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Abstract
The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of
biomolecules. The development of advanced computational techniques for the solution of the PBE
has been an important topic in the past two decades. This paper presents a matched interface and
boundary (MIB) based PBE software package, the MIBPB solver, for electrostatic analysis. The
MIBPB has a unique feature that it is the first interface technique based PBE solver that rigorously
enforces the solution and flux continuity conditions at the dielectric interface between the
biomolecule and the solvent. For protein molecular surfaces which may possess troublesome
geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver
that is able to deliver the second order convergence, i.e., the accuracy increases four times when
the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann
mapping (DNM) technique, that builds a Green's function approach to analytically resolve the
singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as
coarse as 1Å — while it usually takes other traditional PB solvers 0.25Å to reach similar level of
reliability. The present work further accelerates the rate of convergence of linear equation systems
resulting from the MIBPB by utilizing the Krylov subspace (KS) techniques. Condition numbers
of the MIBPB matrices are significantly reduced by using appropriate Krylov subspace solver and
preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are
tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-
protein binding energies, respectively.

1 Introduction
Under physiological conditions, almost all important biological processes, for example,
signal transduction, DNA specification, transcription, post transcription modification,
translation, protein folding and protein ligand binding, occur in water which comprises
65-90% of cellular mass. An elementary prerequisite for the quantitative description and
analysis of the above-mentioned processes is the understanding of solvation, which involves
energetics of interactions between solute molecules and solvent molecules or ions in
aqueous environment. Solute-solvent interactions are typically classified as the polar type
and the non-polar type. Although widely used, this classification is arbitrary and has caveats
associated with the non-unique descriptions, as well as the intrinsic coupling between these
two types of interactions. The polar type of solute-solvent interactions is the main interest of
the present work. It originates from electrostatic effects, which play important roles in
biophysics, biochemistry, structural biology, electrochemistry and electrophoresis. The
solvent has a substantial volume and a significant contribution to electrostatics via numerous
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mobile ions. However, it is the solvated solute molecule that is the focus of the interest in
most research. As such, the solute is described in atomic or electronic detail, while atomic
details of the solvent and mobile ions are approximated by a mean-force description and
probability distribution, respectively. This multiscale treatment, denoted as implicit solvent
method, can greatly reduce the computational cost of the traditional explicit solvent
methods, in which a microscopic description of the solvent is retained. Various implicit
solvent models are available to describe polar solvation [58,62,22,15,3]. The most widely-
used methods are currently the generalized Born method [23,28,86,49,15], polarizable
continuum [19,69,35] and Poisson-Boltzmann equation (PBE) [1,39,62,22] models. The use
of polarizable continuum models is mostly restricted to small molecular systems.
Generalized Born methods are very fast but are only heuristic models for estimating polar
solvation energies of biomolecular structures. These methods are often used in high-
throughput applications such as molecular dynamics simulations [70,63,27]. PBE models
can be formally derived from Maxwell's equations [7] and offer a somewhat slower, but
more accurate way for evaluating polar solvation properties [21,52,6]. Additionally, PBE
techniques are often used to parameterize and assess the accuracy/performance of
generalized Born models [52,52,71]. Finally, unlike most generalized Born methods, PB
models provide a global solution for the electrostatic potential and field within and around a
biomolecule, therefore make them uniquely suited to visualization and other analysis [44,9]
that require global information about electrostatic properties. One of the primary
quantitative applications of implicit solvent models in computational biology and chemistry
is the calculation of thermodynamic properties via a pre-equilibration [58]. An example of
such pre-equilibration approach is the MM/PBSA model [66,48] which combines implicit
solvent models with molecular mechanical approaches to evaluate binding free energies
from an ensemble of biomolecular structures. Other important applications of implicit
solvent models include the assignment of protein titration states, the calculation of binding
energies, and the estimation of solvation energies [50,68,50]. One more application area for
implicit solvent methods is the evaluation of biomolecular kinetics where implicit solvent
models are generally used to provide solvation forces for molecular Langevin dynamics
[56,46], Brownian dynamics [47,29,61], or continuum diffusion simulations [17,64,65]. A
major qualitative use of implicit solvent methods in experimental work is the visualization
and qualitative analysis of electrostatic potentials on and around biomolecular surfaces
[55,4,1], which is now a standard procedure for the analysis of biomolecular structures.

