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 Bacteria use a variety of means to communicate with 
one another and with their eukaryotic hosts  [1–6] . In 
some cases, social interactions in complex bacterial colo-
nies allow bacteria to synchronize the behavior of all 
members of the group and thereby act like multicellular 
organisms  [7] . By contrast, some bacterial social engage-
ments promote individuality among members within the 
group and thereby foster diversity  [8, 9] . Bacterial com-
munication systems include long- and short-range chem-
ical signaling  [10] ; one-way, two-way, and multi-way 
communication  [11] ; contact-mediated and contact-in-
hibited signaling  [12, 13] , and the use and spread of mis-
information, even deadly information  [8, 14] .

  Bacteria use a diversity of small molecules for extra- 
and intracellular signaling  [8] . They scan small-molecule 
mixtures to access information about both their extracel-
lular environment and their intracellular physiological 
status. Based on the integrated information, they contin-
uously interpret their circumstances and react rapidly to 
changes  [15] . They must integrate extra- and intracellular 
signaling information to mount appropriate responses to 
environmental changes.

  Several small-molecule bacterial signaling pathways 
have been identified. These include extracellular ‘quo-
rum-sensing’ signaling and intracellular cyclic dinucle-
otide signaling. Possibly, these two pathways converge
to control complex processes including multicellularity, 
biofilm formation, and virulence  [15] .

  The exchange of extracellular signaling molecules 
must be mediated by specific transporters, some involved 
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 Abstract 
 The TqsA (YdgG) protein of  Escherichia coli  has been shown 
to export the autoinducer-2 (AI-2) molecule, a furanosyl bo-
rate diester that bears little resemblance to previously char-
acterized biological molecules. TqsA belongs to a large su-
perfamily, the AI-2 exporter (AI-2E) superfamily, of putative 
transporters with no other functionally characterized mem-
bers. These proteins derive exclusively from bacteria. Many 
different bacterial kingdoms contain them, although several 
kingdoms do not. These proteins exhibit a uniform topology 
with 8 putative transmembrane segments (TMSs) which we 
show probably arose from a 4-TMS precursor in a process 
that involved at least one and possibly two intragenic dupli-
cation event(s). The first halves of these proteins are more 
diverse in sequence than the second halves, suggesting that 
the first halves may serve substrate-specific functions while 
the second halves serve family-specific functions. Conserved 
residues and motifs in these proteins are identified. Some 
homologues include extra catalytic domains including
those involved in purine nucleotide biosynthesis, ATP and 
GTP binding, and molecular signaling. The results presented 
provide guides for future functional studies on members of 
this superfamily of bacterial transporters. 
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in molecular uptake, others catalyzing efflux  [16–18] . 
Unlike other autoinducers, which are specific to a par-
ticular species of bacteria, autoinducer-2 (AI-2) is pro-
duced by a large number of bacterial species. AI-2 has 
been proposed to serve as a ‘universal’ signal for inter-
species communication  [8] . The crystal structure of an 
AI-2 sensor protein, LuxP, in complexation with the au-
toinducer, revealed the bound ligand to be a furanosyl 
borate diester that bears no resemblance to previously 
characterized autoinducers  [19] .

  Recently, the  Escherichia coli  YdgG (TqsA) protein was 
shown to control biofilm formation in  E. coli  K-12 by me-
diating AI-2 transport. YdgG had been known to be in-
duced in  E. coli  biofilms. Deletion of  ydgG  decreased ex-
tracellular and increased intracellular concentrations of 
AI-2, suggesting that YdgG enhances export of AI-2  [20] . 
Consistent with this hypothesis, deletion of the  ydgG 

 gene increased cell motility by increasing transcription of 
flagellar genes that were known to be induced by AI-2. By 
expressing  ydgG  in  trans , the wild-type phenotypes for 
extracellular AI-2 activity, motility, and biofilm forma-
tion were restored.

  YdgG is a membrane-spanning protein that is con-
served in many bacteria. It influences resistance to sev-
eral antimicrobials, including crystal violet and strepto-
mycin  [20] . Deletion of  ydgG  caused 31% of the bacterial 
chromosome to be differentially expressed in biofilms. 
This fact apparently resulted because AI-2 controls the 
transcription of hundreds of genes. Since YdgG catalyzes 
export of the quorum-sensing signal, AI-2, the gene name 
 tqsA  (transporter of quorum sensing-A) was suggested 
 [20] .

