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Abstract
Nonrigid image registration is an important task for many medical imaging applications. In
particular, for radiation oncology it is desirable to track respiratory motion for thoracic cancer
treatment. B-splines are convenient for modeling nonrigid deformations, but ensuring invertibility
can be a challenge. This paper describes sufficient conditions for local invertibility of
deformations based on B-spline bases. These sufficient conditions can be used with constrained
optimization to enforce local invertibility. We also incorporate these conditions into nonrigid
image registration methods based on a simple penalty approach that encourages diffeomorphic
deformations. Traditional Jacobian penalty methods penalize negative Jacobian determinant values
only at grid points. In contrast, our new method enforces a sufficient condition for invertibility
directly on the deformation coefficients to encourage invertibility globally over a 3D continuous
domain. The proposed penalty approach requires substantially less compute time than Jacobian
penalties per iteration.

Index Terms
B-splines; nonrigid image registration; penalty method; local invertibility sufficient conditions;
thorax CT images

I. Introduction
Image registration is a core tool in many medical imaging applications, including fusion of
structural and functional images. Several image reconstruction schemes for MR, PET and
CT incorporate motion correction or joint estimation of motion into the reconstruction
process to improve image quality [1], [2], [3], [4], [5], [6]. Radiation treatments may be able
to target cancer cells more accurately through motion correction [7]. Rigid or affine
transformations can provide fast image registration. However, most of the human body does
not conform to rigid or affine approximations [8]. Lamare et al. [3] used affine image
registration for respiratory motion correction, but reported that it was sufficient only for a
single organ and associated lesions. Effective motion correction usually requires nonrigid
image registration, which enables more flexible matching of local details between two
images than rigid registration.

There are many methods for nonrigid image registration [8], [9]. B-spline bases are used
frequently for nonrigid image registration [10] because locally supported basis function
expansions are convenient computationally and B-splines have the properties of smoothness,
compact support, fast interpolation schemes and hierarchical structure for multi-resolution
[9], [11], [12]. However deformations with high degrees of freedom can lead to unrealistic
transformation results such as folding in the absence of appropriate constraints [8].
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There have been some efforts to regularize nonrigid image registration based on B-splines
by making certain reasonable assumptions. Rueckert et al. [13] penalized the bending
energy of the deformation directly, assuming that the local deformation of tissues should be
smooth. Sorzano et al. [14] proposed a regularizer based on the gradients of the divergence
and the curl of the displacement field. Rohlfing et al. [15] used an incompressibility
constraint: the Jacobian determinant of a transformation should be unity, assuming that local
deformations are volume preserving. They applied this method after making an initial affine
transformation. See [9] for other methods for constraining the transformation.

Another reasonable constraint is to impose local invertibility of the nonrigid transformation
to ensure that image registration is topology-preserving or diffeomorphic.

One way to ensure local invertibility is to require the Jacobian determinant of the
transformation to be positive everywhere, either as a hard constraint or by a penalty method
[16]. However most such approaches constrain the Jacobian determinant of a transformation
only at each discrete voxel grid point, so local invertibility is not strictly guaranteed on the
whole continuous domain. Recently, Sdika [17] described a condition involving the gradient
of the Jacobian determinant that encourages the local invertibility to be achieved everywhere
even though that condition is invoked only at each discrete grid point. However, compared
to unregularized image registration, calculating the Jacobian determinant or its gradient
significantly increases computation time due to additional B-spline interpolations of the
partial derivatives of a deformation.

Ensuring invertibility is somewhat easier when using 1st-order B-spline bases for
deformations. Musse et al. [18] derived elegant linear constraints that provide necessary and
sufficient conditions to ensure that the Jacobian determinant values of such transformations
are positive everywhere. However, that 2D approach was restricted to 1st-order B-spline
deformations. Karacali et al. [19] proposed a method to regularize 2D and 3D deformations
to ensure that 1st-order B-splines are topology-preserving. Noblet et al. [20] generalized
[18] for 3D B-spline deformations and illustrated their method with 1st-order B-splines, but
enforcing the constraints requires much higher computation than regularization based on
bending energy.