Although the PBE can be analytically solved for a few simple cases [37], it relies on
numerical approaches to obtain useful solutions for realistic biological systems. A vast
variety of computational approaches, such as finite difference methods (FDMs)
[33,46,73,34], finite element methods (FEMs) [5], and boundary integral methods (BIMs)
[10,79], have been developed in the past few decades. Each of these methods is subject to
certain inherent advantages and limitations due to its associated underlying formulations. In
general, FEMs have advantages in applications that require the rapid adaptation of grid
points to account for the structural variation of biomolecules. However, the generation of
unstructured grids with good quality for complex biomolecular interfaces is very time-
consuming, especially for large biomolecules. BIMs have several intrinsic advantages such
as fewer unknowns, exact far-field treatment, and good representation of surface geometry
and charge singularity. In light of these advantages, BIMs, especially when accelerated with
fast methods such as treecode and fast multiple methods, can also provide an efficient
computational approach. However, BIMs are not very efficient in dealing with the nonlinear
term in the PB model. FDMs have been the main workhorse for solving the PBE in
computational structural biology for their convenience of using 3D Cartesian coordinates to
save the cost on mesh generation and electrostatic potential mapping, as well as its
adaptability of existing linear algebraic solvers. FDMs based PB solvers, particularly in
conjunction with advanced linear algebraic solvers, can offer the best combination of speed,
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accuracy, and efficiency, therefore make them the most popular approaches in structural
biology [2].

Many computational technologies for the PBE were incorporated into popular molecular
simulation software packages, such as DelPhi [38], ZAP [56], UHBD [47], MEAD [25],
APBS [31], AMBER [45,46] and CHARMM [36,12]. These software packages deliver PBE
solvers to users who are interested in the study of electrostatics in solution, making the PBE
model a widely accepted approach in structural biology. The aim of this paper is to
introduce an interface technique based PBE solver, the matched interface and boundary
method based PB solver (MIBPB), with online software sharing information. Compared
with other existing PB solvers, the MIBPB provides rigorous mathematical treatment of
interface jump conditions, geometric singularities and charge singularities as described in
the following paragraphs.

The implicit solvent models require an interface definition to indicate the separation of
solute atoms from the surrounding solvent. All of the physical properties of interests, such as
electrostatic free energies, biomolecular surface areas, molecular cavitation volumes,
solvation free energies, and pKa values are very sensitive to the interface definition
[24,51,67]. The van der Waals surface, the solvent accessible surface [40] and the molecular
surface (MS) [57,20] are often used for this purpose. Different dielectric constants of the
solvent and molecular domain lead to discontinuous coefficients in the PBE, resulting in
non-smoothness of the solution. Additionally, the MS admits geometric singularities such as
cusps and self-intersecting surfaces[20,60]. Explicit interface treatment of geometric
singularities has not been considered in the popular PB solvers. It is desirable to have an
interface-based solver that is able to deliver highly accurate solutions to the PBE in the
presence of such solution and geometric singularities. The third type of singularity comes
from the singular charge terms, i.e., the delta functions at the right hand side of the PBE,
often reduce the accuracy of the numerical solution. The treatment of charge singularities is
also an important issue in solving the PBE. Finally, due to the complex matrix structure of
the linear systems resulting from PBE solvers, the choice of appropriate linear system
solvers and the selection of matrix acceleration algorithms are very important issues as well.

The development of the MIBPB solver focuses on resolving the above-mentioned
difficulties or singularities. The adaption of the molecular surface, the treatment of
discontinuity of coefficients and flux jumps require the application of interface methods
[54,26,11,42,13,41]. Commonly seen interface techniques were not used in the biomolecular
context due to complexity of the biomolecular boundaries. The MIB method
[81,85,84,76,75] has been developed for solving elliptic equations with discontinuous
interfaces. It is of arbitrarily high-order accuracy in principle and up to sixth-order accurate
MIB schemes have been constructed [75,85]. The MIB has been successfully applied to the
analysis of mechanical structures [78,82], waveguides [82], biomedical imaging [14], and
electromagnetic waves [80]. Three generations of MIB based PB solvers, the MIBPB-I [83],
the MIBPB-II [74] and the MIBPB-III [30] have been developed
(http://www.math.msu.edu/~wei/MIBPB/). The MIBPB-I is the first PB solver that directly
enforces the flux continuity conditions at the dielectric interface in the biomolecular context.
However, it cannot maintain its designed order of accuracy in the presence of MS
singularities, such as cusps and self-intersecting surfaces. This problem was addressed in the
MIBPB-II by utilizing an advanced MIB technique developed by Yu et al. [75] who offer
special treatments for geometric singularities. However, the MIBPB-II loses its accuracy
when the mesh size is as large as half of the smallest van der Waals radius, because of the
interference of the interface and singular charges. To split the singular charge part of the
solution, a Dirichlet to Neumann mapping approach [18] was designed in the MIBPB-III,
which is by far the most accurate and reliable PB solver. This new solver remains accurate at
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the smallest van der Waals radius, i.e., about 1.0 Å grid resolution for proteins. Comparing
to traditional PB solvers, the MIPPB-III is a few orders of magnitude more accurate at a
given mesh size and about three times faster at a given accuracy [74,30]. The MIBPB is the
first and still the only known second-order convergent PB solver for the singular molecular
surfaces of biomolecules, where the second order convergence means that the accuracy of
the solution improves four times when the mesh size is halved.

