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Abstract
The relationship between exposure to environmental chemicals during pregnancy and early
childhood development is an important issue which has a spatial risk component. In this context,
we have examined mental retardation and developmental delay (MRDD) outcome measures for
children in a Medicaid population in South Carolina and sampled measures of soil chemistry (e.g.
As, Hg, etc.) on a network of sites which are misaligned to the outcome residential addresses
during pregnancy. The true chemical concentration at the residential addresses is not observed
directly and must be interpolated from soil samples. In this study, we have developed a Bayesian
joint model which interpolates soil chemical fields and estimates the associated MRDD risk
simultaneously. Having multiple spatial fields to interpolate, we have considered a low-rank
Kriging method for the interpolation which requires less computation than Bayesian Kriging. We
performed a sensitivity analysis for a bivariate smoothing, changing the number of knots and the
smoothing parameter. These analyses show that a low-rank Kriging method can be used as an
alternative to a full-rank Kriging, reducing computational burden. However, the number of knots
for the low-rank Kriging model need to be selected with caution as a bivariate surface estimation
can be sensitive to the choice of the number of knots.
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1. Introduction
Mental retardation and development delay (MRDD) in young children has enormous public
health implication as they have relatively high prevalence rates of 2-4% or more in most
populations. However, the causes of approximately 50% of MRDD cases still remain
unknown [1]. One possible cause for MRDD is environmental chemical exposure. Exposure
to lead and mercury have been reported to be associated with MRDD in several studies.
Since the cerebral neuronal development occurs in utero and in the first 2 years of postnatal
life, it is necessary to investigate the association between MRDD and prenatal
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environmental exposure to different chemicals. This association has not been examined well
since it is difficult to detect the environmental exposure.

Since it is difficult to observe environmental exposure directly, it must be inferred or
interpolated from observed samples. However, the errors involved in this interpolation have
been largely ignored in other studies which can result in misleading risk estimates associated
with the exposures [2-4]. To overcome this problem, we combine the interpolation of soil
chemicals and the estimation of the associated risk simultaneously by employing a Bayesian
approach. Our method addresses the same problem as that of Fuentes et al.[5] who examined
the association between the predicted fine particles and mortality. However, they used the
predicted particles as ‘plug-in’ estimates and this does not account for the interpolation error
associated with each spatial predictor. They also used a special form of Poisson data model
with full Bayesian Kriging. Here we use a joint model which interpolates and fits the risk
model simultaneously. Our approach is similar to that of Smith et al. [6] in which residential
radon levels are linked to leukemia risk, although we examine a more complex multivariate
interpolation problem in this study. Employing a Bayesian approach and having multiple
chemicals to interpolate means that computational intensity is an important factor for
choosing an interpolation method in this study.

In this paper, we will present an analysis of the effects of multiple soil chemicals on MRDD
risk. In general, in environmental risk assessment studies there could potentially be a large
number of spatially-referenced predictors and so the computational burden of joint modeling
is an issue. Since the purpose of our paper is to develop a statistical method which can be
applied to this situation, we have chosen a spline method (low-rank Kriging) instead of
Kriging [7] in our Bayesian approach. To compare the predictive performance of the spline
method with Kriging, a simulation study is also presented here.

The remainder of this paper is organized as follows. The motivating MRDD data are
described in Section 2. The development of a Bayesian logistic spatial model relating
residential chemicals to MRDD outcome is detailed in Section 3. Low-rank Kriging methods
for multiple spatial fields are considered in the model development. In Section 4, a
simulation study is performed to verify the prediction performance of low-rank Kriging with
different number of knots in comparison with full-rank Kriging. In Section 5, results from
the proposed Bayesian logistic spatial model are summarized. Finally, a discussion of our
analytic approach is provided in Section 6.

2. Materials
2.1. MRDD data from Medicaid in South Carolina

This work is motivated by a study of MRDD incident cases in Medicaid population in South
Carolina between 1996 and 2001. Medicaid is a health insurance for individuals with low
incomes in the United States, covering low-income parents, children, seniors, and people
with disabilities. During each month of pregnancy, residential addresses for mothers are
recorded. Other available mom and baby characteristics include: mother's age, mother's
ethnicity, mother's alcohol consumption during pregnancy, parity, birth weight, baby sex and
follow-up time. We term these covariates as ‘mom and baby’ or ‘individual’ covariates.
Using spatial cluster analysis, MRDD clusters were identified first and then five clusters
were selected for soil sampling. There were 6535 MRDD cases and controls from the five
clusters. Details of cluster analysis were described previously [8]. Data from five further
clusters would be added later in the study. This will possibly increase the data set to about
13000 cases and controls. In this study, a preliminary sample from this large dataset was
randomly selected and used to develop a statistical model which will be applied to the
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original data at a later stage, once all the data become available. This dataset comprises 141
MRDD cases and controls from month 6 of pregnancy, year 1998 in the second cluster.

2.2. Soil Samples from MRDD clusters
In each chosen cluster, soil samples were collected from a network of sample sites which
has a regular grid pattern covering the whole cluster area [9]. These soil sample sites are
spatially misaligned to the residential addresses of pregnant women. Thus, interpolation of
soil chemical fields is required to link MRDD cases to environmental exposure risk. In this
study, we used nine soil chemicals from 119 soil samples collected from the second cluster
to develop our statistical model. Thus we have nine spatial fields to interpolate here but the
original dataset includes nine soil chemical measures for each of ten clusters. This means we
have ninety spatial fields to interpolate. The implication of the need for interpolation of a
large number of predictors to a large number of outcome sites clearly supports the need for
computational efficiency. Nine chemicals measured in soil samples include arsenic (As),
barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn),
nickel (Ni) and mercury (Hg). We denote these observed soil chemicals at sample sites as
‘environmental’ covariates.

