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Renal fibrosis, characterized by tubulointerstitial fibrosis and 
glomerulosclerosis, is the final manifestation of chronic kidney disease. 
Renal fibrosis is characterized by an excessive accumulation and 
deposition of extracellular matrix components. This pathologic result 
usually originates from both underlying complicated cellular activities 
such as epithelial-to-mesenchymal transition, fibroblast activation, 
monocyte/macrophage infiltration, and cellular apoptosis and the 
activation of signaling molecules such as transforming growth factor 
beta and angiotensin II. However, because the pathogenesis of renal 
fibrosis is extremely complicated and our knowledge regarding this 
condition is still limited, further studies are needed.
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Introduction

Renal fibrosis, characterized by tubulointerstitial fibrosis and 
glomerulosclerosis, is the final manifestation of chronic kidney 
disease (CKD)1). The progression of CKD, one of the biggest 
problems in nephrology, indicates that patients inevitably reach end-
stage renal disease (ESRD) and require renal replacement therapies 
such as dialysis and transplantation2). Although a range of diseases 
such as glomerulonephritis; metabolic diseases, including diabetes 
mellitus and atherosclerosis; obstructive nephropathy; interstitial 
nephritis; and cystic nephropathies, including polycystic kidney 
disease, can be the major causes of CKD, renal fibrosis is always the 
common ultimate result of CKD3, 4). Renal fibrosis is characterized 
by an excessive accumulation and deposition of extracellular matrix 
(ECM) components1). In order to elucidate the specific pathway 
of renal fibrosis, many experimental studies have been conducted 
using laboratory animals5-12). This review article will focus on 
recent advances in the pathogenesis of renal fibrosis and review the 
therapeutic trials conducted with an aim to overcome renal fibrosis.

Experimental models of renal fibrosis

Most of the present knowledge about the pathogenesis of renal 
fibrosis is based on experimental studies with laboratory animals. 
However, only few studies have reported the common features of 
renal fibrogenesis, such as interstitial fibrosis, tubular atrophy, and 
glomerulosclerosis5). 

Nephrotoxic serum nephritis (NSN) is a frequently used model 
for anti-glomerular basement membrane (anti-GBM) disease or 
in situ immune-complex glomerulonephritis and is characterized 
by an early heterologous phase, including linear deposition of anti-
GBM antibody in the glomerulus and a subsequent autologous 
immune response against the planted antibodies6). NSN has been 
effectively used as a model for fibrosis with CD-1 mice, C57BL/6 
mice, and various gene-knockout mice5). Fibrotic lesions, including 
collagen deposition in the interstitium, increased fibroblasts, 
epithelial-to-mesenchymal transition (EMT), appear after 1-2 
weeks of NSN and severe tubulointerstitial fibrosis is noted between 
3 and 6 weeks5). 

Mice with an intended disruption of the COL4A3 gene, which 
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encodes the α3 chain of type IV collagen, were initially generated as 
a model for Alport syndrome7, 8). In this animal model, the primary 
renal pathologic finding is the splitting of the GBM and subsequent 
crescentic glomerulonephritis and renal fibrosis7, 9). 

Unilateral ureteral obstruction (UUO), as a model similar to 
human obstructive nephropathy, is induced by the ligation of a 
ureter of one kidney, while the contralateral kidney serves as a 
control; at as early as 3 days after UUO surgery, interstitial fibrosis 
associated with interstitial deposition of type IV collagen and 
tubular cell apoptosis are noted10). Thornhill et al.13) reported that 
tubular atrophy and interstitial fibrosis develop before significant 
renal pelvic dilatation in a neonatal rat model with variable chronic 
partial UUO, and that renal growth is reduced by 60% after 70% 
reduction of ureteral diameter. Moreover, although UUO is relieved 
after brief periods of obstruction, recovery from either structural or 
functional damages due to obstructive uropathy cannot be always 
guaranteed14). 

In the murine model of Denys-Drash syndrome, mice strains 
generated by crossbreeding of Wilms’ tumor 1 gene (WT-1) 
knockout mice and mice with a yeast artificial chromosome 
containing the WT-1 locus can present with either crescentic 
glomerulonephritis or mesangial sclerosis depending on the relative 
WT-1 expression levels11). Assmann et al.12) reported that transgenic 
mice with ectopic expression of the Thy-1.1 antigen on the podocyte 
gradually and spontaneously develop focal glomerulosclerosis. 