Apart from the accuracy, the efficiency of linear system solvers is another important issue
crucial to many applications. Previous MIBPB solvers are typically slow in comparing with
other FDMs that do not invoke an interface treatment. In this paper, we have paid special
efforts on the strategies for the selection of most suitable linear system solvers for the
resulting MIBPB matrices. Two linear solver libraries, the SLATEC
(http://people.sc.fsu.edu/~burkardt/f_src/slatec/slatec.html) and the PETSc
(http://www.mcs.anl.gov/petsc/petsc-as/) are considered in the exploration of linear solvers.
Another remaining issue in previous MIBPB solvers is the treatment of the nonlinearity in
the PBE. Although this issue was tackled in a dissertation [77], no reliable MIBPB nonlinear
solver was produced. The present work develops a reliable nonlinear solver for the PBE with
a salt solvent.

The rest of this paper is organized as follows. Section 2 is devoted to the theoretical
formulation and computational algorithm of the MIBPB solver. Krylov subspace technique
accelerated MIBPB solvers are constructed in Section 3. Extensive experimental validation
is given to the different combinations of solvers and pre-conditioners. Section 4 illustrates
the usage of the MIBPB software package with some example applications, such as
calculating the free energy of solvation of biomolecular systems and salt effect on protein-
protein binding. Concluding remarks are provided in Section 5. Finally, a brief introduction
to the linear algebraic systems generated from the MIBPB discretization matrices and
theoretical underpinnings of the Krylov subspace methods are presented in Appendices.

2 Theory and algorithm
2.1 Implicit solvent model: The Poisson-Boltzmann Equation

In the implicit solvent model, the solvent is treated as a continuous medium while the
description for solute is kept at the atomic level. The electrostatic potential ϕ of a solvent-
solute system can be determined by the Poisson-Boltzmann equation (PBE) in a regular
domain Ω whose dimension usually has the order from 10Å3 to 500Å3 for biomolecular
applications. Figure 1 gives the sketch of the protein-solute system and the computational
domain.

The protein region and the solvent region are denoted as Ω1 and Ω2, respectively. Naturally
the whole computational domain is , and the molecular surface is labeled as Γ.
For simplicity, the ion-exclusive layer is ignored in the present model. Although mobile ions
in the solvent are explicitly indicated in the figure, the whole solvent region is actually
modeled by an implicit continuum. Under these assumptions, the PBE reads

(1)

Chen et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://people.sc.fsu.edu/~burkardt/f_src/slatec/slatec.html
http://www.mcs.anl.gov/petsc/petsc-as/


(2)

where u = ecϕ/kBT is the dimensionless electrostatic potential for computational simplicity,
ec the electron charge, kB is the Boltzmann constant and T is the temperature, ε and  are
dielectric constant and modified Debye-Hückel screening function describing the ion
strength, respectively. Here qi is the charge fraction of the fixed charge in the protein and xi
denotes the position of the fixed charge, and Nm is the total number of fractional charges.
The constant  is resulting from dimensionless procedure and εs is for the
dielectric constant of the solvent.

In principle, the electrostatics u(x) satisfies the boundary condition at infinity, i,e,:

(3)

However, the practical computation has to be restricted onto a bounded domain Ω. Usually,
it is taken as a cuboid that contains the target protein and ∂Ω represents the boundary. In this
approximation, proper boundary conditions need to be imposed and various treatments are
employed upon different numerical schemes. Eq. (2) describes the Dirichlet boundary
condition which is widely used in finite difference method. The biological meaning of the
rationale is the (screened) Coulomb potential originating from all the fixed charges and
mapping on the walls of the cuboid Ω.