3. Methods
3.1. Logistic Spatial Model

Assume first that we observe a realization of a spatial process where a binary mark is
observed on a set of locations. Here we assume that residential addresses of MRDD cases
are the locations with binary mark yi =1 and controls as yi = 0. The controls are the
residential locations of pregnant women who had a normal child and the MRDD cases are
the residential locations of pregnant women who subsequently had a child with a MRDD
diagnosis. This latter group is a subset of the local birth population. Thus we use a logistic
regression to model this spatially-referenced outcome. We observe covariates that relate to
the individual outcome such as ‘individual’ covariates and ‘environmental’ covariates which
were described in Section 2. We term this model ‘logistic spatial’.

Data are in the form (xi, yi), 1 ≤ i ≤ n, where the yi is a binary outcome for xi and xi ∈ ℜ2

represents geographical locations. yi can be regarded as a Bernoulli random variable and we
modeled the probability of having MRDD using a logit link function:

(1)

where ui = (uli,…,uqi) is a vector of individual covariates with corresponding regression

parameters ;  is a vector of latent soil chemicals at

xi;  is a vector of regression parameters of environmental covariates in the
model; and εi represents a random effect term. Here, the star symbol (*) denotes the
unobserved ‘true’ covariates. The inclusion of a random effect term is intended to make
some allowance for confounding in the outcome and could take a variety of forms. A
convolution model [10] is often assumed where an additive combination of an uncorrelated
and spatially-correlated effect is employed. Often a conditional autoregressive (CAR) model
is assumed for the latter effect. However, recently it has been found that CAR components
can be confounded or collinear with spatially-referenced predictors (such as, in this case,
soil chemicals) [11,12] and so spatial predictor effects may be masked by this effect. We
have performed a variogram analysis of residuals from a logistic model fit to non-spatial
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predictors (mom and baby covariates) and found negligible spatial correlation. Taking these
two considerations into account, we have employed only an uncorrelated random effect term
to accommodate confounding. Ma et al. [11] reported improved power in estimation of
predictor effects when using such an effect with a zero mean Gaussian prior specification.
We have assumed that specification here: ɛi ∼ N(0, σɛ2).

In our study, environmental covariates, z*(xi), are not observed at the outcome sites but they
are observed at different geographical locations (soil sample sites). Let z(sj) = {z1(sj),…,
zp(sj)}, 1 ≤ j ≤ m denote a vector of observed soil chemicals at sj where sj ∈ ℜ2 represent the
soil samples sites. Then, our model must allow for both the prediction of z*(xi) from z(sj)
and fitting the logistic spatial model reflecting the uncertainty in the predicted values. This
can be achieved by fitting a joint model which will be developed in the following section.

3.2. Joint posterior distribution
Our logistic spatial model includes both mom and baby covariates and unobserved
environmental covariates which must be predicted from the observed soil samples. For the
prediction of the latent soil chemical concentrations, a low-rank Kriging [13,14] is employed
in this study. These two parts comprise our joint model and we have two likelihoods at two
different sets of the locations.

The joint posterior distribution is proportional to the product of the likelihood function
associated with the logistic spatial model (Equation (1) in Section 3.1.), the low-rank
Kriging model (Section 3.3.2.), the predictive distribution of the latent spatial fields (Section
3.3.3.) and prior distributions for the model parameters:

(2)

where β0, β1 and β2 represent regression parameters for the logistic spatial model and ε
represents a random effect as defined in Section 3.1.; θ represents a vector of parameters for
the low-rank Kriging model; the latent soil chemical concentrations, z*(xi), are a function of
θ. The models for soil chemical concentrations will be defined in the following section
(Section 3.3).

We used Markov chain Monte Carlo (MCMC) methods to sample from the joint posterior
distribution. It is difficult to use standard software routines, such as those found in
WinBUGS to perform MCMC sampling in our case since our hierarchical model is very
complex and several spatial fields need to be interpolated. Instead, we implemented a
MCMC algorithm for our model within the C language. A Metropolis-Hasting algorithm
[15] is used. The details of the Metropolis-Hasting algorithm used in this study are given in
the Appendix.