  In this communication, we analyze the family of puta-
tive transporters to which TqsA belongs. We name this 
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  Fig. 1.  Phylogenetic trees for the 5 families 
of proteins in the AI-2E superfamily ( a–e ) 
as well as for the complete superfamily ( f ). 
 a–e  Families 1–5, respectively.  f  The full 
superfamily tree showing the positioning 
of families 1–5 relative to each other. The 
dendogram corresponding to the tree in  f  
is presented in figure S2. It is based on the 
multiple alignment shown in figure S1. 
Programs used to derive the trees have 
been described (CLUSTAL X  [24]  and 
TreeView  [25] ). Protein abbreviations for 
all members of the AI-2E superfamily can 
be found in table S1 (alphabetically ar-
ranged) and tables S3–S7 for the 5 families 
(1–5, respectively). The standard abbrevia-
tions used in our laboratory and many oth-
ers include three letters often followed by 
a number. The first capitalized letter refers 
to the genus name while the second two 
small letters are the first two letters of the 
species name. Thus, Eco2 refers to the sec-
ond paralogue in  E. coli.
(For figure 1 b–f see next pages.)  
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family the AI-2 exporter (AI-2E) superfamily, based on 
the function of its first characterized member. We show 
that it is a huge superfamily (Pfam family PF01594) with 
members derived from a wide range of bacteria. However, 
no member of the family was identified from an archae-
on, a eukaryote, or a member of certain bacterial king-
doms that include sequenced organisms with reduced ge-
nome sizes. Phylogenetic analyses revealed the relation-
ships of these homologues to each other with groupings 
largely according to organismal type. However, this oc-
curred in an unusual fashion suggestive of several func-
tional types with occasional lateral gene transfer respon-
sible for some of the anomalies. Thus, the analyses reveal 
groups of apparent orthologues that presumably serve the 
same function. Conserved motifs are identified which 
must play specific functional/structural roles. An evolu-
tionary pathway for the appearance of these proteins, 
based on intragenic duplication of an ancestral 4-trans-
membrane segment (TMS) unit is established. Finally, 

extra domains with recognized functions in some of 
these proteins are identified, and these provide clues as to 
the associated transport functions.

  Methods and Results 

 Initial Phylogenetic Analyses of the AI-2E Superfamily  
 The PerM protein of  E. coli  (TC #2.A.86.1.1) was used as the 

query sequence in PSI-BLAST searches (default settings) with six 
iterations  [21] . A modified CD hit program  [22]  was used to elim-
inate redundancies and closely similar sequences of greater than 
90% identity (the default setting). This program randomly selects 
one protein of several that are of greater than 90% identity with 
each other. Membership to the AI-2E superfamily was assigned 
based on sequence similarity throughout the transmembrane re-
gions. All members of the superfamily thus exhibited at least 9 SD 
(probability that the observed degree of similarity arose by chance 
is less than 10 –19   [23] ). 391 non-redundant homologues from the 
NCBI protein databank remained and served as our data set
for all analyses reported here (see table S1 on our website; http://
www.biology.ucsd.edu/ � msaier/supmat/AI-2). A neighbor-join-
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ing phy lo genetic tree ( fig. 1 f), based on a CLUSTAL X multiple 
alignment  [24]  (see fig. S1 on our website), and a dendogram (fig. 
S2), drawn using the TreeView program  [25] , were generated.

  The proteins generally fell into 5 distinct clusters or families 
of fairly similar size ( fig. 1 f). Cluster 1 (family 1) contains 78 pro-
teins; family 2, 58 proteins; family 3, 89 proteins; family 4, 103 
proteins, and family 5, 63 proteins. The multiple alignment of all 
391 proteins (fig. S1) revealed two fully conserved prolyl residues, 
one at alignment position 532, and the other at alignment position 
627 within hydrophobic peaks 6 and 8, respectively (see below). 
Several gaps were observed within the hydrophilic regions of 
these aligned sequences (positions 249–263, 336–384, 404–416, 
441–446, 463–468, 508–515, 523–526, and 559–569 of the 1,112 
residue position alignment presented in fig. S1).