The hyperbolic term sinh(u(x)) takes into account the salt effect with the Boltzmann
distribution theory at the equilibrium state. Therefore, Eq. (1) is a nonlinear partial
differential equation (PDE) of elliptic type. Such a nonlinear term can be linearized under
the weak potential approximation, i.e, when , sinh(u(x)) ~ u(x). Thus the linear
approximation of Eq. (1) is

(4)

Typically, for biomolecular systems of given ranges of temperature and ionic strength, the
PBE is solved with the following coefficient bounds [32]

The molecular surface of the solute (protein) is considered as an interface. We partition the
whole domain into the solute region and the solvent region, on which the ε(x) takes different
values. Similar situation happens to the parameter . Since it represents the ionic strength
of the solvent,  is nonzero in the solvent region but zero in the solute region. In other
words, the spatial-dependent coefficients ε(x) and  are discontinuous across the
molecular surface. It is a challenge to solve such an elliptic equation with high accuracy
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because the regularity of its solution is reduced due to the interface and geometric
singularity. For this class of problems, numerical accuracy and low convergence rate are
typically low without special interface treatments. Another challenge is the singular source
term which contains many Delta functions, which are infinity at their spatial locations.
Accurate approximation to the point-supported singular functions is an important topic in
computational mathematics. The above two difficulties hinder the numerical solution to the
PB equation. To maintain a given accuracy, the grid spacing of the discretization has to be
sufficiently small because of the low regularity of the solution. On the other hand, a small
grid spacing implies millions of variables even for a middle-size protein. For example, the
cube embedding a 2800-atom protein may have a dimension of 50 × 50 × 50(Å3), which
leads to 1 × 106 variables if the resolution is 0.5Å. This gives rise to a major obstacle for PB
applications, especially for the calculation of thermodynamic properties via either the
molecular dynamics or pre-equilibrium approaches. In the following sections a robust and
efficient mathematical algorithm, the MIB method, is introduced and applied to the solution
of the PBE.

2.2 MIB method for the Poisson-Boltzmann equation
Mathematically, the PBE admits at least three types of singularities that hinder one's attempt
to obtain highly accurate numerical solutions. The first one is the non-smooth solution
singularities. Based on the statement in the previous section, the potential u(x) is naturally
restricted to the two subregions as u1 and u2, respectively. The solution of the PBE is subject
to the interface continuity condition and flux continuity condition along the interface Γ

(5)

(6)

where un denotes the normal derivative of the function u(x) and εm is the dielectric constant
of the solute molecule. Interface conditions (5) and (6) indicate that the continuity of the
potential function and the potential flux across the molecular surface. However, different
dielectric values of εs and εm in (6) imply that the normal derivatives of the potential
function differ from each other across the surface — in other words, the solution is non-
smooth. The second singularity comes from the solvent-solute interface Γ. The interface
generated based on the current molecular surface model inevitably introduces geometric
singularities such as cusps and self-intersecting surfaces, especially for large proteins. This
singularity has been a challenging issue to many traditional interface techniques designed
for solving elliptic interface problems. The third singularity is the source term of the PBE,
which includes the summation of Delta functions. Second order numerical implementation
of Dirac delta functions on the Cartesian grid points is feasible with appropriate
approximation. However, the overlap of grid points carrying redistributed charges and those
involved in the treatment of geometric interface singularities leads to the accuracy reduction,
especially for a coarse mesh. These singularities pose challenges in the numerical
implementation of the PBE and make it difficult to balance numerical accuracy and
efficiency.

The MIB scheme and the Dirichlet-to-Neumann mapping (DNM) method are employed to
deal with the above mentioned three singularities and to achieve high accuracy and
efficiency. In the MIB method, the molecular surface is considered as the interface. Interface
jump conditions (5) and (6) are enforced at each intersecting point of the interface and mesh
lines. As such, the ingredients of the MIB scheme also include local coordinates of the

Chen et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interface in order to overcome geometric singularity constrains. The necessary information
of each local coordinate contains the location (x0, y0, z0) and the normal direction n of the
intersecting point where the interface meets a mesh line of the grid. Here, n is parameterized
as

(7)

where θ and ψ are the azimuth and zenith angles with respect to the normal vector, notation
T represents the transpose for a vector. This information allows us to set up a local
coordinate system at every intersecting point and to define its relation to the global Cartesian
grid.

The basic idea of the MIB scheme is to define sets of regular and irregular grid points near
the interface according to the desired convergence order. At each regular point, the standard
central difference scheme of a given order is applied, while at irregular points, special
treatments are to be taken. First, the restricted potential function u1 (and u2) is smoothly
extended from one subregion to another on all of the irregular points. Then artificially
introduced function values, named as fictitious values, are defined on the irregular points.
As smooth extensions of the function, fictitious values are employed in FD schemes at
irregular points to guarantee necessary smoothness conditions.