3.3. Prediction of multiple environmental covariates
3.3.1. Kriging vs. Splines—In this study, Kriging could have been employed for the
prediction of soil chemical concentrations assuming a stationary, multivariate Gaussian
distribution which is often regarded as optimum interpolation in geostatistics. Quantifying
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spatial variability through the covariance function, Kriging can produce maps of optimal
predictions from incomplete and noisy spatial data [7]. Kriging requires matrix
decomposition whose complexity increases as O(n3) in the number of locations, n. If
posterior sampling is employed for Kriging in a Bayesian approach, the matrix
decomposition is required at every iteration of an MCMC algorithm and the computational
burden increases. Note that if we assumed a prior cross-covariance structure for the spatial
predictors then this would increase computation time and reduce parsimony in the model.
We have not pursued that approach here. The details of Bayesian Kriging are provided by
Banerjee et al. [16]. Having multiple soil chemical concentrations to interpolate, we
considered an alternative spatial prediction method which is less computationally intense
and decided to use a spline method: low-rank Kriging [13,14,17]. Low-rank Kriging requires
a covariance matrix decomposition once a priori before running an MCMC algorithm fixing
a spatial range parameter. This means that the computation can be reduced by 9 × O(1193) ×
total iteration of the MCMC algorithm for the preliminary sample dataset and by 90 ×
O(1193) × total iteration of the MCMC algorithm for our original dataset. Although
Bayesian Kriging provides a more flexible modeling method which enables us to estimate a
spatial range parameter, we chose to use a low-rank Kriging model due to this computational
advantage. There is extensive literature available on spline models. A review of different
spline models for univariate data is given by several authors [14,18,19]. For bivariate and
higher-dimensional data, the details are presented by Denison et al. [20] and Ruppert et al.
[14].

3.3.2. Low-rank Kriging model for multiple soil chemicals—In this section, a low-
rank Kriging model for each soil chemical is developed. As a check for the assumption of
prior independence of the fields we examined the empirical correlation between the
observed measurements. When the sample correlations were calculated, most chemicals did
not have high correlations (Table 1). This further supports our assumption for a univariate

model for each soil chemical. For the p th chemical, let  denotes a
1×m vector of the p th chemical concentration where 1≤ p ≤ P. Let {κ1,…,κK} be a set of K
< m distinct points which is a representative subset of {sj}, 1 ≤ j ≤ m. This subset is often
selected by a space filling algorithm and we have examined that approach here. These points
are referred to as knots. Different strategies for the selection of knots are described by
Ruppert et al. [14]. The number of knots was determined by K = max{20, min(m/4, 150)}
following Ruppert et al. [14]'s recommendation. In this study, two knot location patterns
were used: 1) knots were placed over the whole study area using a space filling algorithm,
(this was performed by the R package, field), and 2) knots were placed close to the
prediction locations generating random points based on a kernel smoothed intensity of the
outcome sites. This was carried out by the R package ( spatstat).

The low-rank Kriging model for the p th chemical can be represented as follows:

(3)

where αp is a fixed-effect parameter vector for Wp; ṽp is a random-effect parameter vector

for Z̃p; E(ṽp) = 0; ; and .
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Here, the first-order trend is assumed and C(r) is an inter-point covariance function. In what
follows, we have assumed a special case of Matérn family covariance model for C(r) fixing
the Matérn smoothness parameter at ν =3/2:

(4)

The spatial range parameter ρp controls the smoothness of the fitted surface and the larger
ρp, the smoother the surface. Note that if we fix ρp a priori, we can fit the model using a
generalized linear model framework. Equation (3) becomes a linear mixed model:

(5)

where ; and .

Employing a Bayesian approach, both the spatial range parameter and the partial sill

parameter can be estimated. In this study, the partial sill parameter  is estimated using
the joint distribution described in Section 3.2 whereas the spatial range parameter for each
chemical (ρp) is estimated a priori from a variogram analysis. This provides significant
savings in computation albeit at the expense of some bias. After fixing ρp, we need to invert
the 119×119 dimension covariance matrix, Ωp, only once at the beginning but not at every
MCMC iteration for each chemical. In several studies, the spatial range parameter has been
fixed as it is difficult to obtain a reliable estimate due to its lack of identification with the
partial sill, without resort to profile likelihood within 2 stage procedures (see Dietrich and
Osborne [21]; Hoeting et al. [22])

After inspecting the contour plots of nine soil chemicals, a variogram analysis was
performed for each chemical by the R package, geoR assuming a Matérn covariance
function. The estimated spatial range parameter for each chemical is used to fix ρp a priori
for the suggested logistic-spatial model. The rationale for fixing this parameter is two-fold:
1) the need to avoid estimation problems and 2) to reduce the computation time.

While French et al. [13] suggest an approach whereby ρp is fixed at 1) 

and 2) , using a much smaller value to assess the effect of
extreme values, we have used variogram analysis which yields a different value for ρ̂p for
each chemical more closely matching the spatial structure of the predictor.

3.3.3. Prediction of multiple soil chemicals using Low-rank Kriging—As
explained in Section 3.1., we measured soil chemical concentrations at the sample site but
not at the outcome site. Thus, we treat the latent soil chemical concentrations as missing
values. The details of fitting linear mixed-effect models with missing values are presented
by Schafer and Yucel [23].

For the p th chemical, let zp(obs) denote a vector of the observed chemical concentrations at
the sample sites and zp(mis) denote a vector of the latent chemical concentrations at the

outcome sites. In our MCMC algorithm, let  and zp(mis)
(t)
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represent current versions of the unknown parameters and missing data respectively. Then,

θ(t) and  are updated as follows:

(6)

(7)

In our low-rank Kriging model, the posterior predictive distribution of zp(mis) is as follows:

(8)

where C(r), κK, and Ωp are as defined in Equation (3).

At the t th iteration of the MCMC algorithm, both zp(obs) and  are used as the complete
data to update θp for the low-rank Kriging model described in Section 3.3.2. Then, we

update  using the joint posterior distribution in Equation (2) which comprises the
posterior predictive distribution above (Equation (8)) and the logistic spatial model
likelihood. In this way, the risk estimate can reflect the uncertainty involved in the
prediction procedure properly which cannot be achieved by using plug-in estimates. For the
details of the Metropolis-Hasting algorithm for the prediction, please refer to the Appendix.

