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Abstract

Cigarette smokers have an increased risk of infectious diseases involving the respiratory tract. Some effects of smoking on
specific respiratory tract bacteria have been described, but the consequences for global airway microbial community
composition have not been determined. Here, we used culture-independent high-density sequencing to analyze the
microbiota from the right and left nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic
adults to assess microbial composition and effects of cigarette smoking. Bacterial communities were profiled using 454
pyrosequencing of 16S sequence tags (803,391 total reads), aligned to 16S rRNA databases, and communities compared
using the UniFrac distance metric. A Random Forest machine-learning algorithm was used to predict smoking status and
identify taxa that best distinguished between smokers and nonsmokers. Community composition was primarily determined
by airway site, with individuals exhibiting minimal side-of-body or temporal variation. Within airway habitats, microbiota
from smokers were significantly more diverse than nonsmokers and clustered separately. The distributions of several genera
were systematically altered by smoking in both the oro- and nasopharynx, and there was an enrichment of anaerobic
lineages associated with periodontal disease in the oropharynx. These results indicate that distinct regions of the human
upper respiratory tract contain characteristic microbial communities that exhibit disordered patterns in cigarette smokers,
both in individual components and global structure, which may contribute to the prevalence of respiratory tract
complications in this population.
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Introduction

Roughly one in five adults currently smoke cigarettes in the

U.S.A. (www.cdc.gov/tobacco). Cigarette smoking is associated

with an increased risk of acute respiratory tract infections [1,2].

The upper airway serves as a site both for local upper respiratory

tract infections, and for colonization by pathogenic microorgan-

isms that can result in subsequent lower respiratory tract infection

or invasive disease. Previous reports using limited culture-based

methods have linked exposure to cigarette smoke with altered

upper airway microbial colonization. Both active smoking in

adults and passive exposure to cigarette smoke in children is

associated with increased carriage of pathogenic organisms in the

upper airways [3]. Cigarette smoke may promote pathogenic

microbial colonization by enhancing bacterial binding to oral

epithelial cells [4], disrupting effective nasal mucociliary clearance

[5,6], or impairing host immune responses against pathogens [7].

Cigarette smoke extract also differentially effects the survival of

specific microbial species isolated from the human oral cavity,

selecting for growth of gram negative bacteria such as Pseudomonas

aeruginosa and Klebsiella spp. [8]. Cigarettes themselves harbor a

broad range of potential pathogens, including Acinetobacter, Bacillus,

Burkholderia, Clostridium, Klebsiella, Pseudomonas aeruginosa, and Serratia

lineages [9] and may be a direct source of exposure to disease-

causing organisms.

The ability of indigenous upper airway flora to interfere with

pathogen colonization also plays an important role in microbial

community homeostasis [10,11,12] and airway health. Past studies

have shown that smoking can simultaneously deplete members of

the normal commensal airway flora and enrich for potential

pathogens. In the nasopharyx, smokers harbor fewer organisms

with interfering capabilities and more disease-causing lineages

than nonsmokers [13]. Streptococcus pneumoniae, Haemophilus influen-

zae, and Moraxella catarrhalis were more frequently isolated from

nasopharyngeal swab cultures of smokers, while organisms that

have been shown to limit the growth of these pathogens, including

Prevotella and Peptostreptococcus species, were notably absent [13]. In

the oral cavity, cigarette smoking enriches the subgingival

microenvironment for organisms implicated in the pathogenesis

of periodontitis [14,15], including Parvimonas, Fusobacerium, Bacter-

iodes, Prophyromonas, and Camplylobacter species [14,15]. After

cessation of smoking, microbial communities are repopulated with
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a greater number of health-associated organisms and fewer

potential pathogens in both the nasopharynx [16] and subgingiva

[17]. Most of the above studies relied either on bacterial culture,

which queries only a minority of the organisms present, or low

throughput sequencing methods that identify only a modest subset

of bacterial lineages, leaving the more global responses of bacterial

communities to smoking only partially characterized.

Advances in deep sequencing and bioinformatics analyses now

allow for comprehensive culture-independent analysis of human

microbial communities. Sequencing and quantification of hyper-

variable regions of bacterial small subunit ribosomal RNA (16S

rRNA) has enabled the unprecedented characterization of

complex bacterial populations at diverse human body sites [18].

Recent studies have focused on the identification of the types,

relative abundances, and variability of the healthy human

microbiome to provide a foundation for comparison with disease.

Such analyses implicate global alterations of microbial communi-

ties in the pathogenesis of asthma [19], cystic fibrosis [20], obesity

[21,22], and Crohn’s disease [22].

To date, there have been no studies using deep sequencing

technologies to assess the impact of cigarette smoking on airway

microbial populations. Here we present the first intensive analysis

of nasopharyngeal and oropharyngeal microbial communities

from smokers and nonsmokers, employing multiplexed barcoded

pyrosequencing of hypervariable regions of 16S rRNA. These

results show a characteristic influence of smoking on global

patterns of microbial communities, and identify bacterial taxa that

best distinguish the oro- and nasopharyngeal microbial commu-

nities of cigarette smokers from nonsmokers.