  Topological and Sequence Conservation Analyses  
 Each of the 5 families within the AI-2E superfamily was ana-

lyzed separately for sequence conservation, topology, and phylog-
eny. The proteins, their organismal sources, abbreviations, sizes, 
numbers of putative TMSs and Genbank (gi) identification num-
bers for the 5 clusters are provided in tables S3–S7. The 5 neigh-
bor-joining phylogenetic trees are shown in  figure 1 a–e, while the 
average hydropathy, amphipathicity and similarity plots, based 
on the AveHAS program  [26]  are shown in  figure 2 a–e. The Ave-
HAS program averages the hydropathy plots for all aligned se-
quences, providing much greater accuracy than would otherwise 
be possible. These figures provide the bases for several of the con-
clusions cited below. They were derived using the multiple align-
ments presented in figure S3–S7 on our website. Hydropathy and 
amphipathicity plots for individual proteins were generated using 
the WHAT program  [26] .

  Family 1 proteins show eight peaks of hydrophobicity ( fig. 2 a) 
and several fully conserved residues (fig. S3). These include seven 
prolyl residues (alignment positions 104, peak 3; 195, end of peak 
4; 217, between peaks 4 and 5; 279, peak 6; 326 and 337, beginning 
of peak 8; and 361, end of peak 8). The second halves of these pro-
teins proved to be better conserved than the first halves.

  We derived consensus sequences for the two best conserved 
regions of these proteins for all 5 families. In peak 6, the consensus 
sequence was:

* : ::*:  : * *
GLSVLIPY(LIV)GA(LIV) 3 TVP

  while in peak 8, the consensus sequence was: 

*  :  :     ::* :    : : * * . *:.:.: *
P(LIV)FSEAVNLHP(LIV) 4(SA)(LIV) 3 FGGLWGFWGVFFAIP

  where asterisks indicate identities only, colons close similarities, 
and dots more distant similarities as defined by the CLUSTAL X 
program; alternative consensus residues at any one position are 
indicated in parentheses.

   Figure 3  shows how these two consensus sequences differ be-
tween the proteins of the 5 phylogenetic families. Of these 5 fam-
ilies, family 1 appears to be the best conserved with respect to 
both identities and conservative substitutions. The two sets of 
consensus sequences show similarities in all 5 families. For ex-
ample, the P at position 7 in motif 1 and the P in the terminal po-
sition of motif 2 are fully conserved in all proteins of the AI-2E 
superfamily as noted above, suggesting an essential structural or 
functional role. The G at position 10 in the first consensus se-

quence and those at positions 21 and 25 in the second consensus 
sequence are conserved in nearly all families. While the dominant 
residue may differ in the different families at specific positions, 
these are not fully conserved in any of these families. Thus, when 
the consensus residues differ, they are never fully conserved. We 
conclude that in none of these 5 families is a distinctive function, 
common to all members in that family, but different from those 
of the other four families, dictated by a specific residue or set of 
residues within these two conserved motifs. It appears that these 
motifs provide structural features or a function that is common 
to all members of the AI-2E superfamily. 

  The average hydropathy plots shown in  figure 2 a–e reveal the 
characteristics of each of the 5 families in the AI-2E superfamily. 
Family 1 is most compact, with no protein showing N- or C-ter-
minal extensions. In this plot, peaks 1 and 2 are close to each oth-
er, peak 3 is more distant, and peak 4 is still more distant. Peaks 
5–7 are all overlapping while peak 8 is distinct but close to peak 7. 
This pattern is observed for all 5 families (compare  figure 2 a–e). 

  The average amphipathicity plots revealed that all 5 families 
show similar characteristics: amphipathic peaks occur following 
hydrophobic peaks 3, 4 and 8 and coinciding with peak 6. Motif 
1, also coinciding with peak 6, reveals a general pattern of a semi-
polar residue followed by three hydrophobic residues. A helical 
wheel depiction showed that strongly hydrophobic residues occur 
on one side of helix 6, while semipolar residues predominate on 
the other side (data not shown), thus accounting for the amphi-
pathicity of putative TMS 6. 

  As noted above, families 2–5 show poorer conservation than 
observed for family 1 ( figure 2 a–e and  3 ). Further, families 2–4 
contain proteins with short N-terminal and long C-terminal hy-
drophilic sequences, while family 5 contains proteins with both 
N- and C-terminal extensions maximally of about 160 residues 
each. The domains in these longer proteins will be analyzed and 
described below. 