4. Simulation Study
Using the low-rank approximation helps to improve computational speed [24]. For one-
dimensional data, it has been found that low-rank Kriging has a similar prediction mean
square error compared to full-rank Kriging [25]. It has also been found that low-rank
smoothing performs as well as full-rank smoothing in terms of mean square error for one-
dimensional data [26]. For a penalized spline model, it has been shown that sensitivity to the
knot locations in one dimension is quite low [26,27]. However, for higher-dimensional data,
the effects of the number of knots and their locations on low-rank Kriging have not been
tested previously to our knowledge. Thus, as part of our analysis we performed a simulation
study to evaluate the effect of the number of knots on the performance of low-rank Kriging
for bivariate data prior to fitting the multiple field models.

Firstly, a 10 by 10 regular grid was created within a unit square {0.1,…,1}×{0.1,…,1}. This
first grid was assumed to be soil sample sites. Let sj denote the first grid where sj ∈ ℜ2 and 1
≤ j ≤ 100. Imitating our MRDD outcome which was observed on a fine grid, the second grid
was created from all combination of x2 = {0.42, 0.44, 0.46, 0.48, 0.52, 0.54, 0.56, 0.58,
0.62, 0.64, 0.66, 0.68} and y2 = {0.22, 0.24, 0.26, 0.28, 0.32, 0.34, 0.36, 0.38, 0.42, 0.44,
0.46, 0.48}. Let xi denote the second grid where xi ∈ ℜ2 and 1 ≤ i ≤ 144. The graphical
representation of these two grids is shown in Figure 1.

We generated ytrue(sj) and ytrue(xi) from a stationary spatial Gaussian random field on both
sj and xi This simulation was performed in R using the GaussRF package assuming zero
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mean and Matérn covariance function. Let WT = {sj xi} be the grid which includes both the
first grid (sj) and the second grid (xi), then the Gaussian random field can be represented as
follows:

We used ytrue(xi) as a prediction set and ytrue(sj) as a modeling set here. Bayesian Kriging
was performed assuming the correct form of the model (zero mean, Matérn covariance
function). This model was fitted using the SpBayes package in R. Low-rank Kriging models
were fitted with different number of knots (K =5, 10, …,95) using the nlme package in R.
For each K, knots were selected as a representative subset of xi via a space-filling algorithm
using the field package in R. We tested the performance of low-rank Kriging for each
number of knots using a different set of values for σ2 and ρ. All the combinations of (1, 0.5,
0.25) for each parameter were used.

The procedure for our simulation study is as follows:

1. Generate 500 samples of ytrue(sj) and ytrue(xi)

2. For each sample, leave out ytrue(xi) and use only ytrue(sj) to fit Bayesian Kriging
and low-rank Kriging.

3. Predict ŷfull(xi) using the fitted Bayesian Kriging model

4. Predict ŷlow_K(xi) where K =5, 10, …,95 using the fitted low-rank Kriging model
with K knots.

5. Calculated mean squared error of prediction (MSEP) for 500 samples as follows:

6. Find the 2.5th and 97.5th quantiles of MSEPfull. We call this ‘95% MSEP Range of
Bayesian Kriging’. Then, count how many times MSEPlow_K falls in this range

Figure 2 shows the mean squared error of prediction (MSEP) for the low-rank Kriging with
each number of knots and the full-rank Bayesian Kriging with different σ2 and ρ. The MSEP
is the average squared difference between the estimate and the true value. The separate
error-bar plot represents the mean and the 2.5th and 97.5th quantiles of MSEP of Bayesian
Kriging estimates. These plots indicate that the MSEP is smaller in general when the spatial
surface is smoother, i.e. ρ is larger. For both plots, the 95% MSEP range of Bayesian
Kriging is narrow indicating that the model recovers the simulated data well. For both cases,
as the number of knots increases, the MSEP decreases; it decreased rapidly at the beginning
and then improvement became smaller. Ruppert et al. [14] recommend K=25 knots which is
depicted by the vertical line. We can see that the 95% range of low-rank Kriging with 25
knots is much wider than that of Bayesian Kriging for both cases. When we used different
sets of σ2 and ρ, similar results were observed.

To compare the prediction performance of low-rank Kriging with different number of knots
to Bayesian Kriging, the percentage of the MSEP of low-rank Kriging falling in the 95%
MSEP range of Bayesian Kriging is calculated varying the smoothing parameter (Figure 3).
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We can see that if we followed Ruppert et al.'s suggestion, about 3% of the MSEP of low-
rank Kriging fell in the 95% MSEP range of Bayesian Kriging. To achieve about 80%, at
least 65 knots are required when the surface is smooth (ρ =1) and 80 knots when the surface
is less smooth (ρ = 0.25). Of course, the above results suggest that Ruppert et al's suggestion
is highly conservative. It should be noted that the results assume that Bayesian Kriging is the
‘gold-standard’ for comparison.