Results

Study Population and Microbial Sequencing
Sixty-two adult participants were studied, including 29 current

smokers and 33 nonsmokers. A subset of each group was sampled

more than once (Table 1). All participants were free of clinical

disease at the time of the sampling and none had used antibiotics

within the past 3 months. The nonsmoker and smoker groups were

similar in age but differed in gender (p,0.05). Sterile nylon-

flocked swabs were used to sample the right and left nasopharynx

and oropharynx of each participant separately.

We isolated DNA from 291 swab samples. For each DNA

sample, the variable region 1–2 (V1–V2) of the bacterial 16S

rRNA gene was PCR-amplified using individually barcoded

primer sets. We were unable to obtain amplification products

from 1 nasopharyngeal sample. After multiplexed 454 pyrose-

quencing, we generated .813,700 high quality, partial (,330bp)

16S rRNA gene sequences.

To avoid overestimation of bacterial diversity, pyrosequences

were denoised prior to taxonomic assignment [23]. We identified

.375,000 pre-cluster flowgrams, with an average of 1,3356603

(SD) per airway sample. Denoised sequences were analyzed using

the Qiime pipeline [24], in which sequences were clustered at 97%

sequence identity into operational taxonomic units (OTUs, also

called phylotypes) and assigned a taxonomic identity by alignment

to the RDP reference 16S rRNA database [25]. Using this

analysis, we identified 1,720 and 1,973 OTUs in the right and left

nasopharyngeal samples and 2,268 and 2,153 OTUs in the right

and left oropharyngeal samples.

Nasopharyngeal and Oropharyngeal Bacterial Diversity
The nasopharyngeal and oropharyngeal aggregate communities

were characterized by a total of 381 different genera belonging to

11 different phlya.

The distribution of the top 4 phlya in the nasopharynx were

Firmicutes (73%), Proteobacteria (12.6%), Bacteroidetes (7%), and

Actinobacteria (5.6%); in the oropharynx the principal phyla were

Bacteroidetes (36.4%), Firmicutes (27.7%), Proteobacteria (12.6%), and

Fusobacteria (12.3%). Streptococcus, Shigella, Acinetobacter, and Coryne-

bacterium spp. dominated nasopharyngeal communities, as well as

environmentally linked Leuconostoc, Lactococcus, and Weissella spp.

lineages found in dust and sterile swab samples. Oropharyngeal

communities were dominated by Prevotella, Fusobacterium, Neisseria,

Leptotrichia, and Veillonella spp.

We estimated the bacterial number and relative abundance

within the oro- and nasopharynx by applying diversity estimators

to our sampled communities. To account for heterogeneity in

sequencing effort, all samples were analyzed by rarefaction and

diversity measured at a common sampling depth (800 sequences).

We then used the Chao 1 method to estimate the true population

size for each airway site sampled and compared the number of

different taxa found in the nasopharynx to the oropharynx, on

both sides of the body. No consistent significant difference in the

number of taxa between airway sites was found, indicating that

there are no strong differences in bacterial richness between the

nasopharyngeal and oropharyngeal microbial communities (P –

value = 0.3142 left side, P – value = 0.0125 right side, two-sided

Wilcoxon Rank Sum Test). We next used the Shannon Index to

additionally account for taxa abundances in each community and

compared estimates between airway sites. The Shannon index

measures demonstrated greater bacterial diversity in the orophar-

ynx when compared to the nasopharyngeal communities on both

sides of the body (P – value = 4.72 E-11 left side, P – value = 8.67

E-14 right side, two-sided Wilcoxon Rank Sum Test). This analysis

revealed that the oropharynx harbors a similar richness of

lineages, but a more diverse microbiota than the nasopharynx.

To explore potential relationships among airway communities,

we quantified similarities between nasopharyngeal and oropha-

ryngeal bacterial communities by calculating UniFrac distances

[26]. Briefly, to compare two communities, 16S sequences for the

two are aligned on a common phylogenetic tree, and the branch

length unique to each community computed. A lower UniFrac

value indicates that two communities contain phylogenetically

more closely related organisms and thus are relatively more

similar, whereas higher values indicate that more distantly related

organisms populate the communities. Pairwise distances were

calculated for all oropharyngeal and nasopharyngeal communities.

For comparison, we also calculated pairwise distances for stool

microbial communities obtained from an unrelated group of

healthy human volunteers, from [27]. Visualization of clustering

Table 1. Characteristics of participants.

Non Smokers Smokers

Total number of participants 33 29

Median age (range) 28 years (22–51) 29 years (20–61)

Sex (%male) 58.9% 76.6%

Pack years (mean+/2SD) n/a 11.82 years +/213.13

Median time from last
cigarette (range)

n/a 1.5hrs (1min–21hrs)

Number of participants
sampled more than once

1 5

n/a, not applicable.
doi:10.1371/journal.pone.0015216.t001

Cigarette Smoking Effects on Airway Microbiomes
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after principal coordinate analysis (PCoA) of the UniFrac distance

matrix demonstrated strong clustering of communities by body site

(Fig. 1). In contrast, the side of the body sampled had no apparent

effect on bacterial community structure (P = 0.364 nasopharyn-

geal, P = 0.946 oropharyngeal, weighted UniFrac, PERMA-

NOVA). Thus, the right and left samples provided a pair of

replicates that could be compared in the subsequent analyses to

assess reproducibility.