Interface condition (5) is further decomposed into two parts in order to give flexibility to the
calculation of fictitious values

(8)

where τ1 and τ2 are the two tangential vectors derived from (7)

(9)

Through jump conditions (5)-(8), fictitious values are determined as the combinations of the
to-be-determined numerical solutions on grid points. While a pair of fictitious values are
determined along a mesh at a time, an iterative procedure can be used to determine all the
required fictitious values for higher-order schemes by repeatedly using the lowest order
jump conditions. The essential strategy of the MIB method is to locally reduce a 2D or a 3D
interface problem into 1D-like ones [81,85,84,83]. The essence of the MIB scheme is the
use of fictitious values, which entirely assemble the interface conditions, the local geometry
of the interface and all the necessary interface information. Therefore, the MIB scheme is
very robust for different protein surface and successfully overcomes the first two types of
singularities [74,75,76]. Rigorous second order MIB schemes have been developed to solve
the PBE with geometric singularities of molecular surfaces.

The source term singularity is removed by the DNM. In Ref. [30], the solution u(x) of the
PBE is decomposed into singular part and regular part. The singular part of the solution
comes from singular delta functions, and is obtained analytically as the Green's function. As
a consequence, this separation generates an extra Neumann jump condition at the interface
for regular part. Therefore, after the separation, one only needs to solve the remaining
homogeneous Poisson-Boltzmann equation subject to corresponding Neumann jump
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conditions at the interface. This procedure is also called Dirichlet to Neumann mapping.
Consequently, truly second-order accurate solution to the PBE with molecular surfaces and
singular charges can be obtained with a relatively large grid spacing [30].

3 Pre-conditioner accelerated MIBPB solvers
In practice, when one pursues the numerical solution of the PBE, the discretization of the
PBE results in a linear equation system

(10)

where h is the discretization resolution, Lh and fh represent the matrix and right hand side
generated via the MIB and DNM schemes, Uh is the solution vector. It is worth pointing out
that in standard FDMs, the matrix Lh only depends on the grid resolution and the dielectric
constants. However, in the MIBPB scheme, the structure of Lh also depends on the
molecular surface of a specific protein. Due to this reason, we also call Lh the matrix of a
protein for simplicity. The MIB and DNM successfully overcome the equation singularities
and promise a high accuracy convergence order by taking into account all the local interface
information. However, as a trade-off, the structure of matrix Lh is much more complicated
than that from standard FDMs. Specifically, the matrix loses symmetry and may not be
positive-definite any more. The lose of these properties will lead to more computational time
and memory. Therefore, the selection of appropriate linear solvers becomes subtle when
computational efficiency is sought as well.

The review of several basic linear solvers are summarized in Appendix A. However, the
matrices from the MIB and the DNM scheme can barely take any advantage from the
described methods due to their notoriously complicated structures. Therefore, we put our
emphasis on choosing other methods and accelerating techniques. In Appendix B, we
include a brief description of Krylov subspace (KS) techniques. Based on the KS theory,
proper linear solvers and acceleration techniques (preconditioners) are chosen and compared
in this section for the numerical efficiency of MIBPB linear systems. Two KS solvers, the
stabilized biconjugate gradient method (BiCG) and the generalized minimal residual method
(GMRES), are potentially effective iterative solvers for matrices with general structures.
Several preconditioning strategies, the Jacobi preconditioner (JAC), the blocked Jacobi
preconditioner (BJAC) and the incomplete LU factorization preconditioner (ILU) are
available to incorporate with the two solvers to accelerate the solution of the linear system.

Matrices generated from a set of proteins are employed to test the performance of various
KS solver-preconditioner combinations. For each matrix, the condition number, linear
system iteration number and iteration time are used to characterize numerical efficiency. All
these measurements of matrices are analyzed numerically by the PETSc
(http://www.mcs.anl.gov/petsc/petsc-as/). The grid resolution is taken as 1.0Å in the
following tests unless otherwise specified. The stopping criterion of all KS solvers are taken
as 1 × 10−6 in order to get more accurate solutions while in practical biological applications
the criterion can be relaxed to 1 × 10−3 to save CPU time but satisfactory results are also
achieved.

First of all, the matrix condition numbers are examined. The condition number can predict
the level of difficulty in solving the linear system before it is really solved. The magnitude
of a matrix condition number depends on the size and structure of a biomolecule. More
specifically, under the same grid resolution, a molecule which has a larger number of atoms
needs a larger computational domain and a larger matrix size. Meanwhile, a molecule which
has a more complex surface geometry leads to more interface conditions and a larger matrix
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size. Both cases contribute to higher condition numbers. Therefore, the size and complexity
of a biomolecule usually affect the numerical efficiency of the MIBPB solver.