5. Application: analysis of the MRDD outcome in a Medicaid population in
South Carolina

In this section we use the MRDD data collected by Medicaid in South Carolina to fit our
Bayesian joint model. The response variable is the diagnosis of MRDD (yes (yi=1) or no
(yi=0)). During each month of pregnancy, residential addresses for mothers were recorded.
In addition to the geographical location, mother's age, mother's ethnicity, mother's alcohol
consumption during pregnancy, parity, birth weight, baby's sex and follow-up time were also
available. After MRDD clusters were identified, five areas were selected for soil sampling.
In this study, data from the second cluster in month 6 of pregnancy, year 1998 were
randomly selected for our analysis (n=141). In the area, 119 soil samples were taken and 9
chemical concentrations were measured: arsenic (As), barium (Ba), beryllium (Be),
chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and mercury (Hg).
Table 1 shows the sample correlations between the nine soil chemicals. About 50% of
chemical combinations had the correlation less than 0.3 and about 11% of chemical
combinations had the correlation greater than 0.7. The lowest and highest correlation was
observed between Be and Hg (r=0.001) and Ba and Be (r=0.735), respectively.

Figure 4 shows the MRDD outcome sites and the soil sample sites in the selected cluster. It
shows that the soil sample sites are misaligned to the locations of pregnant women's
residential addresses. It also illustrates the grid for the soil sample sites are coarser than that
for the outcome sites. Figure 5 shows empirical semivariogram and contour plots of nine
chemical concentrations from 119 soil samples. The empirical ssemivariogram and contour
plots were drawn using the geoR and the MBA package in R, respectively. It also shows the
estimated spatial range parameter. For all chemicals, we can see some peaks in certain
regions and smooth variations in other regions. Spatially-varying chemical concentrations
within the area suggest that potential hotspots exist. It appears that soil chemicals have
different spatial patterns and thus a variogram analysis, was performed separately, for each
chemical to estimate a spatial range parameter ρp. The estimated values found for ρ̂p were
0.001, 0.0017, 0.0013, 0.0014, 0.001, 0.0021, 0.0013, 0.0011, 0.001 for As, Ba, Be, Cr, Cu,
Pb, Mn, Ni and Hg, respectively.

5.1. Results of the logistic-spatial model
5.1.1 Plug-in Model vs. Joint Model—Using the estimated spatial range parameter
from the variogram analysis, we fitted a Bayesian joint model with K=90 knots. These knots
were selected from the soil sample sites using a space filling algorithm. Two chains with
different initial values were run and thinning=10 was used to reduce autocorrelation. The
details of the MCMC algorithm are provided in the Appendix. For comparison, a logistic
spatial model was fitted in WinBUGS using the full-rank Bayesian Kriging estimates as
plug-in which is a common modeling strategy. The Bayesian full-rank Kriging estimates
were obtained using the R package SpBayes. For the plug-in model, it took about 2.8 hour to
obtain Kriging estimates for soil chemicals and 5 minutes to run the logistic spatial model.
For the joint model, it took about 15 hours. All models were run on a laptop with Intel Core
2 Duo T9500 processor and 3.5 GB RAM.
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Table 2 shows the summary statistics for the two models. The logistic spatial model
parameters are reported as a posterior mean and the 95% credible interval for both models.
The first model is a logistic model with plug-in estimates of soil chemicals obtained from
the full-rank Kriging (Model with FK plug-in). The second model is our suggested model,
the joint model with a low-rank Kriging with 90 knots (Joint model with LK_90) developed
in Equation (1). 90 Knots (75% of data points) were selected as our simulation study
suggests the use of at least 65% of data points to achieve about 80% prediction performance
comparable to the full-rank Kriging.

When the full-rank Bayesian Kriging estimates for soil chemicals were used as plug-in
values, mother's age (mean [95% credible interval]: -0.259 [-0.549, -0.009]), Ba (-0.148
[-0.321, -0.026]) and Cr (0.257 [0.016, 0.507]) were significant at the 5% level. Baby sex
(-2.521 [-5.392, 0.093]), follow-up time (0.303 [-0.087, 0.799]) and Mn (0.005 [-0.001,
0.011]) were relatively close to significant, having more than 90% of posterior samples of
the risk estimates lying below/above zero. In our suggested model, Ba (-0.505 [-0.794,
-0.319]) and Mn (0.035 [0.025, 0.050]) were significant at the 5% level and mother's age
(-0.424 [-1.051, 0.041]), baby sex (-3.304 [-8.762, 0.945]), follow-up time (0.634 [-0.159,
1.641]) and Cr (0.703 [-0.123, 1.711]) were relatively close to significant compared to other
covariates which were consistent with the model with plug-in values. In general, for the
significant covariates, the joint model has a larger magnitude of the logistic regression
parameter and a wider 95% credible interval than the model with the plug-in values.

Model comparisons are performed with respect to the deviance information criterion (DIC).
DIC is defined as the posterior mean of the deviance (-2*log likelihood) plus pD, the
estimated effective number of parameters in the posterior distribution. pD is defined as half
the posterior variance of the deviance [28]. DIC for the model with plug-in estimates and
our suggested model was 156.221 and 2440.391, respectively. However, these DIC values
cannot be compared directly since the model with plug-in values has a logistic likelihood
only whereas the joint model has two likelihoods (normal and logistic likelihoods). To
compare these two models, DIC for the joint model was calculated using logistic likelihoods
only. The deviance for the joint model was smaller than that of the model with plug-in
values (53.543 vs. 28.111) in part because it contains chemical values that are estimated
parameters. However, the joint model also has greater variability in the converged sampler
and to account for this variability we calculated DIC as explained above. The calculated DIC
for the joint model was DIC=69.566 which was less than the half of the DIC of the model
with plug-in values (DIC=156.221).

