseudoknots. In the first version
of DotKnot, only pseudoknots were returned as a result. In the
current version, the user can choose to additionally see the global
structure derived by the final MWIS calculation. For algorithmic
details of the first version of DotKnot for detecting H-type
pseudoknots, see Sperschneider and Datta (2010).

Our first extension presented here is the ability to predict
intramolecular kissing hairpins. The type of recursive kissing
hairpin structure allowed in the extended DotKnot method is
shown in Figure 7. The crossing of three stems results in five loops
which can contain recursive secondary structure elements. Note
that we restrict a kissing hairpin structure to be shorter than 400
nt to improve runtime. Furthermore, MFE folding is known to
become inaccurate for longer sequences due to the underlying
approximate energy parameters (Eddy 2004; Reeder et al. 2006).
Long-range interactions are especially hard to predict using MFE
folding, as tertiary interactions and forces are likely to further
stabilize the structure.

The second extension is that in addition to the best global
folding, the best local H-type pseudoknots and kissing hairpins in

terms of two criteria are returned. This can
help to identify promising pseudoknot fold-
ings and may compensate for the limitations
of the energy parameters. DotKnot returns
the best pseudoknots in terms of estimated
free energy to length ratio (Reeder and
Giegerich 2004). This helps to identify local
pseudoknots and will favor pseudoknots with
compact structure and low free energy. Ad-
ditionally, DotKnot returns pseudoknots with
lowest estimated free energy, regardless of their
lengths. For each criterion, a user-set number
of pseudoknots are returned.

Kissing hairpin prediction

Assembling kissing hairpin candidates

An intramolecular kissing hairpin is a planar
pseudoknot that can be decomposed into two core H-type
pseudoknots (Fig. 8). The main idea of the extended DotKnot
algorithm is to create a list of H-type pseudoknots, which are sub-
sequently combined into kissing hairpin candidates. Core H-type
pseudoknots are assembled from stems which are extracted from
the base pair probability dot plot calculated by RNAfold. Each
stem si 2 Ds has two energy weights wstack (si) (simple stacking
free energy) and w(si) (free energy). Only stems si are used for
kissing hairpin construction where wstack (si) < �5.0 kcal/mol and
w(si) < 2.0 kcal/mol. During pseudoknot construction, a certain
base pair overlap is allowed as crossing stems with a fixed length are
combined (see Supplemental Material).

The H-type pseudoknots are stored in a specific manner in
order to assemble kissing hairpins efficiently. There are two
dictionaries, DS1

p and DS2
p . Dictionary DS1

p has a stem as a key
and as values the list of corresponding pseudoknots which contain
this stem as a first pseudoknot stem S1. Dictionary DS2

p has a stem
as a key and as values the set of corresponding pseudoknots which
contain this stem as a second pseudoknot stem S2. For each stem
in dictionary DS2

p , a key existence test is performed in dictionary
DS1

p . If the same stem is found in both dictionaries, the values for
the stem entry in DS2

p are combined with the values for the stem
entry in DS1

p to form a kissing hairpin (Fig. 8). An indication of the
stem probability in the secondary structure folding ensemble is
given by the confidence indicator which is defined as the average
probability of participating base pairs in a stem. We demand that
the three kissing hairpin stems have a confidence sum of >1 3 E�3.
Kissing hairpins consist partly of noncrossing stable secondary
structure elements and base pairs below this threshold are unlikely

FIGURE 8. A kissing hairpin can be decomposed into two core H-type pseudoknots, where
the second stem S2 of the first pseudoknot equals the first stem S1of the second pseudoknot.
Note that for a kissing hairpin, j < m has to hold. Otherwise, a triple helix interaction is
formed.

FIGURE 9. Energy estimation for a kissing hairpin: the three stems
S1, S2, and S3 contribute stabilizing stacking energies and each
unpaired nucleotide in loops L1, L2, L3, L4, and L5 is penalized.
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to participate in secondary structure formation (Hofacker and
Stadler 1999).