Figure 2(a) presents condition numbers of matrices corresponding to 15 protein structures
and indicates the numerical difficulties of solution without proper acceleration techniques.
The horizontal axis lists proteins. Protein data bank (PDB) identification numbers (IDs) are
listed in the figure. The numbers of atoms of these proteins range from 500 to 2000.
Discretizing the PBE with the MIB scheme, without any preconditioner (PC) applied, the
condition numbers are usually in the order of 104, about one order larger than those of the
matrices generated from the standard FD discretization, i.e., without the interface treatment.
This is expected because the use of the molecular surface as the interface and all included
local information around the interface, the MIBPB matrices do not maintain the symmetry
and are not positive definite. The MIB matrices generally have larger condition numbers and
require more CPU time [83, 74, 30].

By using of preconditioners (PCs), the magnitudes of condition numbers of MIBPB matrices
are significantly reduced to less than one hundred, as shown in the circle plot of Fig. 2(b).
The triangle plot in Fig. 2(b) gives the condition number magnitudes of the matrices from
standard FDMs without PC, revealing the huge differences among different treatments. The
circle and dot plots are condition number magnitudes for matrices with PC, from both the
MIB scheme and the FDM, respectively. Interestingly, it can be concluded that the condition
number magnitudes of two schemes are reduced to almost the same level by using the PCs.
We can safely say that the difficulty of solving the linear system generated from the
interface based MIBPB scheme is actually comparable to that from standard FD
discretization. Under almost the same numerical efficiency, MIB scheme and DNM are able
to obtain higher accuracy because all the local geometry information of the molecular
surface has been taken into account.

Quantitatively, for a specific KS solver such as GMRES, the iteration numbers and
computing time of linear systems for 7 proteins are listed in Table 1. It is well-known that
condition numbers can only be mathematically estimated for large matrices, then the listed
condition numbers calculated by PETSc solvers may not be exact. Despite this fact, we can
still have a sense from the numbers how the PC significantly reduces the difficulties of
solving the linear systems.

As stated earlier, two KS iterative methods, the stabilized BiCG and the GMRES, are
associated with three types of preconditioners, JAC, BJAC and ILU. Table 2 compares the
effect of combinations of these KS solvers and preconditioners. For different
preconditioning strategies, since the ways of counting iteration numbers are different, only
the iteration time for each combination is listed in the table. Sample proteins of various sizes
are presented in this table, from small size (less than 1000 atoms), middle size (1000-3000
atoms) to large size (around 8000 atoms). It can be concluded that the GMRES performs
slightly better than the stabilized BiCG does for small-sized proteins but stabilized BiCG
take the lead in middle- and big-sized proteins. Among the three kinds of preconditioners,
the BJAC and the ILU almost have the same effects and are slightly better than the JAC.
Therefore, the combination of stabilized BiCG and BJAC is recommended and set as the
default option in the MIBPB package.

As indicated at the beginning, all the mathematical algorithms and techniques are enforced
to maintain the high order convergence of the MIBPB solver. Table 3 lists the numerical
evidence of the second order convergence through a set of given protein surfaces, atomic
coordinates, radii and charges, where protein surfaces are generated by MSMS, and the
standard CHARMM force field parameters are used. A special analytical solution was
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designed and given in [30] for the convergence order check of all proteins. In this table, the

numerical error is defined as , where  is the numerical solution of the
PBE at grid resolution h while uexact is the designed exact solution. The numerical
experiments are implemented under resolutions h = 1.0Å, 0.5Å and 0.25Å. The numerical
error is supposed to be reduced by four times as the grid size is halved and this is clearly
demonstrated in the table.

The above mentioned tests are carried out in conjunction with the PETSc software package,
whose installation may not be so straightforward. An alternative is to use the SLATEC,
which is easier to implement and also includes tens of linear system solvers with different
preconditioners. To compare the performance of the PETSc and the SLATEC, we show the
computation time of ten methods in the SLATEC for five proteins, whose atom number
varies from five hundreds to eight thousands in Table 4. All methods are listed in the form:
preconditioner/solver. Here GS, DS, BiGS, and OM represent the Gauss-Seidel, the diagonal
scaling, the biconjugate gradient squared method, and the orthomin sparse iterative method,
respectively. The combination of the ILU/BiCG is used in the PETSc. From the table, it can
be seen that the iteration time of the PETSc is slightly shorter than that of most solvers in the
SLATEC for small-sized proteins. The last column of the table lists the averaged CPU time
for the PETSc and solvers in SLATEC. The averaged time, which in some sense could
reflect the abilities of solvers for proteins in various sizes, is the sum of the CPU time for
each corresponding protein and weighted by the atom number. By checking the averaged
CPU time one can generally conclude that the ILU/BiCG of the PETSC takes less iteration
time than the SLATEC schemes do. Moreover, according to our experience, the PETSc is
more stable than the SLATEC for large proteins. However, the SLATEC can be easily
incorporated in the MIBPB package. Whereas, the PETSc needs to be pre-installed by the
user as discussed below.