To identify lineages that distinguished between nasopharyngeal

and oropharyngeal communities, we compared the abundance of

each genus at all four airway sites using univariate tests of

association (Wilcoxon Signed Rank or McNemar’s test) (Table S2).

After Bonferroni correction for multiple comparisons, a total of 81

bacterial taxa significantly varied between airway sites (Table S2).

Many of these genera have been previously identified as normal

residents of these airway habitats including Propionibacterium,

Corynebacterium, and Staphylococcus spp., in the nasopharynx [28]

and Neisseria, Haemophilus, and anaerobic lineages such as Prevotella,

Veillonella, and Fusobacterium spp. in the oropharynx [19,29,30].

Effects of Cigarette Smoking on the Upper Airway
Microbiome

To determine the relationship between airway bacterial

communities and the impact of smoking, Euclidean distances

were calculated based on sequence counts for each genus at all

airway sites and used to perform hierarchical clustering. A total of

71 genera with an abundance of .0.2% in at least one airway site

were included (Fig. 2). Bacterial communities clustered based on

airway site (Fig. 2; bootstrap support 100%), as was the case with

the UniFrac analysis (Fig. 1).

Within each airway habitat, bacterial communities from smokers

clustered separately from nonsmokers, whereas communities from

the right and left sides of the body demonstrated close similarity in

genera abundances (Fig. 2; bootstrap support 78.9%–97.2%

nasopharynx and 73.7–86.8% oropharynx). Thus the data sets for

the two sides of the body independently replicate effects of smoking.

We next calculated the global differences between communities

from smokers and nonsmokers using the unweighted (community

membership) and weighted (community membership and relative

abundance) UniFrac distance metrics (Table 2A and B). To

determine the overall variance in the types and abundances of

airway bacteria from smokers and nonsmokers, we compared the

average UniFrac distance within smoking communities to the average

distance within nonsmoking communities (within-group analysis).

The different types of bacteria inhabiting both the oropharynx and

nasopharynx varied more in smokers than nonsmokers (within-group

unweighted UniFrac distance, P,0.05, permutation test) (Table 2A),

indicating that microbial communities of smokers are overall more

heterogeneous than those of nonsmokers.

We then compared the average UniFrac distance within

communities (either smokers or nonsmokers) to the average distance

between pairs of communities where one was a smokers and the other

a nonsmokers (within vs. between-group analysis). In the oropharynx,

the microbiota of smokers and nonsmokers each formed separate

clusters characterized by distinct types and abundances of bacterial

lineages (P,0.05, unweighted and weighted UniFrac, distance-based

ANOVA with permutation) (Table 2B). In the nasopharynx,

communities of smokers were more similar in community member-

ship to other smokers than to nonsmokers (P,0.05, unweighted

UniFrac, PERMANOVA) (Table 2B).

Taxa that Characterize the Upper Airway Microbiome of
Cigarette Smokers

We next investigated the specific bacterial lineages that

distinguished nonsmokers from smokers. The analysis was carried

out separately for the left and right oropharynx and nasopharynx

and results compared using univariate tests of association

(Wilcoxon Rank Sum or Fisher’s Exact t test). In the left

Figure 1. Comparison of bacterial community composition reveals that the upper airway microbiota is primarily structured by
body habitat. Unweighted UniFrac was used to generated distances between oropharynx (red), nasopharynx (pink) and fecal (blue) microbiome
samples, then scatterplots were generated using Principal Coordinate Analysis. The percentage of variation explained by each PCoA is indicated on
the axes. The differences among communities from different body sites was significant with p,0.001 (t-test with permutation). Fecal microbial
communities were from [27].
doi:10.1371/journal.pone.0015216.g001

Cigarette Smoking Effects on Airway Microbiomes
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oropharynx, 7 bacterial families were found to differ significantly

between nonsmokers and smokers, of which 5 also differed on the

right (P,0.05 Wilcoxon Rank Sum or Fisher’s Exact t test)

(Table 3A). Members of the Megasphaera and Veillonella spp. were

most enriched for in both the right and left oropharynx of smokers,

while Capnocytophaga, Fusobacterium, and Neisseria spp. significantly

decreased in abundance (Table S3A). A greater number of families

differed in the nasopharynx (12 on the right, and 16 on the left),

with 8 families identified in both sides (Table 3B). Members of the

Eggerthella, Erysipelotrichaceae I.S., Dorea, Anaerovorax, and Eubacterium

spp. were enriched, while Shigella spp. were decreased in both the

right and left nasopharynx of smokers (Table S3B).