5.1.2 Joint model with different knot locations and numbers of knots—To
investigate whether placing knots close to the prediction locations can help the prediction of
soil chemicals and thus the joint model, our suggested model was fitted again with 90 knots
placed close to the outcome sites. As explained in 3.3.2, knots were generated based on a
kernel smoothed intensity of the outcome site locations by the R package, spatstat. Figure 6
shows these two sets of knots selected based on soil sample sites and outcome sites. To
determine whether similar results are obtained following Ruppert et al. [14]'s suggestion, a
joint model with K=30 knots (25% of data point) was also fitted.

Table 3 shows the comparison between three joint models. First model is the originally
suggested joint model presented in Table 2 (90 knots placed on sample sites). Second model
is the joint model with low-rank Kriging with 90 knots placed close to the outcome sites (90
knots placed on outcome sites). Third model is the joint model with low-rank Kriging with
30 knots placed on soil sample sites (30 knots place on samples sites). As all these models
are joint models which have two likelihoods, we can compare DIC to find a better model.
The first model has the smallest DIC of 2440.39 followed by the second model
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(DIC=2848.52) and the third model (DIC=2851.308). This result suggests that the low-rank
Kriging can be affected by the knot location for two-dimensional data which is in contrast to
one-dimensional data where the prediction result is rather insensitive to the knot location
[14,25]. As seen in the simulation study, using reduced number of knots affected the model
fit, increasing DIC by 411 compared to the originally suggested model. DIC can also be
calculated using the health model likelihood only. When we compared two joint models
with different knot placements, the model with knots placed on the outcome sites had a
smaller DIC (DIC=45.190) than the model with knots placed on sample sites (DIC=69.566).

When knots are placed close to the outcome sites, mother's age (-0.680 [-1.41, -0.004]), Ba
(-0.255 [-0.478,-0.029]) and Mn (0.066 [0.055, 0.074]) were significant at the 5% level. This
result is similar to the originally suggested joint model. When 30 knots placed on the sample
sites were used, Ba (0.330 [0.121, 0.601]), Pb (0.768 [0.478, 1.300]) and Mn (-0.122[-0.144,
-0.112]) were significant at the 5% level. This results are quite different from the suggested
joint model and the model with plug-in estimates since the sign of the logistic regression
parameter is opposite for Ba and Mn.

5.1.3 Joint model with different spatial range parameters—In the suggested
model, we estimated the spatial range parameter ρp using a variogram analysis for each soil
chemical. To assess the sensitivity of the results to the choice of the spatial range parameter,
a sensitivity analysis was performed. Two joint models were fitted separately using 2*ρ̂p and
1/2*ρ̂p where ρ̂p was obtained from a variogram analysis for each chemical. Table 4 shows
the results of comparing the suggested model with these two modes with different ρp values.
Compared to the suggested model, some different results were observed. When 2*ρ̂p was
used, Ba (0.021[0.021, 0.022]), Cr (-5.385[-6.245, -4.682]), Pb (5.701[4.185, 7.794]) and Hg
(0.065[0.053, 0.077]) were significant at the 5% level. When 1/2*ρ̂p was used, Ba
(0.022[0.022, 0.024]), Cr(-6.628[-8.862, -4.296]) and Hg (0.271[0.236, 0.296]) were
significant at the 5% level. No mom and baby covariates were significant at the 5% level.
When we compared DIC, our suggested model has the smallest DIC suggesting the best
model fit (DIC=2440.391 vs. 3003.621 vs. 2995.552).

Although some similar results were obtained such as Ba which was significant at the 5%
level for all three models, different results were also observed. The sign of the effect for Ba
was different in the models with different ρp values, Cr was close to significant in the
suggested model but became significant at the 5% in the models with different ρp values.
Other chemicals such as Pb and Hg also became significant in the model with different ρp
values.

5.2. Chemical prediction by low-rank Kriging with different spatial range parameters and
numbers of knots in MRDD data

In this section, four different low-rank Kriging models were considered for chemical
prediction using a different set of knot numbers K, and different spatial range parameters ρp
to investigate how the number of knots and the spatial range parameter affects low-rank
Kriging prediction. All the combinations of ρ̂p = (0.16, 0.008) and K = (30, 90) were used.
ρ̂p =0.16 was chosen as the maximum distance between sample sites within the study area

 as recommended by French and Wand [13]. ρ̂p=0.008 is selected as a

much smaller value . K=30 (25% of data) was chosen following
the suggestion of Ruppert et al. [14]. To compare the prediction performance of low-rank
Kriging with different number of knots, K=90 (75% of data) was also selected since our
simulation study found that about 65-80% of data points are needed to achieve similar
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prediction results to the full-rank Kriging. We also fitted a Bayesian full-rank Kriging model
(FK) using the R package spBayes assuming a Matérn covariance function. We assume that
Bayesian Kriging is the ‘gold-standard’ for comparison. The prediction performance of each
low-rank Kriging was measured by the mean squared error of prediction (MSEP) which was
calculated as follows:

Table 5 shows the prediction performance of different low-rank Kriging models measured
by mean squared error of prediction (MSEP). When the smoothing parameter was fixed at
ρ̂p=0.16, the low-rank Kriging with 30 knots and that with 90 knots had similar MSEP for
all chemicals. It was because the estimated bivariate surface was too smooth for both
models. In contrast, when we used ρ̂p=0.008, the low-rank Kriging with 90 knots had much
smaller MSEP for all chemicals than the low-rank Kriging with 30 knots by a factor varying
from 1.9 (Ba) to 14.7 (Pb). When 30 knots are used, MSEP for most chemicals are similar
between ρ̂p=0.16 and ρ̂p=0.008 whereas when 90 knots are used, most chemicals have
smaller MSEP when ρ̂p=0.008 is used.