4 Usage illustration and application
4.1 Work flow of the MIBPB package

The MIBPB solver package incorporates with two packages to accomplish the electrostatic
potential calculation. First, molecular structures are prepared via Python software package
PDB2PQR (http://pdb2pqr.sourceforge.net/): it accomplishes many common tasks of
preparing structures for continuum electrostatic calculations, such as adding a limited
number of missing heavy atoms to biomolecular structures, determining side-chain pKas,
placing missing hydrogens, etc. Users can either submit the protein PDB index to the online
server (http://pdb2pqr.sourceforge.net/) or download the executable file to prepare the
molecular structure.

Once the molecular structure is prepared, the computational domain Ω will be automatically
generated based on the coordinates of the protein atoms: first a smallest cuboid that contains
the protein will be calculated and then each length of the cuboid is symmetrically extend at
two ends by 5 to 10Å, depending on the protein size. This strategy usually employed in
many FDMs is verified to be reasonable in practices and also the extension of the cuboid can
be customized easily. The larger size of Ω is of course closer to real biological situation.
However, the solution of the PBE is not sensitive to this change while the computational
cost will be increased.

Additionally, the geometry of the molecular surface used in the MIB scheme is generated by
the MSMS (http://www.scripps.edu/sanner/html/msms_home.html). Given the information
of the coordinates and radius of each atom in the molecule, surfaces are generated at given
water probe radius in a triangulation form. The intersection of each triangle with the
meshing lines and the normal direction extracted from the surface information are key
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ingredients of the MIBPB scheme. For the MSMS parameter, the water molecule probe
radius is recommended as 1.4 and the vertex density is 10. These parameters are enough to
generate the molecular surface with good quality, various 3D Cartesian grid resolutions in
current use can obtain necessary surface information under this setting.

There are two options for choosing KS solvers and preconditioners in solving MIBPB
matrices. One is to use the SLATEC, which has been incorporated in our MIBPB package.
The other way is to use the PETSc. According to our tests, the PETSc is generally more
stable and reliable than the SLATEC, particularly for large proteins. It needs to be pre-
installed by the user if one chooses the PETSc matrix acceleration option.

The current MIBPB package offers half stand-alone solvers in which users have to prepare
the molecular structures and generate the surfaces on their own with desired parameters. The
package also has one-step solvers which have integrated all the steps with default parameter
settings. Either the half stand-alone or one-step solver is further classified into linear solver
and nonlinear solver. Therefore, there are in total four executable MIBPB files in the
package. Additionally, two other auxiliary small Perl scripts, the pqr2xyzr.pl and dat2dx.pl
are included in the MIBPB package to accomplish the molecular surface preparation and
ultimate data visualization. Figure (3) is the work flow of the MIBPB package usage. Users
are referred to http://www.math.msu.edu/~wei/MIBPB/ for detailed instructions.

For a clearer demonstration, we use one specific protein example to illustrate the procedure.
Protein with ID 1ajj is assumed to have been downloaded from the Protein Data Bank and
saved as file 1ajj.pdb.

1. Prepare the protein structure

• Input file: 1ajj.pdb

• Command line: python pqd2pqr.py –ff=CHARMM 1ajj.pdb 1ajj_apbs.pqr

• Output file: 1ajj_apbs.pqr.

• Remark: For full usage of pqb2pqr.py, users are referred to the
corresponding link.

2. Molecular surface preparation

• Input file: 1ajj_apbs.pqr

• Command line: pqr2xyzr 1ajj

• Output files: 1ajj.xyzr, 1ajj.pqr

• Remark: 1ajj.xyzr file stores the coordinates and radii of the atoms in the
protein, 1ajj.pqr stores the coordinates and partial charges. They are
necessary files for the MSMS to generate molecular surfaces.

3. Molecular surface generation

• Input files: 1ajj.xyzr, 1ajj.pqr

• Command line: msms -if 1ajj.xyzr -prob 1.4 -de 10 -of 1ajj

• Output files: 1ajj.vert, 1ajj.face. Now the molecular surface is generated in
the triangulation form. The vertices and normal direction of each triangle
are saved in these files.