We next identified those genera that best distinguish a smoker’s

bacterial community from that of a nonsmoker using a Random

Figure 2. Analysis of abundances of bacterial lineages demonstrates that oro- and nasopharyngeal bacterial communities cluster
based on smoking status. The relative abundance of each genus (rows) is shown by the key to the left of the figure. Communities are clustered by
hierarchical clustering using complete linkage of Euclidean distance matrices. The number of times each split in the tree is seen in 1,000 bootstrapped
samples is indicated at each node. The tree to the left of the heatmap groups genera together based on similarity of abundance profiles (i.e. if two
genera are close in the tree, their abundance profiles across each airway site are similar).
doi:10.1371/journal.pone.0015216.g002

Cigarette Smoking Effects on Airway Microbiomes
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Forest supervised machine-learning algorithm. Abundances of all

genera were determined for each sampled microbial community

and used as input data sets for the algorithm. We fit a Random

Forest model to training data sets consisting of bootstrapped

samples of the original sample size, with the remaining unused

samples used as a validation data set. The Random Forest consists of

500 classification trees with 20 genera evaluated at each node for all

airway sites. Five hundred bootstrapped iterations are performed to

obtain an estimate of the classification error rate. As shown in Fig. 3,

the resulting models successfully partitioned microbial communities

by smoking status with a median accuracy of 64% in the right and

65% in the left oropharynx, and 71% in the right and 68% in the

left nasopharynx. For all four airway sites, we confirmed that the

trained models were better able to assign microbial communities

based on smoking status than by guessing alone (P,2.2E-16 at all

airway sites, Friedman Rank Sum test, Fig. 3).

We then interrogated the specific organisms that differentiated

smoker and nonsmoker microbiomes. The machine-learning

algorithm revealed that in the oropharynx, Capnocytophaga,

Megasphaera, Veillonella, Haemophilus, and Neisseria spp. best distin-

guished a smoker from a nonsmoker (ranked by mean Gini index

value in Table S3A). In the nasopharynx, abundances of Firmicutes

lineages including Erysipelotrichaceace I.S., Lachnospiraceae I.S.,

Streptococcus, and Staphylococcus spp. were most important for

discriminating a smoker from a nonsmoker (Table S3B).

Importantly, many of the genera identified by machine learning

were also significantly associated with the upper respiratory tract

populations of cigarette smokers by our univariate tests, and also

demonstrated a high fold change in abundance compared with

nonsmokers. These organisms included Veillonella spp. (increased in

smokers) and Fusobacterium spp. (decreased) in the oropharynx, and

Erysipelotrichaceace I.S. and Lachnospiraceae I.S. spp. (both increased) in

the nasopharynx (Table S3A,B).

Temporal Stability of Upper Airways Microbial
Communities

Finally, we sampled the naso- and oropharynx of 6 people over

multiple time points to characterize the stability of communities

from the same person across time (over hours to weeks, for

sampling time intervals see Table S4). For each airway site, we

hypothesized that the average UniFrac distances between samples

from the same subject taken over time would be significantly

smaller (i.e. more similar) than the distances between samples from

different subjects. Among the 6 people sampled more than once,

we calculated the difference of average between vs. within subject

distances for both the weighted and unweighted UniFrac values.

Table 2. Distance-based ANOVA analysis: differences in
bacterial community composition between smokers and
nonsmokers.

A. Within-Group1 Nasopharynx Oropharynx

Right Left Right Left

UnWeighted 0.035 0.043 0.007 0.017

Weighted 0.037 0.202 0.6 0.811

B. Between vs
Within-Group2 Nasopharynx Oropharynx

Right Left Right Left

UnWeighted 0.003 0.004 0.011 0.014

Weighted 0.066 0.172 0.0145 0.009

Table of P-values based on distance-based ANOVA with 10,000 label
permutations comparing average UniFrac distances within (A) and between vs.
within (B) bacterial microbiota from smoking and nonsmoking groups by
airway site sampled. Significance threshold: P-value,0.05.
1In all cases, bacterial communities from smokers had greater average within-
group distances.

2In all cases, bacterial communities from smokers had greater average between
vs. within-group distances.

doi:10.1371/journal.pone.0015216.t002

Table 3. Bacterial taxa that distinguish airway microbial
communities of smokers from nonsmokers.

A. OROPHARYNX
NonSmokers vs. Smokers fold
difference (P-value)

Phyla Family Right Left

Actinobacteria Actinomycetaceae – 1.18 (0.039)

Bacteroidetes Porphyromonadaceae – 0.81 (0.0197)

Flavobacteriaceae 0.43 (0.00155) 0.48 (0.00465)

Firmicutes Veillonellaceae 1.57 (0.00108) 1.89 (0.000126)

Fusobacteria Fusobacteriaceae 0.69 (0.00448) 0.64 (0.00185)

Proteobacteria Neisseriaceae 0.62 (0.00116) 0.58 (0.00872)

Pasteurellaceae 0.51 (0.0105) 0.61 (0.0498)

B. NASOPHARYNX
NonSmokers vs. Smokers fold
difference (P-value)

Phyla Family Right Left

Actinobacteria Actinomycetaceae 0.91 (0.0528) –

Corynebacterineae – 0.55 (0.0375)

Coriobacteriaceae – 0.812 (0.0171)

Bacteroidetes Flexibacteraceae 0.67 (0.0201) –

Porphyromonadaceae – 3.03 (0.00846)