Figure 7 shows contour plots of predicted As, Cr and Pb at the outcome sites by the low-
rank Kriging with 30 knots, the low-rank Kriging with 90 knots and full-rank Kriging. For
both low-rank Kriging models, ρ̂p = 0.008 was used. To make the contour plots comparable,
contours are drawn at the same level in three plots for each chemical. The general patterns
across the region seem similar between the full-rank Kriging and the low-rank Kriging with
90 knots whereas the chemical estimates from the low-rank Kriging with 30 knots are too
smooth as compared to the full rank Kriging. Similar results were also observed for other
chemicals (not shown here).

6. Discussion
We present a Bayesian joint model which interpolates several spatial fields and estimates the
associated risk simultaneously for a binary outcome. Low-rank Kriging imposes less
computational burden compared to a full-rank Kriging. Employing a Bayesian approach,
low-rank Kriging can reduce computational complexity significantly since it does not invert
the spatial covariance matrix at each MCMC iteration as the full-rank Kriging model does.
This is achieved by fixing the spatial range parameter a priori which makes low-rank
Kriging have a generalized linear model specification.

Different approaches are possible for choosing the spatial range parameter. French and
Wand [13] suggested fixing the spatial range parameter at the maximum distance between
two sites within the study area. Another way to choose the spatial range parameter is to use a
variogram analysis as we adopted in this study. The spatial range need to be selected with
caution as these affect low-rank Kriging prediction performance compared to the full rank
Kriging. Our sensitivity analysis suggests that the results can be sensitive to the choice of
the spatial range parameter. This implies that the interpretation for those soil chemicals can
be different depending on what ρp values were used to fit the joint model. Thus, it seems
necessary to estimate range parameters properly. Based on our findings, it appears that
employing variogram analysis is a better approach than Ruppert et al.'s recommendation.

It was found that the knot specification has little effect on low-rank smoothing splines
performance for one-dimensional data [26,27]. However, the effect of knot specification on
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two-dimensional data has not been investigated in depth. We investigated the effect of
different number of knots and knot locations for two-dimensional data in this study. Our
simulation study and data example suggest that if a surface is smooth (large spatial range
parameter), less knots are required but for less smooth surface (smaller spatial range
parameter) more knots are required to achieve similar prediction with the full-rank Kriging.
Although Ruppert et al. [14] provide a recommendation based on their experience, our
simulation study shows that it is a bit conservative. With a reasonable number of knots and
spatial range parameter, low-rank Kriging performs as well as full-rank Bayesian Kriging. It
is obvious that there is tradeoff between computational speed and the performance of
approximation. In our data example, it was found that knots covering the study area had a
better model fit supported by smaller overall DIC. This area can be an interesting area where
further research is required. As our joint model has both the health model likelihood and the
exposure model likelihood, DIC was calculated using both likelihoods and compared
between different joint models. It can be argued that only the health model likelihood need
be considered for DIC as that is the main focus of the analysis. However, the prediction of
the unobserved soil chemicals is affected by the exposure model fitting and thus it seems
necessary to find the best exposure model to obtain accurate prediction of those soil
chemicals. Thus, we decided to use overall DIC as our criteria which consider both exposure
and health model likelihoods for the DIC calculation.

There are some issues which need to be addressed with regard to our modeling strategy.
First, the choice of a spatial range parameter is important as it controls the smoothness of the
bivariate surface. The spatial range parameter could have been estimated in our joint model
but we did not use this approach for computational expediency. If this parameter were
estimated, a spatial covariance matrix needs to be inverted at each MCMC iteration which
requires a computation similar to Full-rank Kriging. Secondly, we used an unstructured
random effect rather than spatial random effect for our binary outcome as it has been
reported that using a conditionally autoregressive (CAR) model to spatially referenced data
can mask spatial predictor effects [11,12]. Thirdly, our joint model was fitted as a full model
using all the available mom and baby covariates and soil chemical concentrations. DIC is a
reliable measure to compare different Bayesian model fits. We used DIC to compare
different joint models in this study. However, we did not perform variable selection to find
the best submodel since we have sixteen covariates and the number of possible submodels is
large (216). A different variable selection approach is needed for our analysis and we will
use a MCMC method for variable selection in the future work. Finally, in our joint model,
each chemical concentration was modeled separately as a univariate model though we
observed multiple chemical concentrations in the soil samples. A multivariate model which
captures the possible correlations between chemical measures might provide an appropriate
prediction although this was not investigated in this study. In the future, we will develop a
method which introduces these possible correlations between chemical concentrations into a
joint model.

Our joint model found significant association between MRDD outcome and Ba, Mn and
possibly Cr concentrations which was consistent with the model with plug-in estimates.
However, our joint model can find an association which is close to the unobserved truth
reflecting the uncertainty involved in the chemical prediction which the model with plug-in
estimates cannot. It should be also noted that the true association between MRDD and soil
chemical concentrations could be more subtle as we did not perform variable selection.