  Phylogenetic Analyses of the 5 Families of the AI-2E 
Superfamily  
 The phylogenetic trees for the 5 AI-2E families are presented 

in  figure 1 a–e. Family 1 proteins derive exclusively from the pro-
teobacterial phylum of the  � - and  � -orders. Family 2 is largely 
from  � -,  � -,  � - and  � -proteobacteria, but three proteins are from 
a single species each of the  Bacteroides , Firmicute and  Planctomy-
cetes  phyla, respectively. Family 3 includes proteins from the same 
proteobacteria as for family 2, but  Chlorobi  and  Chloroflexi  pro-
teins are also present. Family 4 proteins are exclusively from fir-
micutes except for one actinobacterial protein. Finally, family 5 
proteins are mostly from actinobacteria and cyanobacteria with a 
few proteins from  Deinococcus ,  Chloroflexi  and  � -proteobacterial 
species. It is therefore clear that phylogenetic clustering is pre-
dominantly according to organismal type with a few interesting 
exceptions. Also of interest is the absence of homologues in spe-
cific bacterial kingdoms such as the spirochetes, chlamydia, and 
mycoplasma. Most of the sequenced genomes of bacteria in these 
kingdoms are of reduced size due to their obligate parasitic life-
styles. We detected no homologues outside of the bacterial do-
main.

  Repeat Elements in AI-2E Superfamily Proteins  
 The GAP and IC programs, with default settings and 500 ran-

dom shuffles (to establish statistical significance)  [27, 28]  were 
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  Fig. 2.  Relative average hydropathy (solid dark lines, top), average 
amphipathicity (dotted gray lines, top) and average similarity 
(solid but thin lines, bottom) plots for the 5 families of proteins in 
the AI-2E superfamily.  a–e  Families 1–5, respectively. The Ave-
HAS program was used to derive the plots using all members of 
each of the 5 families included in this study  [47] . Peaks of hydro-

phobicity that are believed to correspond to the 8 putative TMSs 
are numbered above the hydropathy plot. Assignments were con-
firmed using the WHAT  [26]  and TMHMM  [48]  programs for 
individual proteins. These plots are based on the multiple align-
ments shown in figure S3–S7. 
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used in attempts to establish homology between the first and sec-
ond putative halves (TMSs 1–4 and 5–8) in proteins of the AI-2E 
superfamily, respectively.  Figure 4 a shows an alignment of puta-
tive TMSs 1–3 with putative TMSs 5–7, and  figure 4 b shows an 
alignment of putative TMS 4 with putative TMS 8. In  figure 4 a, 
the alignment gave 33% identity, 46% similarity, and a compari-
son score of 8.5 SD. In  figure 4 b, the alignment gave 30% identity, 
41% similarity, and a comparison score of 9.4 SD. These values 
correspond to probabilities of  � 10 –17  and  � 10 –20 , respectively, 
that the observed degree of sequence similarity could have arisen 
by chance  [23] . The proteins compared are derived from family 3. 
Interestingly, TMS 4 and the upstream hydrophilic region of the 
Nmo2 protein aligned with TMSs 6–8 in the Asp2 protein, sug-
gesting that the hydrophilic region between putative TMSs 3 and 
4 may have arisen from the equivalent of TMSs 6 and 7. These re-
sults clearly suggest that these proteins arose in a process that in-
volved intragenic duplication, but it is not clear whether part or 
all of the 4-TMS element was duplicated in a single event. The 
precise path may have involved more than one (partial) intragen-
ic duplication event (see ‘Discussion’).

  Extra Domains in Large Homologues  
 Table S2 presents the 44 AI-2E superfamily homologues that 

exhibit larger than normal sizes. Twenty-two are from family 5 
(actinobacteria and  Chloroflexi ), 14 are from family 2 ( � - and  � -
proteobacteria and one  Planctomycetes  species), 5 are from fam-
ily 3 ( � -,  � - and  � -proteobacteria), and 3 are from family 4 (fir-

micutes). One of the homologues, Tde1 of 665 residues, has a C-
terminal domain homologous throughout its length with 
phosphoribosyl amino imidazole succinocarboxamide synthe-
tase, involved in purine nucleotide biosynthesis. It is thus possible 
that Tde1 is an exporter specific for a purine nucleotide or one of 
its biosynthetic metabolites. A second protein, Bme1, also of fam-
ily 3, has a C-terminal ATP/GTP binding P-loop-containing do-
main similar to those present in three  E. coli  proteins, DnaA 
(P03004), DNA polymerase III  � -subunit (HolA; P28630) and the 
ATP binding protein, IstB (AAC33916). This observation can be 
interpreted to suggest a function concerned with export of a nu-
cleotide or a derivative of it.