Lastly, one can ensure local invertibility by imposing sufficient conditions that are simpler
than the necessary conditions. Choi et al. [21] suggested box constraints for cubic B-spline
deformation coefficients that ensure invertibility, but those sufficient conditions preclude
large deformations. Rueckert et al. [22] concatenated many transformations based on those
box constraints to achieve large deformations. Rohde et al. [23] suggested a sufficient
condition for local invertibility, derived using Neuman series for a transformation model that
uses a sum of deformations. Motivated by [23], Kim et al. [24], [25], [26] suggested similar
sufficient conditions for 3D transformations based on cubic B-splines and implemented a
constrained minimization algorithm using Dykstra’s cyclic projection method. We recently
extended Kim’s sufficient conditions for local invertibility of deformations so that we can
use nth-order B-spline bases and so we can also assign the upper bound on the Jacobian
determinant value independently from the lower bound choice. We implemented it with a
simple and fast quadratic-like penalty function [27].

This paper elaborates on the method in [27] and compares it empirically with methods based
on other sufficient conditions as well as with the traditional Jacobian penalty method that
uses a discrete grid [16], [25]. This paper is organized as follows. Section II reviews some
related work. Section III proposes a new simple sufficient condition for the local
invertibility of transformations based on B-splines and compares it with the box constraint
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[21], [22] empirically. Section IV proposes a new simple regularizer based on the local
invertibility sufficient condition and presents 2D and 3D results.

II. Background
A. Mathematical model for nonrigid transformation

A 3D nonrigid transformation T: R3 → R3 can be written

(1)

where r = (x, y, z) and d(r) is the deformation. We model the 3D deformation d = (dx, dy, dz)
using a tensor product of nth-order B-splines as follows:

(2)

where q ∈ {x, y, z}, mq is knot spacing in q direction and β is a nth-order B-spline basis.

The goal in image registration is to estimate the deformation coefficients  by
maximizing a similarity metric Ψ:

(3)

where g(r) and f(r) denote two 3D images.

To help stabilize the estimation, and to have physically plausible deformations, often we
would like to ensure that the estimated coefficients ĉ correspond to a diffeomorphic
transformation T. The methods in this paper are applicable to any similarity metric; for a
survey of such metrics, see [28]. Section IV focuses on the l2 similarity metric for
registering thorax CT images at different inhalations for the purpose of radiation therapy
planning and monitoring.

B. Invertibility and diffeomorphic transformations
Invertibility of a nonrigid transformation T is a necessary condition for it to be
diffeomorphic. T is diffeomorphic if both T and T−1 are continuously differentiable. If we
use a B-spline basis with n ≥ 2 in (1), then T is continuously differentiable. (Musse et al.
[18] addressed the case where n = 1. ) By the implicit function theorem, if the Jacobian
matrix of T, denoted ∇T, is invertible everywhere, then near every point there exists a unique
continuously differentiable local inverse. The determinant of the Jacobian for T, denoted |
∇T|, must be non-zero for diffeomorphic nonrigid image registration. Also for T to be
orientation preserving, we want |∇T| > 0.

Unfortunately, the condition |∇T| > 0 everywhere does not by itself ensure that T is globally
one-to-one. One way to ensure that T is invertible globally is to ensure that transformation
maps the boundary of the domain onto itself [18], [20]. However, we do not enforce such
boundary conditions in this paper because the field of view for thorax inhale and exhale CT
images does not contain the whole body and there is usually missing anatomy in the
superior-inferior directions.
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C. Related work
The goal of diffeomorphic nonrigid image registration with the parametric representation of
deformation (2) is to maximize the similarity metric (3) subject to the constraint

(4)

In general this is an impractical constraint except when using linear deformation models
[18], [19], [20] because r ∈ R3 so there are uncountably many conditions. One way to
simplify (4) is to replace the “∀r” requirement with a set of voxel grid points [16], [17]:

(5)

However, because C0 ⊂ C1, this does not guarantee local invertibility between grid points.
Nevertheless the smoothness of B-spline bases helps regularize C1 so using the constraint C1
often provides fairly good results [16]. However, computing |∇T (r; c)| at all the grid points
is computationally expensive.