Flavobacteriaceae – 0.86 (0.0139)

Firmicutes Aerococcaceae 5.28 (0.0363) 18.00 (0.00162)

Leuconostocaceae 0.79 (0.0036) 0.81 (0.0402)

Eubacteriaceae 24.39 (0.00428) 13.78
(0.000186)

Incertae Sedis XIII 25.61 (0.00428) 8.62 (0.0165)

Lachnospiraceae 9.66 (0.0000511) 6.13 (0.000101)

Peptostreptococcaceae 18.29 (0.00965) –

Ruminococcaceae 2.22 (0.039) 1.10 (0.0297)

Erysipelotrichaceae 8.58 (0.00218) 3.54 (0.0243)

Proteobacteria Rhodocyclaceae 0.32 (0.0116) –

Rhodobacteraceae – 0.53 (0.00756)

Enterobacteriaceae 0.54 (0.0114) 0.63 (0.0291)

Alcaligenaceae – 0.22 (0.00332)

Methylophilaceae – 0.19 (0.0482)

Pasteurellaceae – 9.81 (0.0187)

Bacterial families are grouped by phlya and listed in alphabetical order in the
oropharynx (A) and nasopharynx (B). Abundances and fold change of bacterial
taxa were determined from pooled samples for the right and left oro- and
nasopharynx. Family abundances were compared for each airway site from
nonsmokers and smokers using univariate tests of association, either the
Wilcoxon Rank Sum test or the Fisher’s t test (for rare genera that can not be
detected in at least half the samples from one location). Fold difference ratios
.1 indicate a greater taxa abundance in smokers compared with nonsmokers
(enriched for in smokers), fold difference ratios ,1 indicate a decreased taxa
abundance in smokers compared to nonsmokers (enriched for in nonsmokers).
Only those families with P-values,0.05 are shown.
doi:10.1371/journal.pone.0015216.t003

Cigarette Smoking Effects on Airway Microbiomes
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In the oropharynx, microbial communities were more closely

related within an individual at the latest time point than to those of

other individuals (P-value,0.05, t-test with permutation, right and

left sides). In the comparison to the oropharynx, nasopharyngeal

community composition was less robust over time, but remained

relatively stable when both lineage type and abundances are

considered in the weighted analysis (P-value = 7 E-04 left, 0.255

right, t-test with permutation). Thus, upper respiratory tract

microbial composition tends to be characteristic for each

individual with little change over the time periods studied.

Discussion

Here, we present the first comprehensive analysis of upper

airway bacterial colonization in healthy adult cigarette smokers

compared with nonsmokers using deep sequencing of microbial

16S rRNA genes. This study also sampled a relatively large

number of participants (n = 62) compared to earlier studies

[18,31,32]. In addition, by sampling the right and left sides of

the body, we generated two independent data sets for each

individual, which were found to be highly similar and thus

provided important evidence for reproducibility and increased

statistical power. Finally, our repeated sampling of a subset of

participants allowed us to demonstrate that airway microbial

communities within individuals were stable over the time period

sampled (from hours to weeks), further supporting biological

importance of the communities identified.

Although the nasopharynx and oropharynx are in open

communication with each other and the environment, each sites

harbored its own characteristic microbiota (Fig. 1 and Table S2).

Similar to reports in other body sites, these two communities

exhibit a stereotypical distribution of abundant taxa that are

relatively conserved between people and within individuals over

time [18]. The nasopharynx was characterized mainly by

sequences related to members of the Firmicutes phyla (73%), with

Proteobacteria, Bacteriodetes, and Actinobacteria members accounting

almost all of the remaining sequences. This distribution of phyla is

similar to, yet distinct from prior 16S rRNA sequencing studies of

the anterior nares, which reported comparable groups [18,31,32]

but a higher abundance of Actinobacteria more similar to skin

microbiota [33,34], perhaps because we sampled posterior

nasopharyngeal organisms in addition to swab passage through

Figure 3. Partitioning airway microbial communities by smoking status using Random Forrest. Bacterial communities from each airway
site were sorted by smoking status using the Random Forests trained algorithm and compared to guessing. Misclassification frequencies are plotted
by airway site and side of body. RF = Random Forrest machine. Guess = guessing alone. The lower- and upper-most bars designate the lowest and
highest value excluding outliers (defined as .1.5*IQR). The bottom and top of the green boxes denote the lower and upper hinge (close to 25% and
75% quantiles). The heavy black line designates the median misclassification frequency. The distribution of misclassification errors is significantly
different between the two algorithms (P – value,2.2E-16 for all airway sites, Friedman Rank Sum test) and in all airway sites, Random Forests
performs better than guessing (95% Confidence Interval: oropharynx right (20.15–20.13), oropharynx left (20.20–20.18); nasopharynx right (20.23–
20.22), nasopharynx left (20.22–20.20).
doi:10.1371/journal.pone.0015216.g003

