Schizophrenia Bulletin vol. 37 no. 1 pp. 23-26, 2011
doi:10.1093/schbul/sbql14
Advance Access publication on October 7, 2010

AT ISSUE

On Identifying Magnocellular and Parvocellular Responses on the Basis of

Contrast-Response Functions

Bernt C. Skottun' and John R. Skoyles >

!Skottun Research, Ullevalsalleen 4C, Oslo, Norway; 2Centre for Mathematics and Physics in the Life Sciences and Experimental Biology
(CoMPLEX), University College London, London, UK; *Centre for Philosophy of Natural and Social Science (CPNSS), London School of

Economics, London, UK

*To whom correspondence should be addressed; tel: +44 (0)20-7679-4325, e-mail address: j.skoyles@ucl.ac.uk

It has been proposed that magnocellular and parvocellular
sensitivity in schizophrenic individuals can be assessed
using steady-state visually evoked potentials (VEPs) to ei-
ther low-contrast stimuli or stimuli whose contrast is mod-
ulated around a high contrast ‘“pedestal” (Green MF,
Butler PD, Chen Y, et al. Schizophr Bull. 2009;35:163—
181). This suggestion faces 2 difficulties: (1) To use low-
contrast stimuli to activate the magnocellular system is
inconsistent with lesion studies that have shown that under
many conditions, the parvocellular system responds to the
lowest contrasts and (2) To rely on contrast-response rela-
tionships to identify magnocellular and parvocellular
responses is difficult because other neurons exist in the
visual system that have contrast-response relationships
similar to those of magnocellular and parvocellular cells.
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Introduction

Schizophrenia, it has been proposed, is associated with
a deficiency in the magnocellular part of the visual sys-
tem.! A difficulty with this suggested link is that contrast
sensitivity has generally provided little support for mag-
nocellular deficits in those with schizophrenia.> Also
backward masking, which by some has been proposed
as a test of magnocellular activity, has provided little sup-
port for magnocellular deficits.® Several other methods,
eg, vernier acuity, stereopsis, and red stimuli, have been
proposed for testing or as indicators of magnocellular
sensitivity. However, these methods have problems asso-
ciated with them.* Recently, Green et al’ have argued
for the use of steady-state visually evoked potentials
(ssVEPs) to magnocellular- and parvocellular-biased

stimuli to investigate the sensitivity of magnocellular
and parvocellular systems in schizophrenic subjects.
We here comment on the main assumptions behind
this proposal.

Anatomy of the Early Visual System

The magnocellular and parvocellular systems are 2 par-
allel streams that, along with the koniocellular sys‘[em,8
make up the sensory input to the primary visual cortex.”
The magnocellular and parvocellular systems originate in
different types of retinal ganglion cells, occupy separate
layers in the lateral geniculate nucleus, and terminate in
separate input layers in the primary visual cortex (V1).
Inside V1, however, a considerable amount of intermix-
ing of the inputs takes place.

From V1 onwards, 2 cortical pathways have been iden-
tified: the dorsal and ventral streams. Initially, it was
thought that these represented the continuations of, re-
spectively, the magnocellular and parvocellular sys-
tems.'® It has, however, become evident that the
situation is more complicated. For instance, lesion stud-
ies have demonstrated that Area V4 of the ventral stream
receives significant magnocellular input,'’ and anatomi-
cal studies have revealed that middle temporal area (Area
MT) of the dorsal stream receives substantial parvocellu-
lar'? as well as koniocellular input.'? Thus, it is problem-
atic to use tests of dorsal and ventral function to assess
magnocellular and parvocellular responsivity (eg, see
Skottun and Skoyles').

Contrast-Response Functions

The technique proposed by Green et al’ is based on the
method of Zemon and Gordon.'> In this method, stimuli
are either presented at low contrast, in order to “bias”
them for the magnocellular system, or are “modulated
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around a high static contrast (pedestal)””’®'%® 5o as to be

“biased” for the parvocellular system by avoiding ‘“‘the
low-contrast regions where magnitudes of M-pathway
[i.e. magnocellular-pathway] responses rise steeply with
increase in contrast.”’®1%® According to Green et al,
“[t]his task is based on the differential response to con-
trast of the M and P pathways [i.e. magno and parvocel-
lular pathways] . . . The M pathway shows a steeply rising
increase in response to increases in low contrast and then
nearly saturates at about 16-32% contrast . .. The P path-
way does not respond until about 10% contrast or greater
and has a linear increase in response throughout the
entire contrast range . . . The slope of the linear portion
of the contrast-response curve is referred to as contrast
gain, and it is about ten times greater for the M than
P pathway.”’®169