Simplifying the condition |∇T (r; c)| > 0 over R3 always involves smaller sets than C0. Choi
et al. [21] found box constraints for cubic B-spline deformation coefficients that ensure
invertibility:

(6)

where K ≈ 2.05 in 2D and K ≈ 2.48 in 3D. The set C2 provides a sufficient condition for
local invertibility because C2 ⊂ C0. However, C2 is a very restrictive constraint set that
allows only very small deformations. To achieve large deformations, Rueckert et al. [22]
composed several transformations that each satisfied this condition.

Kim et al. [24], [25], [26] suggested a sufficient condition for ensuring invertibility of cubic
B-spline deformations that allows a larger family of deformations. Instead of restricting the
absolute values of the coefficients as in (6), this condition limits the differences of adjacent
B-spline coefficients:

(7)

where kx + ky + kz < 1. Although C3 ⊂ C0, this sufficient condition only allows large
deformations with fairly small Jacobian determinant values. In particular, one can show that
1 −(kx + ky + kz) ≤ |∇T (r; c)| ≤ (1 + kx)(1 + ky)(1 + kz) + (1+kx)kykz +kx(1+ky)kz +kxky(1+kz)
∀c ∈ C3 [24], [25], [26]. This means that C3 does not allow acute volume changes locally.
This is because the upper bound on the Jacobian determinant is determined by the lower
bound design. For example, if we choose kq = 1/3 so that the lower bound for the Jacobian
determinant |J| is 0, then the upper bound for the Jacobian determinant value would be
automatically determined to 76/27 ≈ 2.8148 which is fairly small [25]. The next section
provides new broader sets of sufficient conditions.
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III. Local invertibility condition
A. Lemmas

We first extend Kim’s sufficient conditions for local invertibility to overcome two
limitations [27]. Firstly, a nth-order B-spline basis (n ≥ 1) can be used instead of cubic B-
spline basis for deformation modeling. Secondly, the upper bound of Jacobian determinant
can be designed independently from the lower bound of Jacobian determinant.

Lemma 1—For concise notation, denote the Jacobian J = ∇T of a 3D transformation as

Then the corresponding determinant is given by

(8)

Suppose that the elements of the 3D Jacobian determinant satisfy xi ∈ Ii, i = 1, …, 9 where Ii
⊂ R are compact intervals. Then |J| achieves its global maximum and minimum values over
I = I1×···×I9 and those maximum and minimum values are achieved for a point  for which

 for ∀i = 1, …, 9.

The Appendices have the proofs of these Lemmas. This Lemma implies that we can
determine the global minimum and maximum of |J| over the compact set I “simply” by
calculating the 29 possible values of |J| at the vertices of I. (It is trivial to apply this Lemma
to 2D cases.)

Kim et al. provided a specific formula for the ‘possible’ maximum and minimum of |J| for
given ranges of each xi value using Karush-Kuhn-Tucker conditions [25]. We suggest next a
generalization using Lemma 1.

Lemma 2—Suppose that  where qi = x for i = 2, 3, qi = y for i = 4, 6 and qi = z
for i = 7, 8. Also suppose that −kpi ≤xi ≤Kpiwhere pi = x for i = 1, pi = y for i = 5 and pi = z
for i = 9. Then min |J| = 1 − (kx + ky + kz) and max |J| = (1 + Kx)(1 + Ky)(1 + Kz) + (1 +
Kx)kykz + kx(1 + Ky)kz + kxky(1 + Kz). In other words,

(9)

Kim’s proposition was restricted to the case where Kx = kx, Ky = ky, and Kz = kz. To ensure
local invertibility, kx + ky + kz should be less than 1, where each kq is positive, so that the
lower bound in (9) is positive.