Cigarette Smoking Effects on Airway Microbiomes
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the outer nares. In the oropharynx, bacterial sequences related to

the Bacteriodetes phyla were most abundant at 36.4%, and members

of the Firmicutes phyla were less represented at 27.7%, consistent

with previous reports surveying the throat and oral cavity

[18,19,29,35]. Proteobacteria taxa were represented in similar

proportions in both airway sites (,12%). In this study, we

detected a somewhat higher percentage of members of the

Fusobacteria phyla at 12.3% compared to other 16S rRNA

pyrosequencing surveys [29]. In addition, we were able to identify

several unusual lineages, such as Bergeyella spp., that have been

linked to human disease in clinical case reports [36] and only

recently have been associated with the airways microbiota by

culture-independent surveys [20,37]. We were also able to detect a

considerable abundance of apparent anaerobes, such as Prevotella,

Capnocytophaga, and Rothia spp., as well as lesser characterized

Atopobium, Peptoniphilus, and Selenomonas spp. amongst others. As

culture-dependent studies are mostly restricted to the detection of

aerobic bacteria, the contribution of anaerobic lineages to

community composition and dynamics has been largely unstudied.

Our main findings center on the identification of microbial

community patterns and specific bacterial groups that are altered

by smoking. Attention has previously focused on how smoking

affects carriage of known bacterial pathogens, as well as the

presence of specific commensal organisms. Those studies that have

addressed alterations to normal flora have investigated a select

group of organisms shown to have an impact on host resistance to

pathogen colonization [10,11,12] and demonstrated that smokers

have altered carriage of these commensal lineages [13,15].

However, beyond a small cohort of potential interfering

organisms, the presence of a robust endogenous microbial

community may also regulate pathogenic colonization, but this

has not been addressed in a global manner. We found that

smokers’ upper respiratory tract communities were significantly

more diverse than those of non-smokers, suggesting degradation of

normal community structure. It will be important in future studies

to determine whether such a disruption of normal colonization

patterns in smokers contributes to infectious complications and/or

more efficient pathogen colonization.

In investigating specific lineages that distinguished smokers

upper respiratory tract from nonsmokers, we used both a

univariate analysis and a machine learning approach. We found

a greater abundance of both known pathogens, and organisms not

previously recognized as associated with disease in smokers. In the

oropharynx, the greatest increase in smokers compared with

nonsmokers was in Megasphaera spp., an anaerobic gram negative

lineage of the Firmicutes phyla which are known to reside in the oral

cavity and is associated with periodontitis [38]. Overall, 15

bacterial genera containing potential pathogens increased in

abundance in either the univariate statistical analysis or were

identified as discriminators in the machine learning study,

including Streptococcus, Veillonella, Actinomyces and Atopobium spp.

(Table S3A). In contrast, the Peptostreptococcus genera was decreased

in smokers, which may be significant because several species are

implicated as an interfering bacteria, known to inhibit growth of

pathogenic bacteria in the upper respiratory tract [39]. Several

additional members of the normal oral microbiota were also

decreased in abundance, including Capnocytophaga, Fusobacterium,

and Neisseria spp.

In the nasopharynx, previous literature implicated Haemophilus

influenzae non-type B as increased in smokers [13], and we saw an

increase in Haemophilus spp. in smokers (Table S3B) (although on

one body side only, suggesting a relatively modest association).

Our data also identified several genera with substantial increased

abundance in smokers that have not been noted previously. In the

nasopharynx, these included Eggerthella, Erysipelotrichaceae I.S., Dorea,

Anaerovorax, and Eubacterium spp. All of these genera contain gram-

positive anaerobic lineages, and clinical isolates of Eubacterium spp.

have been previously associated with active oral infections [40]. In

addition, we demonstrated a large increase in Abiotrophia spp.,

which can be isolated from dental plaque [41,42] and is an

occasional cause of bacterial endocarditis [42]. Interestingly, only

Shigella spp. were decreased in nasopharyngeal communities of

smokers compared with nonsmokers. Together, these data suggest

that smoking increased the burden of gram-positive anaerobic

bacteria in the nasopharynx, some of which have been associated

with disease.

To date, the effects of cigarette smoke on altering microbial

colonization have been characterized in greatest detail in the

subgingival environment, especially as it relates to periodontitis

[14,15,17,43]. A recent study using 16S rRNA terminal restriction

fragment length polymorphism analysis of subgingival communi-

ties, found significantly different microbial profiles between

smokers and nonsmokers [17]. Subsequent reports using 16S

rRNA sequence profiling of subgingival plaque identified an

increase in several disease-associated organisms in smokers,

including Parvimonas, Fusobacterium, Campylobacter, Bacteroides, Dialis-

ter, and Treponema spp. and a decrease in potential health-

promoting taxa from the Veillonella, Neisseria, Streptococcus, and

Capnocytophaga genera [43]. Here, we detected comparable effects

of smoking on airway flora, such as a decrease in Neisseria and

Capnocytophaga spp. in the oropharynx and an increase in

Campylobacter spp. in the nasopharynx (Table S3A, 3B). Also similar

to subgingival environments, members of the Bacteroides and

Dialister genera were identified by machine learning as particularly

important for distinguishing the microbiota of a smoker in the

oropharynx (Table S2A). In contrast to those reports on oral

communities, we detected a decrease in Fusobacterium spp. and an

increase in Streptococcus and Veillonella spp. in the oropharynx of

smokers (Table S3A), which is likely attributable to differences in

the subgingival versus naso-/oropharyngeal microbial environ-

ments.