Pathogenesis and therapeutic trials of renal fibrosis

Renal fibrosis is characterized by glomerulosclerosis, tubu
lointerstitial fibrosis, loss of renal parenchyme, and inflammatory 
cell infiltration1) (Fig. 1A, 1B). These pathologic results usually 
originate from the underlying complicated cellular conditions such 
as the activation of EMT and fibroblasts, monocyte/macrophage 

infiltration, and cellular apoptosis1, 15). An early renal insult can 
evoke the activation of tubular cells that leads to the production 
of proinflammatory molecules that eventually contribute to renal 
fibrosis15). If high-grade proteinuria in tubular area develops due 
to the injured glomerular barrier, tubular cells can be exposed to 
bioactive molecules in the plasma or inflamed glomeruli16), thereby 
leading to the production of various chemotactic cytokines such as 
monocyte chemoattractant protein-1 (MCP-1)17, 18); regulated upon 
activation, normal T cell expressed and secreted (RANTES)19); 
and potent monocyte chemoattractants such as C3a and C5a20, 

21). Moreover, leukocyte adhesion molecules such as osteopontin, 
intercellular adhesion molecules (ICAMs), and vascular cell 
adhesion molecules (VCAMs) have been reported to originate from 
tubules and to play an essential role in mononuclear cell recruitment 
in chronic renal disease state22, 23). Due to the activation of these 
various chemokines and chemoattractants, most of monocytes 
move into the glomerular and interstitial area from the circulation 
via peritubular capillary epithelium and infiltrated monocytes, 
leading to the production of inf lammatory and fibrogenic 
cytokines, as well as injurious molecules, including reactive oxygen 
species (ROS)1). Finally, these inflammatory stimuli provoke the 
activation of mesangial cells, fibroblasts, and EMT and lead to 
the production of a large amount of ECM components. There are 
many disputes regarding the possible origins of renal fibroblasts 
that include migrating hematopoietic or mesenchymal stem cells 
from the bone marrow, periadventitial cells, activation of resident 
interstitial fibroblasts, and EMT of tubular epithelial cells24). 

In addition to this cellular activation, the activation of signal 
molecules also results in the accumulation of matrix along the 
tubular basement membranes and within the interstitial area15).

Transforming growth factor beta (TGF-β) is regarded as the 
key mediator of renal fibrosis in CKD25). TGF-β can be produced 
by both resident kidney cells and infiltrating leukocytes and 

Fig. 1. Pathologic findings of contralateral (A) and ipsilateral (B) kidney in C57BL/6 mice with UUO (day 7). 
Contralateral kidney without UUO shows intact glomerular and tubulointerstitial structure (A), whereas ipsilateral 
kidney with UUO shows tubulointerstitial fibrosis, tubular atrophy, and glomerulosclerosis (B). Kidney sections (2-µm 
thickness) were stained with Masson trichrome staining. Abbreviation: UUO, unilateral ureteral obstruction. 
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filtered from the plasma during proteinuria15). The 3 isoforms of 
TGF-β (TGF-β1, TGF-β2, and TGF-β3) are broadly expressed 
and act on almost every cell type in mammals by engaging in an 
intracellular signaling cascade of Smad family of proteins through 
ligand-induced activation of heteromeric transmembrane TGF-β 
receptor kinases25). In the UUO model, the downstream signaling 
of TGF-β1 is profoundly related to a family of Smad proteins that 
stimulate fibrosis (Smad2 and Smad3) or inhibit fibrosis (Smad7)26). 
TGF-β stimulates the myofibroblastic activation or transition 
of mesangial cells, interstitial fibroblasts, and tubular epithelial 
cells to become matrix-producing fibrogenic cells in vitro1, 25). 
Overexpression of TGF-β also causes glomerular and interstitial 
fibrosis in transgenic mice27). These fibrotic effects of TGF-β 
can be summarized by 2 cellular events, apoptosis and EMT. 
TGF-β-induced apoptosis usually results in podocyte depletion, 
glomerulosclerosis, loss of glomerular and peritubular capillaries, and 
tubular atrophy28, 29). On the other hand, TGF-β-induced EMT can 
play a critical role in tubular atrophy and generation of interstitial 
myofibroblasts30). On the basis of this experimental background, 
many therapeutic trials on renal fibrosis such as neutralizing 
anti-TGF-β antibody and TGF-β receptor inhibitor have been 
performed31, 32). However, no conclusive results could be obtained 
since mice with TGF-β deficiency die of massive inflammation; 
this is because TGF-β is one of the anti-inflammatory cytokines. 
In addition, the over-expression of TGF-β1 in transgenic mice has 
been reported to attenuate the development of renal fibrosis via 
an anti-inflammatory effect33). Therefore, to improve the clinical 
application of TGF-β for preventing renal fibrosis, additional 
information regarding more complicated mechanisms underlying 
TGF-β action should be revealed.