Kim et al. showed a second proposition about the relationship between the first partial
derivative of deformation and adjacent deformation coefficients for the cubic B-spline basis
case [25]. We show next that this relation is also valid for general nth-order B-spline bases
(n ≥ 1). We also generalize the bounds used by Kim et al. with Lemma 2 [27].

Chun and Fessler Page 5

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lemma 3—If  for ∀i, j, k, then  for ∀r where q ∈

{x, y, z} Similarly, if  for ∀i, j, k,, then  and if

 for ∀i, j, k, then  for ∀r respectively.

This Lemma limits the range of values of the first derivative of d(r) over R3 by restricting
the differences of adjacent deformation coefficients. Combined, Lemmas 2 and 3 show that
one can obtain a transformation T that is everywhere locally invertible by maximizing a
similarity metric subject to constraints on the differences between adjacent deformation
coefficients, as summarized in the following Theorem.

Theorem 1—Suppose  for q ∈ {x, y, z}. Define:

In (2), if c ∈ C4 then |J| satisfies the bounds in (9) ∀r ∈ R3. Moreover, if kx + ky + kz < 1,
then the transformation (2) is locally invertible everywhere.

This theorem applies to deformations based on any nth-order B-spline basis. We set the
lower and upper bounds for |J| by setting appropriate kq and Kq values for q ∈ {x, y, z}.

B. Restrictions
Theorem 1 establishes that c ∈ C4 is a simple sufficient condition for local invertibility.
However, C4 does not allow all possible locally invertible deformations, i.e., C4 ⊂ C0. Then
one can ask how restrictive this sufficient condition is.

Although C4 allows for acute volume expansion, it precludes acute volume shrinkage. Fig. 1
illustrates this limitation for a 1D transformation. The desired transformation maps [0.0 0.6]
to [0.3 0.6], i.e., T (x) = x + d(x) where d(x) = 0.3 − x/2 (acute volume shrinkage). This
deformation belongs to C0 because . However if we impose the sufficient
condition , then Fig. 1 shows that acute volume shrinkage is precluded because
the minimum derivative of the transformation is 0.67. The constrained transformation maps
[0 0.6] to [0.3 0.7] instead of [0.3 0.6]. More generally, when we choose kx, ky and kz subject
to kx + ky + kz < 1 to ensure invertibility, C4 imposes restrictions for acute volume changes
in each direction.

The 2D case illustrates the solution space of C4 in terms of Lemma 2. Lemma 2 is trivial for

a 2D Jacobian determinant |J| = (1+a)(1+d)−bc where . A deformation c d
having a positive Jacobian determinant must satisfy (1+a)(1+ d) > bc. We can introduce a
free parameter k such that |J| is always positive if (1 + a)(1 + d) > k and bc < k for any k. Fig.
2 visualizes the solution space for 2D invertible deformations in terms of a, b, c, d, and k.
For fixed k, any values of (a, d) that lie above the upper line or below the lower line yield a
positive Jacobian determinant if (b, c) lies between these lines. Lines vary as k varies. To
allow acute volume shrinkage, we need k to be close to 0 as observed in Fig. 1. However
smaller k values imply more restrictive sets for (b, c).

Lemma 2 corresponds to fixing k = kxky such that kx + ky < 1 and kx ≥ 0, ky ≥ 0. This yields
the rectangular areas for a, b, c, d shown in Fig. 3 (for kx = ky = 1/2 and k = 1/4). Thus
Theorem 1 not only uses a fixed value for k, but also imposes restrictive box constraints on
the deformation derivatives. However it still has a larger solution space than traditional box
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constraints on the B-spline coefficients such as [21]. Because k is fairly small, relaxing this
sufficient condition may allow larger volume shrinkage [27].