With regard to the notion that the magnocellular sys-
tem responds to lower contrast than the parvocellular
system, there are reasons to be cautious. Although sin-
gle-cell recordings have indicated that the magnocellular
neurons have the lower contrast thresholds,'® behavioral
studies, in which lesions have been placed in either the
magnocellular or the parvocellular layers of the lateral
geniculate nucleus, have found that the largest losses
in contrast sensitivity occur following parvocellular
lesions.”!7?! This means that the parvocellular system
has the lower contrast threshold in these cases. It is
mainly when the stimuli are of low spatial frequencies
(below about 1.5 cycles/degree)** and high temporal fre-
quencies that the magnocellular system has the lower
contrast threshold. Contrast sensitivity studies in humans
are also consistent with these observations.”> %>

These findings mean that the parvocellular system medi-
ates detection of the lowest contrast under many, if not
most, conditions. (The fact that the magnocellular system
mediates detection under some conditions and the parvo-
cellular system mediates detection under other conditions
is what allows contrast sensitivity to differentiate magno-
cellular from parvocellular deficits and from general
reductions in sensitivity.) Given the discrepancy between
single-unit recordings and behavioral tests, it is problem-
atic to assess magnocellular sensitivity based on the as-
sumption that the magnocellular system has the lower
contrast thresholds. This is particularly so when the spatial
frequency spectra of the stimuli are not well defined. In the
case of ssVEP, the proposed stimuli are ‘““isolated check
stimuli” (see figure 2 in Green et al’), which, it would
seem, are poorly suited in this context because they
have energy at a number of different spatial frequencies
(see figure 1 in Skottun and Skoyles®).

With regard to the shapes of the contrast-response
functions, there is little doubt that magnocellular neurons
have steeper functions than parvocellular cells at low con-
trast and that their functions show more pronounced sat-
uration. However, what is not clear is that magnocellular
and parvocellular responses can be identified on this
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basis. The main reason for this is that the shapes of the
contrast-response functions of the magnocellular and
parvocellular neurons are not unique to these cell types.
For instance, neurons in cortical area V1 have contrast-
response functions similar to parvocellular neurons.?’
Area V1, of course, receives both magnocellular and
parvocellular inputs. Also, in the owl monkey (Aotus
azarae)®® and the marmoset (Callithrix jacchus),”® the
koniocellular neurons have pronounced response satura-
tion, perhaps even more pronounced than magnocellular
neurons (see figure 12 in Kilavik et al*®). Further, neu-
rons in the Area MT show high contrast gain and satu-
ration similar to that of magnocellular cells.*” Thus, steep
or shallow response functions and high or low degrees of
saturation are not features that are unique to, respec-
tively, the magnocellular and parvocellular neurons.

The above considerations do not only apply to ssVEPs
but are also relevant for other attempts at assessing mag-
nocellular sensitivity based on contrast-response rela-
tionships. Recently, it has been suggested that the
ability to recognize emotional expressions in faces is
the result of magnocellular activity because the effect
of contrast on this task is similar to that on magnocellular
responses.30 In this connection, it should also be pointed
out that there are other perceptual functions that have
a similar relationship to contrast. For instance, orienta-
tion discrimination thresholds decrease (ie, the sensitivity
increases) rapidly with contrast just above detection
threshold and then levels off and remains relatively con-
stant over the rest of the contrast range.>! Yet, to attri-
bute this to the magnocellular system would face the
problem that neurons in this system have little selectivity
for orientation, at least compared with the selectivity for
orientation found in cortical neurons. Also, the ability
to discriminate orientations is reduced in amblyopia.*
Amblyopia is not linked to the magnocellular system.
If anything, it appears to be related to the parvocellular
system.*>** These observations, therefore, suggest
(1) that perceptual performance may be related to con-
trast in a way that resembles the contrast-response func-
tion of magnocellular cells without this having to reflect
magnocellular activity and (2) that a deficiency unrelated
to the magnocellular system can cause reduced perfor-
mance on perceptual tasks that have a contrast relation-
ship like that of magnocellular cells.