  Two large protein homologues in family 2, Nha1 and Asp3, 
possess C-terminal sensor GAF domains  [29] . These domains can 
be signaling domains and are present in cyclic di-GMP-regulated 
cyclic nucleotide phosphodiesterases, adenylate cyclases and bac-
terial transcription factors  [30] . They are similar in structure to 
PAS domains and probably bind cyclic nucleotides  [30] . This ob-
servation agrees with those cited above, suggesting an involve-
ment in cyclic nucleotide export. It should be noted that cyclic 
AMP efflux from  E. coli  is dependent on the proton motive force 
 [31] , but that no protein has yet been shown to possess such an 
activity. It is possible that some of these AI-2E porters are the un-
identified cyclic AMP exporters  [31] .

  Three proteins in family 2, Nwi1, Nsp1 and Nha3, appear to 
contain partial or full-length Tpr-like ligand-binding domains 
 [32, 33] . This suggestion is based on TC-BLAST hits when these 

Family
* : : : * : : * *

1 G L S V L I P Y [LIV] G A [LIV] [LIV] [LIV] T V P
: * : *

2 F [LIV] [LIV] N Y [LIV] P [YN] [LIV] G S [LIV] [LIV] A A [LIV] P
. : * *

3 G [LIV] [LIV] S F [LIV] P Y [LIV] G A [LIV] [LIV] G G [LIV] L
: * * .

4 G [LIV] [LIV] N [LIV] [LIV] P Y [LIV] G P [LIV] [LIV] A [LIV] T P
: . *

5 F [LIV] G A F [LIV] P [LIV] [LIV] G A [LIV] [LIV] A G A [LIV]

a

Family
* : : : : *

1 P [LIV] [LIV] F S E A V N L H P [LIV] [LIV] [LIV] [LIV] [LIV] [SA]
* . : . . .

2 P R [LIV] M G R G L G L S T L V V F L S
* . . . . :

3 P R [LIV] V G D S [LIV] G L H P V W [LIV] [LIV] F A
* : : .

4 P [LIV] V M G K S [LIV] G [LIV] H P [LIV] T [LIV] [LIV] [LIV] [LIV]
. : :

5 P L [LIV] M G R A V S [LIV] H P L A [LIV] [LIV] [LIV] A

Family
: : * * * . : . : *

1 [LIV] [LIV] [LIV] F G G L W G F W G V F F A I P
: * . : *

2 L I F W G W L L G P V G M L L S V P
: . * * : *

3 [LIV] [LIV] A G G A [LIV] F G F [LIV] G [LIV] [LIV] [LIV] A V P
. *

4 [LIV] [LIV] A A G N [LIV] F G [LIV] [LIV] G V [LIV] [LIV] A I P
* * . *

5 [LIV] A [LIV] G G T L A G [LIV] [LIV] G A L L A V P

b

  Fig. 3.  Consensus motifs 1 ( a ) and 2 ( b ) 
showing degrees of relative conservation 
in the most conserved regions of the pro-
teins of the 5 families within the AI-2E 
 superfamily. Asterisks indicate identities 
only; colons indicate close similarities; 
dots indicate more distant similarities as 
defined by the CLUSTAL X program for 
each of the 5 families (1–5); alternative 
consensus residues at any one position are 
indicated in brackets.  b  The longer motif 
is presented in two lines.       
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three proteins were blasted against TCDB  [34] . The searches 
yielded above threshold hits (e –4 ) to the Sec72 protein of the SRP 
complex of  Saccharomyces cerevisiae  (3.A.5.8.1). This latter pro-
tein is known to possess the Tpr domain in the region of sequence 
similarity. The alignment is shown in  figure 5  for Nwi1 versus 
Sec72. This alignment, with 36% identity and 50% similarity, gave 
a comparison score of 13.5 SD. This value is considerably in excess 
of what is required to establish homology  [35] . It is worth noting 
that the region of similarity overlaps the Tpr domain of Sec72 but 
includes the N-terminally adjacent region as well. This region is 
actually present in many of the large family 2 proteins.

  Discussion 

 In this report, we have characterized a superfamily of 
putative secondary efflux pumps, previously named the 
PerM family  [36, 37] . The functional characterization of 
the TqsA protein of  E. coli  (previously annotated as YdgG) 
by Herzberg et al.  [20]  revealed that this PerM family 
member is the AI-2 efflux pump. The present demonstra-
tion of the distribution of 391 members of this superfam-
ily from many bacterial kingdoms has caused us to re-
name this family after the substrate of its only function-
ally characterized member. We have, consequently 
designated it the AI-2E superfamily.