C. Concatenating transformations
Since C4 is a restrictive sufficient condition, it may not contain all real deformations of
interest. To allow larger deformations, we can concatenate multiple elemental
transformations that belong to C4, i.e., let T (r) = TN (··· (T2(T1(r)))) where each Tk satisfies
C4. Since each Tk is diffeomorphic, T is also diffeomorphic.

Rueckert et al. [22] used a box constraint C2 [21] to guarantee that each elemental
transformation is diffeomorphic. We use C4 for our elemental transformations. This should
require fewer elemental transformations because C4 allows a larger solution space than C2,
as illustrated in the next section.

D. 2D simulation: warping a disk to a “C” shape
We applied several constrained nonrigid image registration methods to the challenging
registration problem shown in Fig. 4. We placed deformation knot points every 4th pixel,
i.e., mx = my = 4. The data fit term used sum of squared differences. For optimization we
used augmented Lagrangian multipliers [17] with the conjugate gradient method. Line
search step size was determined by one step of Newton’s method. We used fast B-spline
interpolation [29], [30], [31] with a 4-level multiresolution scheme [32].

Fig. 5 shows the unconstrained registration and results of using C1, C2 and C4. The
unconstrained result in Fig. 5(a) shows some unrealistic warping such as folding. Fig. 5(b)
shows the regularized deformed images with a Jacobian penalty based on C1. This shows a
more regular warp than Fig. 5(a). However, C1 allows a larger solution space than the ideal
solution space C0.

Fig. 5(c) and (d) show the limitation of using a single warp based on C2 and C4 respectively.
The sufficient conditions C2 and C4 do not contain the complicated diffeomorphic
transformation needed to map the source image to the target image in Fig. 4. However, this
warp can be achieved satisfactorily by composing just 3 warps that each belong to C4, as
shown in Fig. 6(b). In contrast, to achieve a satisfactory warp by composing transformations
that lie in the box constraint C2 [21], [22] required about 30 concatenations, as shown in Fig.
6(a). For larger and more complicated deformations, our proposed constraint C4 can be used
as a simple elemental transformation to provide diffeomorphic composite transformations.

IV. Simple regularizer based on local invertibility condition
A. Proposed simple regularizer

If we want to strictly ensure local invertibility, then we maximize a similarity metric subject
to the linear constraints c ∈ C4. However, to simplify the computation, we can relax the
invertibility condition by using a penalty method [16], [27]. In a penalty method we
maximize an objective function that is the similarity metric minus a penalty function that
encourages the invertibility condition, but does not enforce it strictly.

We propose to construct a penalty function based on the following piecewise quadratic
function:
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which is illustrated in Fig 7. The argument t denotes a difference between two adjacent
deformation coefficients. This function does not strictly constrain such differences, but its
first and second derivatives are simple and convenient for use in optimization algorithms
such as conjugate gradient. The final new penalty function is

(10)

where  for ∀r ∈ {x, y, z},  for r ≠ q and  for r = q. Note that
choosing ζ1 = ζ2 = 0 would correspond to a quadratic roughness penalty over B-spline
coefficients, which is akin to encouraging the volume preserving condition |J| = 1, ∀r.

Being based on the somewhat restrictive solution space C4, the new penalty method can
encourage the local invertibility on the whole continuous domain with a fast and memory
efficient implementation. This implementation is possible because C4 does not require
additional B-spline interpolations beyond the interpolations needed for the data fitting term.
It also encourages the smoothness of deformations inherently because it constrains the
differences between adjacent deformation coefficients. In contrast, using C0 or C1 is much
more expensive for one transformation.