Thus, our findings identify characteristic patterns of upper

respiratory microbial communities in smoking and nonsmoking

healthy adults, and define a collection of changes in smokers that

suggests both aberrant global community structure and differences

in specific organisms. These alterations in healthy smokers may

reflect pathogenic processes contributing to the enhanced risk of

upper and lower respiratory tract infection associated with

cigarette smoking.

Materials and Methods

Ethics Statement
The Institutional Review Board of the University of Pennsylva-

nia approved all study protocols and all participants provided

written, informed consent (protocol #810987).

Subjects and Sample Collection
Healthy adults were recruited to provide samples over a four-

month period from December 2009–March 2010 from Philadel-

phia, PA. Smokers were defined as current smoking of .2

cigarettes daily for more than 6 months, and nonsmokers were

defined as less than 100 cigarettes lifetime. Individuals with known

chronic health conditions or with respiratory tract symptoms

within 12 weeks prior to study were excluded, and none of the

subjects had used antibiotics within the past 3 months. The health

and smoking status of the volunteers was self-reported. Participants

were asked to avoid eating or drinking for one hour prior to
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sampling. The nasopharynx and oropharynx were sampled using

nylon-flocked swabs (Copan). The right and left posterior

oropharynx were sampled trans-orally adjacent to the tonsillar

pillars, and the right and left nasopharynx were sampled through

the nares. After collection, swabs were immediately cut into

MoBio 0.7 mm garnet bead tube (Mo Bio Laboratories) using

autoclaved and flamed scissors in a biosafety cabinet, placed at

280uC within 1 hour, and stored for ,1 week prior to DNA

extraction. See Table S1 for a summary of samples used in this

study.

DNA Extraction and Purification
Genomic DNA was extracted from swabs using the QIAamp

DNA Stool Minikit (Qiagen) with the following modifications.

1500ul of ASL buffer and 5mM DTT was added to the nylon tips

of frozen swabs that had been cut into beadbeater tubes. Tubes

were beadbeat using BioSpec Products Inc. Minibeadbeater-16 for

1 min and incubated at 95uC for 10 min. The remaining steps

were preformed as per manufacturer protocol. DNA was eluted

with 100 uL buffer EB (Qiagen) and stored at 220uC.

PCR amplification of the V1V2 Region of Bacterial 16S
rRNA Genes

For each sample, we amplified the 16s rRNA gene using the

reverse primer 59-GCCTCCCTCGCGCCATCAGNNNNNNNN

CTGCTGCCTYCCGTA-39 and the forward primer 59-GCCTTGC-

CAGCCCGCTCAG AGAGTTTGATCCTGGCTCAG-39. The un-

derlined sequences are the 454 Life Sciences primer B (forward) and

A (reverse). The italicized sequence is the broad range bacterial

primer BSR357 (reverse) and BSF8 (forward). Each reverse primer

contained a unique 8-nt error-correcting Hamming barcode

(designated by NNNNNNNN) used to tag each PCR product.

Duplicate 25uL reactions were carried out with AccuPrime Taq

DNA Polymerase High Fidelity (Invitrogen) under the following

reaction conditions: 2.5 uL 106 Buffer 2, 0.4 uL Taq, 11.1 uL

PCR-grade H2O, 0.5 uL forward primer and 0.5 uL reverse primer

(20 pmol/uL each) and 10 uL template DNA. PCR reactions were

assembled in a PCR bay in which all surfaces and pipettes had been

decontaminated with DNA AWAY (Molecular BioProducts).

Reactions were run on a Applied Biosystems Veriti thermocycler

with the following cycling conditions: initial denaturing at 95uC for

5 min followed by 30 cycles of denaturation at 95uC for 30 seconds,

annealing at 56uC for 30 seconds, and extension at 72 C for

90 seconds, with a final extension of 8 min at 72uC. Replicate

amplicons were pooled and visualized on 0.8% agarose gels

containing ethidium bromide. Amplicons were bead purified using

Agencourt AMPure XP (Beckman Coulter) as per manufacturer

instructions.

454 Pyrosequencing and Sequence Analysis
Purified amplicons were quantified using Quant-iT PicoGreen

kit (Invitrogen) and pooled in equimolar ratios. Pyrosequencing

was carried out using primer A and the Titanium amplicon kit on

a 454 Life Sciences Genome Sequencer FLX instrument (Roche).

Pyrosequence reads were denoised with the denoising algorithim

described by Quince et al [23,44], including removing sequences

with a mean window quality score ,25. Barcoded 16S rRNA

sequences were then uploaded into QIIME and processed as

described by Caporaso et al. [24]. QIIME removes sequences from

the analysis if they were ,200 or .800 nt, had a quality score

,25, uncorrectable barcodes, contained ambiguous bases or

mismatches in the primer sequences, and if they had a

homopolymer run .6 nt. Sequence reads were then clustered

into OTUs at 97% sequence identity with UCLUST [45], aligned

to full length 16S rRNA sequences with PyNAST [46], assigned a

taxonomic identity with the Ribosomal Database Project classifier

(minimum support threshold of 50%) [25], and used to construct

phylogenetic trees using FastTree2 [47]. QIIME generates data

summaries of the proportions of identified taxa in each community

and calculates the amount of bacterial diversity shared between

two communities using the UniFrac metric [26]. Clustering was

visualized for the weighted UniFrac analysis using Principal

Coordinates Analysis.