Angiotensin II (AngII) has also been known as one of the key 
mediators of inflammation and fibrosis in kidney diseases34). AngII 
signal transduction is initiated by 2 receptors, AngII type 1 (AT1) 
and AngII type 2 (AT2) receptors35). Most of the effects of AngII are 
mediated through the AT1 receptor, which is widely expressed by 
most cell types, whereas the expression of the AT2 receptor is higher 
in the fetal tissue and decreases in adult animals and humans36-38). 
Interestingly, the AT2 receptor has been thought to counteract the 
effects of AngII and to play a role in the protection of the kidney 
39). AngII through AT1 receptor regulates ECM accumulation 
mediated by profibrotic growth factors such as TGF-β34). Clinically, 
in humans with chronic renal allograft rejection, plasma TGF-β 
levels were found to decrease after AngII was blocked40). AngII 
also stimulates oxidative stress, which in turn upregulates the 
vasoconstrictor peptides due to increased catabolism of nitric oxide 
(NO)41). Because NO plays an essential role in the regulation of 

blood flow in the normal and diseased kidneys, the changes of 
blood flow in UUO are associated with the impairment of the NO 
synthetic pathway in the kidney42). However, because angiotensin 
itself has a very important role in the development and maturation 
of a normal kidney, an angiotensin-converting enzyme (ACE) 
inhibitor can aggravate renal interstitial inflammation and fibrosis 
in a neonatal rat model with partial UUO43). 

Connective tissue growth factor (CTGF) is an important pro
fibrotic factor that contributes to renal fibrosis and tubuloepithelial 
transdifferentiation as a downstream mediator of TGF-β activity44). 
Interstitial production of CTGF was found to increase in areas of 
chronic renal injury in humans45) and to be attenuated by ACE 
inhibitors and antagonists of AT1 receptor46, 47). Lin et alreported 
that pentoxifylline suppresses the activity of CTGF in rats with 
UUO by interfering with Smad3- and Smad4-dependent CTGF 
transcription48). 

Platelet-derived growth factor (PDGF) is also centrally 
involved in the pathogenesis of renal fibrosis, similar to CTGF 
3, 49). In a rat model with progressive mesangioproliferative 
glomerulonephritis, the treatment with an antagonist against 
PDGF-B attenuated mesangioproliferative changes, glomerular 
hypertrophy, and podocyte damage, and in the long term 
prevented glomerulosclerosis and tubulointerstitial damage49). Of 
the PDGF family, PDGF-C and D are also increased in the area of 
tubulointerstitial fibrotic lesion, suggesting a potential role in renal 
fibrosis50, 51). 

Endothelin-1 (ET-1) that is abundant in renal endothelial 
cells is a strong vasoconstrictor peptide with profibrotic and 
pro-inflammatory effects52). Glomerular ET-1 expression was 
remarkably elevated in streptozotocin-induced diabetic rats53). 
Overexpression of ET-1 is sufficient to induce structural and 
functional changes, including glomerular and tubulointerstitial 
fibrosis, because ET-1 causes hypoxic injury due to the constriction 
of peritubular capillaries and stimulates mesangial cell proliferation 
and ECM production54, 55). Kon et al.56) suggested that antagonism 
of ET-1 may attenuate tubulointerstitial injury in an experimental 
model of chronic cyclosporine nephrotoxicity. 

In addition, tumor necrosis factor alpha (TNF-α) and inter
leukin-1 (IL-1) are other candidate proinflammatory cytokines that 
can lead to renal fibrosis57, 58). 

Simultaneously, other antifibrotic factors may be involved in the 
pathway of renal fibrosis combined with profibrotic cytokines and 
growth factors. 

Hepatocyte growth factor (HGF), a promoter of hepatocyte 
proliferation and liver generation, is also regarded as an antifibrotic 
mediator of tubular repair and generation after acute renal injury 
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59, 60). Moreover, HGF prevents the initiation and progression of 
chronic renal fibrosis and attenuates TGF-β1 expression in various 
animal models60). In a mice model with UUO, the administration 
of exogenous HGF noticeably reduced the progression of renal 
fibrosis and attenuated the expression of α-smooth muscle actin, 
TGF-β61). In addition, in an animal model of diabetic nephropathy, 
HGF interrupted the progression of renal fibrosis and dysfunction 
62). These antifibrotic results of HGF can be explained by various 
antagonistic effects on the cellular activation of renal fibrosis. 
HGF blocks tubular EMT63), inhibits apoptosis of endothelial 
cells64), and accelerates matrix degradation by modulating both 
the plasminogen activator/plasmin and matrix metalloproteinases 
(MMPs) proteolytic pathway65).