B. Incorporating a priori knowledge of motions
For diffeomorphic transformations using Theorem 1, the usual choice would be kx = ky = kz
= 1/3 − ε for some small ε. However, if we have a priori knowledge about the deformation,
then we can assign each kq accordingly. For instance, for registering thorax inhale and
exhale images, we can assign kx = ky = 1/4 − ε and kz = 1/2 − ε because the deformation in
the z direction is larger due to diaphragm motion, whereas the deformations in the x and y
directions are smaller. With this design, C4 allows 50% local shrinkage along z and 75%
local shrinkage along x and y instead of allowing 67% shrinkage in each direction. We can
use this sufficient condition for the proposed simple regularizer to encourage local
invertibility of the deformation.

C. 2D simulation: expansion and shrinkage
We applied nonrigid image registration to the 256 × 256 images in Fig. 8 using no
constraint, a Jacobian penalty based on C1, a quadratic roughness penalty [7], a regularizer
based on Kim’s constraint C3, and our proposed penalty method based on C4. Fig. 8 has an
expanding circle and a shrinking ellipse to illustrate the difference between C3 and C4. Since
we have a priori knowledge about vertical motion, we investigated two sets of parameters in
C4: a symmetric way with kx = ky = 1/2 − 0.01 × 1/2 as well as an asymmetric way with kx =
0.35 − 0.01 × 0.35 < ky = 0.65 − 0.65 × 0.01.

We placed deformation knot points every 4th pixel. The data fit term used sum of squared
differences. For optimization we used the conjugate gradient method. Line search step size
was determined by one step of Newton’s method. We used fast B-spline interpolation and
the 4-level multiresolution scheme as in III-D. We ran 200 iterations for each level or ran
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until the l0 norm of the gradient is less than the machine accuracy. We checked the local
invertibility by computing Jacobian determinant values on a grid 10 times finer than the
image resolution.

Fig. 9 quantifies the tradeoff between image similarity and local invertibility for the 5
different registration methods for a range of regularization parameters. The horizontal axis is
the root mean square (RMS) difference between the deformed image and the target image
(log scale) and the vertical axis is the number of the finer (10 times) voxel grid points having
a non-positive Jacobian determinant (log scale). We took a log after adding 1 for the number
of non-positive Jacobian determinant since the lowest number of it is 0.

For the unconstrained case, the RMS difference was 0.0109 and the number of negative
Jacobian determinants was 497644. As the regularization parameters decrease, the RMS
differences and the number of negative Jacobian determinants of all other methods
approached closely to these values. This is expected because the unconstrained case is the
same as any other penalty method with regularization parameter 0.

As we increased the regularization parameters, the number of negative Jacobian
determinants “generally” decreases, eventually towards zero, although not always
monotonically. The RMS differences also “generally” increase as the regularization
parameters increase for most methods except Jacobian penalty. This is because the Jacobian
constraint C1 contains the original constraint C0 and it does not restrict the deformation so
that it can achieve low RMS difference for strong penalty parameters. For properly chosen
regularization parameters, symmetric/asymmetric proposed simple penalties show fairly
good performance compared to Kim’s or quadratic penalty methods based on more
restrictive sufficient conditions (Kim’s: Kx = kx, Ky = ky and quadratic: Kx = kx = 0, Ky = ky =
0).

Table I shows the best RMS difference of image for each method with zero non-positive
Jabocian determinant values over the 10 times finer grid. The proposed simple penalty with
a priori motion information performed well compared to Jacobian penalty. However, as the
regularization method depends on more restrictive condition, the RMS difference is larger. It
clearly shows that a quadratic penalty oversmoothes the deformations.

Our proposed asymmetric penalty performed a little better than Jacobian penalty in these
experiments. However, our proposed penalty may not always perform better. It depends on
the convergence, regularization parameter, image structure and so on. Since the data fitting
term is non-convex, local minima may affect the result, too. However, for simpler cases like
in Fig. 8 our proposed regularization method may perform close to the Jacobian penalty
method. In the next section, we apply both methods to the 3D real CT images of a patient.