As controls, 5 sterile swabs and 2 swabs of autoclaved and

flamed scissors were also tested, handled under identical

conditions. The sterile swab and scissor samples yielded three

predominant lineages (.15% abundance), which were assigned by

RDP to the genera Lactococcus, Weissella, and Leuconostoc of the

Firmicutes phyla. Lactococcus spp. have been associated with indoor

dust in previous literature [48,49,50]. Weissella spp. and Leuconostoc

spp. have also been associated with environmental habitats [51].

These lineages were also abundant in nasopharyngeal samples,

particularly Lactococcus and Leuconostoc (.15% abundance).

Statistical methods
Clinical characteristics were compared as mean, standard

deviation, median, range, counts and percentages. Significant

changes in lineage abundance between groups were assessed using

univariate statistical tests: Wilcoxon Rank Sum test and Wilcoxon

Signed rank test or Fisher’s exact test and McNemar’s test if the

taxon cannot be detected in more than half of the samples from

one location. Clustering of groups was performed on the

Euclidean distance matrix using hierarchical clustering with

complete linkage (‘‘hclust’’ function in R). Confidence of the

clustering pattern was assessed by bootstrapping the samples in

each group 1,000 times. UniFrac [26,52] was used to measure beta

diversity between all pairs of bacterial communities, including both

an unweighted (considers only presence or absence of lineages to

assess community membership) and a weighted analysis (includes

relative abundances of lineages to assess community structure). To

test for differences in community composition between various

sample groups, we used Permutational Multivariate Analysis of

Variance based on the UniFrac distance matrix (PERMANOVA

,‘‘adonis’’ function in the ‘‘vegan’’ package of R). To test for the

difference of within-group distance for two groups, we used the

difference of within-group distance means as the test statistic.

Statistical significance was assessed using 10,000 permutations of

sample labels. A learning machine was trained using the Random

Forest algorithm with prediction accuracy assessed using an out-

of-bag estimation (‘‘randomForest’’ package in R). The distribu-

tion of misclassification errors between the trained machine and

simple guess (the class label was predicted based on the majority

class in the training data set) were compared by the Friedman

Rank Sum test.

Supporting Information

Table S1 Summary of samples used in the study. DNA

was amplified using the BSF8/BSR357 16S primer pair, purified

using magnetic beads, and sequenced in the reverse direction using

the FLX platform.

(XLS)

Table S2 Bacterial taxa that vary by airway site.
Bacterial genera are grouped by phyla. Abundances and fold

differences of bacterial taxa were determined from pooled samples

for the right and left oro- and nasopharynx and then averaged

Cigarette Smoking Effects on Airway Microbiomes

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e15216



over the side of the body sampled for both airway sites. Genera

abundances were compared for significant changes from the

oropharynx to the nasopharynx using univariate tests of

association, either the Signed Rank test or the McNemar test

(for rare genera that cannot be detected in at least half the samples

from one location). Fold difference ratios .1 indicate a greater

taxa abundance in the nasopharynx compared to oropharynx

(enriched for in the nasopharynx), fold difference ratios ,1

indicate a decreased taxa abundance in nasopharynx compared to

oropharynx (enriched for in the oropharynx). Only those taxa with

.10-fold change in abundance are listed.

(XLS)

Table S3 Bacterial genera that distinguish the airway
microbial communities of a nonsmoker from a smoker.
Bacterial genera are grouped by phlya and listed in alphabetical

order in the oropharynx (A) and nasopharynx (B). Abundances

and fold change of bacterial taxa were determined from pooled

samples for the right and left oro- and nasopharynx. Genera

abundances were compared for significant changes from each

airway site from nonsmokers to smokers using univariate tests of

association, either the Wilcoxon Rank Sum test or the Fisher’s t

test (for rare genera that can not be detected in at least half the

samples from one location). Fold difference ratios .1 indicate a

greater taxa abundance in smokers compared to nonsmokers

(enriched for in smokers), fold difference ratios ,1 indicate a

decreased taxa abundance in smokers compared to nonsmokers

(enriched for in nonsmokers). Only those genera with P-

values,0.05 are shown. Bacterial taxa important for distinguish-

ing a microbial community of a smoker from a nonsmoker by

Random Forest machine learning are ranked by their mean Gini

index value (the relative weight of each taxa to the classification

prediction). Taxa that best distinguish a smoking from a

nonsmoking bacterial community have a higher index value.

(XLS)

Table S4 Summary of samples taken from the same
person over time. Sample index 1 was taken at time point 0. All

subsequent samples from the same patient are denoted by

increasing sample index number with time in hours from the first

sample.

(XLS)
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