Bone morphogenetic protein-7 (BMP-7), formerly known 
as osteogenic protein-1, is a member of the TGF-β superfamily 
and a key growth factor of embryogenesis and morphogenesis66). 
Recently, BMP-7 has been reported to reverse renal fibrosis induced 
by TGF-β in a mice model and to antagonize TGF-β-dependent 
fibrogenesis in mesangial cells67, 68). 

In addition, interferon gamma (IFN-γ) and insulin-like growth 
factor-1 (IGF-1) are also known to have an antifibrotic effect57, 69).

There is always a balance between matrix production and 
degradation in the normal renal tissue, whereas the excessive 
accumulation and deposition of ECM components are the final 
pathologic results in renal fibrosis and CKD. Fibrotic appearance 
in renal fibrosis may be induced by both overproduction of matrix 
components and defects in their degradation1). The normal kidney 
usually produces various proteases, including MMP, plasminogen 
activator, and lysosomal cathepsins70). The balance between 
matrix production and degradation can be maintained through 
appropriate degradation of ECM due to the potent proteases. 
Therefore, these proteases have been regarded as one of the possible 
candidates for the treatment of renal fibrosis70). However, recent data 
suggest that the action mechanisms of proteases are not simple. In 
an animal model, ironically, deficiency of plasminogen attenuates 
renal fibrosis, and overproduction of MMP produces spontaneous 
EMT and peritubular fibrosis in renal proximal tubules71, 72). Fig. 2 
summarizes the cellular and molecular activation of renal fibrosis 
(Fig. 2). 

Although we have secured various possible targets for the 
treatment of renal fibrosis as mentioned above, it is evident that 
there is no effective treatment for renal fibrosis thus far. Boor et al.73) 

reported several problems that even we faced, including discrepancy 
between rodent models and clinical situation, lack of multiple 
models, different parameters and techniques for the evaluation of 
fibrosis, and inadequate timing of treatment in the experimental 

fibrosis. 

Conclusion

Although renal fibrosis, including tubulointerstitial fibrosis and 
glomerulosclerosis, is always the final common outcome in CKD, 
the pathogenic mechanisms underlying renal fibrosis are extremely 
complicated. Both cellular activation such as EMT; fibroblast 
activation; monocyte/macrophage infiltration; cellular apoptosis, 
and the activation of profibrotic cytokines such as TGF-β, AngII, 
CTGF, PDGF, ET-1, TNF-α, and IL-1 result in the excessive 
accumulation of ECM. Antifibrotic cytokines such as HGF, 
BMP-7, IFN-γ, and IGF-1 or several proteases such as MMP and 
plasminogen activator may be possible candidates for the treatment 
of renal fibrosis; however, our knowledge about these candidates is 
still limited. Further studies are needed to elucidate the complicated 
pathogenesis of renal fibrosis and to overcome the irreversibility of 
CKD.

Renal damage

Cellular activation Molecular activation

Excessive 
accumulation of 

ECM

Renal fibrosis

EMT, fibroblast activation, 
monocyte/macrophage  
infil-tration, cellular 
apoptosis 

TGF-β, AngII, CTGF, 
PDGF,ET-1, TNF-α, IL-1 

MMP, plasminogen activator, 
lysosomal cathepsins 

HGF, BMP-7, IFN-γ, IGF-1 (-)

(-)

Fig. 2. Pathogenetic mechanism underlying renal fibrosis. Initial renal 
damage can induce both cellular and molecular activation. Cellular 
activation may subsequently provoke the activation of signal molecules. 
Both cellular activations such as EMT, fibroblast activation, monocyte/
macrophage infiltration, and cellular apoptosis and molecular activations 
such as TGF-β, AngII, CTGF, PDGF, ET-1, TNF-α, and IL-1 result in 
the excessive accumulation of ECM. Antifibrotic cytokines such as 
HGF, BMP-7, IFN-γ, and IGF-1 or several proteases such as MMP, 
plasminogen activator, and lysosomal cathepsins may attenuate renal 
fibrosis. Modified from Eddy SS15). Abbreviations: EMT: epithelial-to-
mesenchymal transition, TGF-β: transforming growth factor beta, 
AngII: angiotensin II, CTGF: connective tissue growth factor, PDGF: 
platelet-derived growth factor, ET-1: endothelin-1, TNF-α: tumor 
necrosis factor alpha, IL-1: interleukin 1, ECM: extracellular matrix, HGF: 
hepatocyte growth factor, BMP-7: bone morphogenetic protein 7, IFN-γ: 
interferon gamma, IGF-1: insulin-like growth factor 1, and MMP: matrix 
metalloproteinases.
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