D. 3D real CT images
We applied our proposed regularization method (10) to the problem of registering 3D
breath-hold X-ray CT images of a real oncology patient scanned at inhale and at exhale.
These images are useful for radiation treatment planning. The image size was 396 × 256 ×
128 as shown in Fig 10. We chose kx = ky = 1/4 − 0.01 × 1/4 and kz = 1/2 − 0.01 × 1/2
because we expect the deformation in the z direction to be larger than the deformations in
the x and y directions due to diaphragm motion.

We used the same methods as in Section IV-C except for the multiresolution scheme. For
the first 3 levels of multiresolution, the knot spacing was every 8 pixels for downsampled
images, and for the last level of multiresolution the knot spacing was every 4 pixels. We ran
120 iterations at each level to see the convergence properties. The regularization parameter
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that multiplies (10) was chosen experimentally to achieve the minimum value of data fitting
term such that all Jacobian values on the image grid were positive.

Fig. 11 shows the difference images between the target image and the deformed images. As
expected, the difference image for unconstrained registration in Fig. 11(a) has smaller values
than the constrained difference images in Fig. 11(b) and (c). The RMS difference for
unconstrained registration was the smallest, which was 19.9 HU. The RMS errors of the
Jacobian penalty (25.9 HU) and the proposed penalty (29.2 HU) were somewhat higher.
However, Fig. 12(a) shows that unconstrained registration yields an unrealistic warped grid.
The number of negative Jacobian determinant voxels was 316914 out of 12582912 voxels.
Fig. 12(c) shows a smoother warp than Fig. 12(b) because our proposed penalty method is
based on C4 which is a smaller set than C1. Our proposed method has smoothness property
implicitly because it restricts the range of the differences between adjacent B-spline
coefficients.

The proposed penalty method was much faster and more memory efficient than the
traditional Jacobian penalty method per iteration. If one uses the sum of squared error as the
data fitting term and penalizes negative Jacobian determinant values on each image grid
point in 3D with cubic B-splines, then the interpolations needed to compute the gradients of
the direct Jacobian penalty function require about 1.8 times more operations than the
interpolations needed for the gradient of the data fitting term. Table II shows the
computational cost for one iteration at the last (finest) level of the multiresolution procedure.
Our proposed method requires only slightly more time per iteration than unconstrained
registration, and much less time than using a Jacobian penalty. Furthermore, in this
simulation, the traditional Jacobian penalty method required about twice as much memory as
our proposed method because it must store the interpolation results for the Jacobian
gradient. Fig. 13 shows the convergence of each method.

We could compose a coarse resolution warp based on (10) with one full sequence of coarse-
to-fine warp based on (10) to reduce RMS differences further with only slight increase in
computation.

V. Discussion
We proposed a new condition Theorem 1 that is sufficient to ensure the local invertibility of
transformations based on B-splines. Its limitation can be overcome by using composite
transformations. This proposed sufficient condition can be used with constrained
optimization such as augmented Lagrangian multiplier method [17] or Dykstra’s cyclic
projection method [25].

We showed that the proposed sufficient condition is more general than other simple
sufficient conditions that ensure local invertibility everywhere such as box constraint [21].
When used in composite transformations, it requires many fewer transformations to achieve
comparable deformations [22].

We also relaxed our local invertibility condition by a simple quadratic-like penalty. This
approach achieves more flexible image matching compared to other penalty methods based
on more restrictive local invertibility conditions. For practical use in a thorax image
registration, we used a single transformation with a simple quadratic-like penalty that
encourages c ∈ C4. This gave a fairly good deformation with no negative Jacobian
determinant values on image voxel grid points. This approach is much simpler and faster
than the traditional Jacobian determinant penalty and is more memory efficient.
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Some application areas require not only local invertibility, but also require computing the
inverse transformation. One approach is to estimate both forward and backward image
registration parameters with consistency regularizer [33]. Using both consistency regularizer
and our proposed regularizer can be interesting future work.