In connection with ssVEPs, it should be noted that
magnocellular neurons in macaque and marmoset are
more susceptible to adaptation than are parvocellular
cells.*>° The effect of adaptation is well described by
an increase in the half saturation constant (csg).>> That
is to say, adaptation makes the contrast-response func-
tions of magnocellular neurons become more like those
of parvocellular cells. A repeating stimulus, such as the
ones used in ssVEP, is likely to cause adaptation. This
means, therefore, that ssVEP has the potential to reduce
the difference between magnocellular and parvocellular



neurons. This would work against the aim of this method,
which is to separate magnocellular and parvocellular
responses.

Testing Magnocellular Sensitivity

As for testing magnocellular sensitivity, it appears that
the simplest, most direct, and best-established test is con-
trast sensitivity. As mentioned above, lesions studies in
monkeys,”!” %" as well as human psychophysics,>* % in-
dicate that sensitivity to stimuli of low spatial frequency
and high temporal frequency reflects activity in the mag-
nocellular system, whereas detection of stimuli of me-
dium and high spatial frequencies is mediated by the
parvocellular system (see Skottun?® for a brief review).
Thus, by noting patterns of contrast sensitivity abnor-
malities, one can infer the state of the magnocellular
system. This, however, means that several spatial fre-
quencies need to be tested and that it is not sufficient
to simply test one condition. This method, it would
seem, also makes it possible to differentiate subcortical
magnocellular deficits from cortical abnormalities be-
cause we know of no cortical abnormality that results
in contrast sensitivity reductions limited to low spatial
frequency stimuli.

Another test, which seems promising, is one proposed
by Pokorny and Smith.?” This method is based on the
assumed abilities of single magnocellular and parvocellu-
lar neurons to signal differences in contrast. Because
these abilities are inferred from the contrast-response
functions of the 2 cells types, it may potentially face
some of the problems associated with the ssVEP method
as explained above. Also, the theory behind this method
is based on responses from individual neurons. It is not
known if, or to what extent, contrast discrimination can
be accounted for in terms of individual magnocellular
and parvocellular cells. For instance, the fact that there
is a far larger number of parvocellular neurons than mag-
nocellular cells may have a bearing on contrast discrim-
ination. Also, it is not known to what extent this method
can isolate subcortical factors from cortical ones. Finally,
this method has, to our knowledge, not been established
through lesion studies in monkeys.

A third method is the use of isoluminant color stimuli.
This has been tested in monkeys: Schiller et al*® recorded
the responses from magnocellular neurons to luminance
and isoluminant color stimuli. It was found that magno-
cellular neurons respond much weaker to the isoluminant
stimuli. The problem, however, is that so do parvocellu-
lar cells under many conditions.* For instance, parvocel-
lular cells shift their spatial frequency response function
toward lower spatial frequencies when tested with isolu-
minant color stimuli (see, eg, figure 7.8 in De Valois
and De Valois*’). This means, therefore, that in the
case of high spatial frequency stimuli also, parvocellular
neurons may respond more weakly to isoluminance than
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to luminance. Consistent with this Merigan and Maun-
sell®P¥Y have pointed out that “the P pathway is not
fully functional with isoluminance stimuli.”” In addition,
chromatic aberration may cause high spatial frequency
isoluminant color stimuli (eg, stimuli with sharp color
edges) to create luminance artifacts. With such stimuli,
an achromatizing lens ought to be used.*' Therefore,
to rely on isoluminant color to differentiate magnocellu-
lar and parvocellular responses requires some caution.

Conclusions

The present considerations should not be taken to mean
that VEP is not a valuable tool for exploring the brain’s
responses to visual stimuli in schizophrenia. Rather, the
point of the present remarks is that to identify magnocel-
lular and parvocellular contributions to ssVEP on the ba-
sis of contrast-response relationships as proposed by
Green et al’ presents 2 problems: (1) Under many condi-
tions, the parvocellular system responds to lower contrast
stimuli than does the magnocellular system. Thus, to rely
on low-contrast stimuli to obtain a predominantly mag-
nocellular response in psychophysical tests is likely to be
unreliable. (2) Although the shapes of the contrast-
response functions of magnocellular and parvocellular
neurons are different, there exist other neurons that
have functions similar to those of these 2 cell types.
Thus, in order to attribute a given response to the mag-
nocellular or parvocellular systems, one has to be able to
exclude the possibility that the responses do not actually
originate with neurons of these other types.
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