In this paper, we showed that a low-rank Kriging can have similar prediction performance to
the full-rank Kriging when the number of knots and the smoothing parameter are selected
with caution. This enables us to employ a Bayesian approach and obtain the risk estimates of
soil chemical concentrations reflecting the uncertainty involved in the spatial field
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prediction. Thus, it is recommended to use the joint model approach so that the risk
associated with soil chemical concentrations can be properly assessed.
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Appendix

The MCMC algorithm
Markov chain Monte Carlo (MCMC) sampling is an iterative numerical method which
simulates complex and non-standard multivariate distribution [29]. It generates correlated
draws from the joint posterior distribution of model parameters. For our MRDD data
analysis, a Metropolis-Hastings algorithm [15,29] was employed to sample for all the
parameters. This Metropolis-Hasting algorithm can draw samples from any probability
distribution and does not involve knowledge of the conditional posteriors to update the
parameters.

General description for Metropolis-Hastings algorithm is as follows: let y denote the
observed data and θ = (θ1,…,θn) represent a vector of all the parameters. Values for θ are to
be sampled sequentially at each iteration of the MCMC sampler.

Metropolis-Hastings Sampler
1. Assign starting values to θ(0)

2. Set t = 0

3. For 1 ≤ i ≤ n, draw  from the proposal density 

4.

Compute the ratio of the densities  where p is the full
conditional distribution of θi

5.
Set 

Any distribution from which samples are readily obtainable can be used as the proposal
distribution.

Now we present the specific use of Metropolis-Hastings in our MCMC algorithm. From
Equation (2), (5) and (8), our joint posterior distribution becomes:
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(9)

For priors, normal distributions priors are used for β0,β1,β2,ε and αp as follows:

For hyperpriors, uniform distributions are assumed for standard deviation parameters [30]:

At each iteration of our Metropolis-Hastings sampler, we

A. Update parameters of the low-rank Kriging model for each chemical concentrations
using observed and unobserved measures

B. Use the low-rank Kriging parameters, predictive distribution and the logistic spatial
model likelihood to update unobserved chemical concentrations at the outcome
sites

C. Use the predicted soil chemical concentrations to update the regression parameters
in the logistic spatial model

To run the Metropolis-Hastings sampler,

1. Select K knots as described in Section 3.3.2.

2. Initialize all the parameters

3. For the p th chemical, calculate , Zp and Zxp fixing ρ̂p using the estimated
spatial range parameter from a univariate variogram analysis as described in
Section 3.3.2 and 3.3.3.

4. At t iteration, update all the parameters for the low-rank Kriging for each p th
chemical where 1 ≤ p ≤ P calculating the density ratio r using the joint distribution
in (9)

5. At t iteration, update all the unobserved chemical concentrations for each p th
chemical where 1 ≤ p ≤ P calculating the density ratio r using the joint distribution
in (9)

6. At t iteration, update β = (β0,β1,β2), ε, σβ = (σβ0, σβ1, σβ2), and σε for the logistic
spatial model calculating the density ratio r using the joint distribution in (9)
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Two chains with different initial values were run for 100,000 times and the convergence was
checked by Gelman-Rubin statistics and a visual inspection of trace plots of the deviance (-2
log likelihood). After convergence was checked, additional 50,000 samples were drawn for
summary statistics and thinning=10 was used to reduce autocorrelation.
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Figure 1.
Two sets of grids for simulation. × represents the first grid and ○ represents the second grid.
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Figure 2.
Mean-squared error of prediction of low-rank Kriging (LK) and Bayesian Kriging (BK) with
(a) σ2=1 and ρ=1 and (b) σ2=1 and ρ=0.25.
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Figure 3.
Percentage of mean-squared error of prediction (MSEP) of low-rank Kriging falling in the
95% MSEP Range of Bayesian Kriging with σ2=1 different ρs.
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Figure 4.
Plot of case-control sites and soil sample sites
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Figure 5.
Empirical semivariogram (circle) with fitted variogram model (line) and associated contour
plots of soil chemical measures (n=119).
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Figure 6.
Knots selected based on: (a) soil sample sites using a space filling algorithm and (b)
outcome sites using a kernel-smoothed intensity of the outcome sites (+: knots, o: outcome
sites).
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Figure 7.
Contour plots of predicted As, Cr and Pb at mothers' residential addresses by low-rank
Kriging with 30 knots (LK_30), low-rank Kriging with 90 knots (LK_90) and full-rank
Kriging (FK).
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Table 5
Mean squared error of prediction (MSEP) of the low-rank Kriging with 30 knots (LK_30)
and that with 90 knots (LK_90)

rho=0.16 rho=0.008

LK_30 LK_90 LK_30 LK_90

As 1.08 1.06 1.06 0.46

Ba 691.89 688.54 883.94 458.31

Be 0.020 0.020 0.025 0.0072

Cr 42.19 42.58 61.58 14.31

Cu 96.66 96.35 86.61 21.95

Pb 1402.84 1400.02 1138.83 77.28

Mn 75494.82 74572.78 74909.58 31379.03

Ni 16.90 16.53 17.03 2.25

Hg 0.0019 0.0019 0.0019 0.00083
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