In the 3D thorax registration example, we observed some bone warping in each of the
deformed images; a natural direction for further research would be to use a rigidity penalty
term [34], [35].
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Appendix A

Proof of Lemma 1
Proof

The global maximum and minimum values exist since |J| is continuous on the compact set
I1×···×I9. Suppose that (x1, ···, x9) achieves the global minimum value of |J| and min Ik < xk <
max Ik for some k. Fix all xi except xk, |J| is an affine function with respect to xk so |J| can
achieve equal or better global minimum value on either xk = min Ik or xk = max Ik. The same
argument can be applied for all xi such that min Ii < xi < max Ii and thus it generates a
contradiction. The same argument can be applied to the global maximum case.

Appendix B

Proof of Lemma 2
Proof

By Lemma 1, we need to evaluate |J| only on x1 ∈ {−kx, Kx}, x4 ∈ {−ky, Ky}, x9 ∈ {−kz, Kz}
and xi ∈ {−kqi, kqi} where qi = x for i = 2, 3, qi = y for i = 4, 6 and qi = z for i = 7, 8. For
fixed xi except x1, |J(x1)| = (1 + x1){(1 + x5)(1 + x9) − x6x8} + c where c is a constant for x1
and (1 + x5)(1 + x9) − x6x8 is always positive under given conditions. So x1 = Kx for max |J|
and x1 = −kx for min |J|. Similarly we determine x5 and x9. For fixed xi except x2, |J(x2)| =
x2{x6x7 −(1+x9)x4}+c where c is a constant for x2. For min |J|, x2 = −kx if x4 = −ky and x2 =
kx if x4 = ky. In other words, x2x4 = kxky for min |J|. Similarly, x2x4 = −kxky for max |J|. In
this fashion, x6x8 and x3x7 will be determined for max |J| and min |J|. From these results, one
can induce that x2x6x7 + x3x4x8 = 0 for max |J| and x2x6x7 = x3x4x8 = −kxkykz for min |J|.

Appendix C

Proof of Lemma 3
Proof

For d(x) = Σi ciβn(x/mx − i), by using  in [30]

Using the constraints  and the property Σi βn(x/mx − i) = 1, we have
the bounds
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Similarly, . The other directions y, z can be proved similarly.
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Fig. 1.
Illustration of limitation of C4. The constrained transformation maps [0 0.6] to [0.3 0.7]
instead of [0.3 0.6].
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Fig. 2.
Solution space for 2D positive Jacobian determinant. Smaller k values admit smaller a, d
values but preclude more values of b, c.
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Fig. 3.
Local invertibility sufficient condition space in 2D, for k = 1/4, kx = ky = 1/2 and Kx = Ky =
∞. C4 corresponds to using a fixed k value. (a) a > −1/2 and d > −1/2. (b) |b| < 1/2 and |c| <
1/2.
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Fig. 4.
Images for illustrating 2D nonrigid registration.
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Fig. 5.
Deformed images (left) and their warped grids (right)
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Fig. 6.
Proposed constraint requires much less transformations to achieve a satisfiable deformation
than the box constraint.
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Fig. 7.
A variant of quadratic penalty function (solid) and real constraints (dashed) used with
constraint set C4.
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Fig. 8.
Images for illustrating expansion and shrinkage.
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Fig. 9.
RMS error and negative Jacobian determinant trade-off for different regularization
parameters. (log scale)
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Fig. 10.
3D source (exhale) and target (inhale) X-ray CT images.
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Fig. 11.
Differences between 3D target and deformed images.
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Fig. 12.
Warped grids for 3D inhale-exhale registration.
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Fig. 13.
Convergence of each method.
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TABLE I

The best RMS error for each method with zero negative Jabocian determinant in 2D simulation.

Jacobian New (asym) New (sym) Kim Quadratic

0.0373 0.0360 0.0454 0.2026 0.6091
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TABLE II

Computational cost at the finest level

Method CPU time per iteration (sec)

Unconstrained 25.7

Jacobian penalty 81.1

Proposed method 27.4
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