  The AI-2E superfamily exhibits some unique charac-
teristics. First, the members fall into 5 phylogenetic clus-
ters or families that we have analyzed separately. Second, 
all members seem to have a uniform 8-TMS topology, a 
characteristic reflected by the average hydropathy plots 
for all 5 families ( fig.  2 a–e). Two closely spaced TMSs 
(TMSs 1 and 2) are followed by a more distant TMS 3 and 
an even more distant TMS 4. These are then followed by 
four more TMSs in a 3 + 1 arrangement. Third, these hy-
drophobic domains are homologous throughout their 
lengths in all 391 members of the AI-2E superfamily ana-
lyzed here, and they include two fully conserved prolyl 
residues, one in TMS 6 and one in TMS 8. Fourth, the 
second 4 TMSs are better conserved than the first 4 TMSs, 
a generalization that appears valid for all 5 families with-
in this superfamily. Finally, the two halves apparently 
arose by one or more internal duplication event(s). TMSs 
1–3 are almost certainly homologous to TMSs 5–7, and 
TMS 4 is homologous to TMS 8.

  Surprisingly, the long hydrophilic domain preceding 
TMS 4 (but not TMS 8) is similar in sequence to the re-
gion bearing TMSs 6 and 7 in spite of the greater hydro-
philicity of the former regions. This observation suggests 
that the pathway by which these proteins arose may have 
been complex. There may have been two partial or full-
length duplications of the compact C-terminal 4-TMS 
domain. Two partial duplications, followed by sequence 
divergence, or two full-length duplications, followed by 
partial deletion and sequence divergence, could have giv-
en rise to the current members of the superfamily. If the 
latter possibility is correct, the one deletion event giving 
rise to an 8-TMS protein from an ancestral 12-TMS pro-
tein might have occurred early during the evolution of the 
superfamily in order to account for their uniform topolo-
gies.

1 2
8 QMKYWGVAGALFLVFLWFTGDVLLPFLIGAAIAYFL.IAYF...LDPVAD 48

|||. : | |: |:|:|.| : . |||| ... :. | || :.
180 QMKISFILGVLYTVLLFFAG.MPYYFLIGVSTGMLTIIPYFGNITGLITS228

5 6

3
49 RLEAMG.LSRAMATMVITLVALLIFVLMALLVIPTLINQAINL 90

.| |:. | : : |||: :. : .|:: | |:...:||
229 HLVALSRASSILDVLPITLIFIFCGAIEGLFLSPKLLSKSVNL 271

7a

105 LLPQVVDWVHQVGLPWLRTHAGVGIESLDLATLRGAIAEHWQSTSSFAAS 154
:: |: | | |: |:. | ||: : .: | | : . . . |

258 IIAAVIATVFQFGVDWMQL.ALVGVVFMIGQAVEGYILQPFLLGDKIGLS 306

4

155 VVAQ..ATSSGLALAGLLANLALIPV 178
|| | .| |||:|. | :||

307 PVAVVFAVLAGAQLAGFLGMLIALPV 332

8b

  Fig. 4.  Alignments of TMSs 1–3 (top) with TMSs 5–7 (bottom;  a ) 
and TMS 4 (top) with TMS 8 (bottom;  b ) and their preceding re-
gions. The alignments were generated with the GAP program 
   [27] . Vertical lines indicate identities; colons indicate close simi-
larities; dots indicate more distant similarities as defined by the 
GAP program  [27] . Residue numbers in each protein are indicat-
ed at the beginning and end of each line.   

Nwi1 346 VLATPLTICLVVLGRHVEQLRFLDILLGDRPALSPPELF 384
:| . : :|| :||:|:| |. ||:||| :| |::|

Sec72 107 MLRSKIDLCL.ILGKHLEALQDLDFLLG..TGLIQPDVF 142

. .
395 YQRMLADDPAEAVEMAE.KFLKERSLAEYYENVALKGLM 422

.: || . : | : . ||.|| |.: |:.|:
143 VRK..ADCLLKLRQWEEARATCERGLALAPEDMKLRALL 179

  Fig. 5.  Alignment of part of Nwi1 (table S1) with part of the Sec72 
protein constituent of the general secretory pathway in  S. cerevi-
siae  (TC No. 3.A.5.8.1). The programs used and format of presen-
tation are as described in the legend to figure 4.             
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