Recursive structure formation in the loops

A kissing hairpin candidate structure has three stems S1, S2, and
S3, and five loops L1, L2, L3, L4, and L5 (Fig. 7). Given the set of
kissing hairpin structures, the five loops are investigated for
internal secondary structure elements. Note that internal pseudo-
knots in the loops are not allowed due to the lack of knowledge
about three-dimensional folding. Only secondary structure ele-
ments from dictionaries Ds, Ds

L, and Ds
M can form in each of the

five loops in a consecutive fashion. Recursive secondary structure
elements are found using a MWIS calculation as described in
Sperschneider and Datta (2010). Note that for three-dimensional
folding reasons in a kissing hairpin structure the following is
assumed: There must be at least one nucleotide in loops L1 or L2 (L4

or L5) that is left unpaired.

Energy evaluation for kissing hairpins

The critical point for kissing hairpin prediction is the underlying
energy model. As it is a tertiary structure element, many different
types of forces apart from canonical base-pairing are likely to
play a role, for example noncanonical base-pairing, base triples,
backbone interactions, or ion concentrations (Batey et al. 1999).
No experimentally measured energy parameters for intramolecu-
lar kissing hairpins have been established to date and thus heu-
ristic energy estimation has to be used. Here, the free energy for
each kissing hairpin k1,. . .,kn in dictionary Dk is approximated
by adding the stacking energies, including dangling ends for the
three stems S1, S2, and S3, plus a length-dependent value for the
loop entropies (Fig. 9). An extended version of the parameterized
pseudoknot energy model (Rivas and Eddy 1999; Dirks and Pierce
2003; Reeder and Giegerich 2004) is used:

DGðkiÞ= wstackðS1Þ+ wstackðS2Þ+ wstackðS3Þ
+ a + b 3 ðl1 + l2 + l4 + l5Þ+ g 3 l3;

where li is the number of unpaired nucleotides in the loop Li (i =
1,. . .,5). In this model, loop L3 attracts a penalty g for each
unpaired nucleotide, whereas the four other loops are penalized
using the value b. Without the kissing interaction, loop L3 would
not contribute entropic terms according to the Turner model. A
kissing interaction between two non-neighboring hairpin loops
with a long loop L3 is thus not unlikely and, therefore, g is set to
0.0 kcal/mol. Here, the initiation penalty for forming a kissing
hairpin is set to a = 9.0 kcal/mol and b to 0.5 kcal/mol. For
kissing hairpins with recursive secondary structure elements in the
five loops, the stabilizing free-energy weights of the internal
elements are added to the overall free energy. The loop entropy
for the recursive kissing hairpin is then re-estimated using the
remaining number of unpaired nucleotides in the five loops.

Kissing hairpins with negative free energy are stored in the
kissing hairpin candidate dictionary Dk. Despite the low number
of stem candidates, the number of kissing hairpin candidates is
relatively high due to the large structure space. The same length-
normalized filtering step as in the first version of DotKnot is used.
As an additional measure for kissing hairpin stability, the nor-
malized kissing hairpin free energy must fulfill DG(ki)/li # e where

li denotes the length of the kissing hairpin candidate structure ki.
Kissing hairpins are assumed to contribute to the overall stability
of an RNA structure. This filtering step helps to eliminate unlikely
kissing hairpins with high free energy and improves runtime of
the method.

Verification of kissing hairpins in the sequence

The presence of kissing hairpin candidates in an RNA sequence is
verified using the MWIS calculation of the DotKnot algorithm
(Sperschneider and Datta 2010). The structure elements from the
three secondary structure dictionaries Ds, Ds

L, and Ds
M, as well as

the recursive H-type pseudoknot candidates stored in Dp and the
kissing hairpin candidates stored in Dk participate in the MWIS
calculation using free-energy weights. Outer stems are allowed to
contain nested structure elements, including pseudoknots and
kissing hairpins. The output consists of the (possibly empty) set of
detected crossing structures such as H-type pseudoknots and
kissing hairpins (Fig. 6). Additionally, the global structure derived
by the MWIS calculation, including secondary structure elements
and near-optimal pseudoknots, if desired, is displayed.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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