• Remark: water probe radius and triangulation density are set as default
values 1.4 and 10, respectively. They are adjustable parameters.
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4. MIBPB implementation

• Linear solver: mibpb4.1.1 1ajj eps1=1 eps2=80 h=0.5

• Nonlinear solver: mibpb4.2.1 1ajj eps1=1 eps2=80 kappa=1.0 h=0.5

• Output file: 1ajj_pbe.dat

• Remark: Above command lines give the standard format. Parameters are
adjustable.

4.2 Work flow for the display of the surface electrostatic potential
After the electrostatic potential file is obtained by running the MIBPB solver, we can display
it on the molecular surface by using the VMD (http://www.ks.uiuc.edu/Research/vmd/), a
molecular visualization program. We are able to visualize the potential distribution on the
surface by implementing a file transformation via the Perl script dat2dx.pl. Moreover, by
taking the difference of surface electrostatic potentials under different grid resolutions h, we
are also able to check the convergence of the solutions and therefore suggest a proper grid
resolution for balancing high numerical accuracy and efficiency. The procedure is shown as
the following.

1. Visualization file preparation.

• MIBPB package generates output file [pdbname]_pbe.dat, in which the
electrostatic potentials on grid points of the protein-solvent system are
stored. Before displaying the electrostatic potential on the molecular
surface, one needs to use dat2dx.pl script to transform the data file to the
[pdbname].dx file.

• For example, for protein 1ajj, one gets 1ajj_pbe.dat file from the MIBPB
package. Then use the command: dat2dx.pl 1ajj [dcel] [xleft] [xright]
[yleft] [yright] [zleft] [zright] where [dcel] is the mesh size (we assume a
uniform mesh). Here [xleft],[xright], [yleft], [yright], [zleft] and [zright]
prescribe the span of computational domain in x, y, z direction,
respectively. Here xleft, xright, yleft, yright, zleft, and zright should be the
same as those used in calculating the potential.

2. Molecular surface drawing

• Load the PDB data file into the VMD

• Set drawing parameters in the Graphical Representation window: choose
the “Volume” option for coloring method and the “Surf” option for
drawing method.

3. Surface electrostatic potential drawing

• Load the [pdbname].dx format potential file into the VMD. In the
Molecular File Browser window, load [pdbname].dx file for the same
protein as that in molecular surface (instead of for new molecular).

• Set drawing parameters in the same Graphical Representation window as
that in the second step. Choose the “Volume” option for coloring method
and the “Surf” option for drawing method. Adjust the Color Scale Data
Range to see different color effects.

Figure 4 illustrates the visualization of electrostatic potential calculated from the MIBPB
package, using protein 1beb as an example. The potentials calculated via both the linear
MIBPB solver and the nonlinear MIBPB solver are plotted on the molecular surface via the
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VMD through the above procedure. Figure 4(a) displays the potential distribution on the
surface of protein 1beb when the solvent is water. In this case the linear MIBPB solver is
implemented because  is set as zero. While Fig. 4(b) presents the potential distribution

when , in which case the nonlinear MIBPB solver is employed. These two
calculations are carried out when grid resolution h is taken as 1.0Å. Figure 4(c) gives the
difference of electrostatics in (a) and (b), from which the salt effect on electrostatic
distribution may be observed. Figure 4(d) reveals the potential difference in solvent when
the calculations are under resolutions h = 1.0Å and 0.5Å, i.e. the error |ϕh – ϕh/2|. It can be
found that the error is almost zero around the molecular surface, this fact indicates that at h
= 1.0Å, the result is accurate enough so that reducing grid resolution to 0.5Å does not give
too much improvement. Mathematically speaking, the result is almost convergent between
mesh size 1.0Å and 0.5Å, which is the recommended grid resolution range in the MIBPB
package.

4.3 Application to solvation energy calculations
One of the most important applications of the PBE model is solvation energy calculations
for the protein-solvent systems. In this section, solvation energies of 28 proteins are
calculated and compared with popular PBE solvers to examine the feasibility, usefulness and
robustness of the linear solver in the MIBPB package. These proteins have a wide range of
numbers of atoms, from around 500 up to 10,000. The corresponding spatial dimensions
extend from about 30Å × 30Å × 30Å to almost 100Å × 100Å × 100Å. Among these
calculations, the dielectric constant is set to 1 for proteins and 80 for the solvent. The ion
strength  is set to zero because no ion is considered for the moment.

The calculation of electrostatic solvation energy ΔGelec is to sum all the fixed charges {qi}
of the solute in the solvent, weighted by the reaction field potential ϕrf(x):

(11)

where xi is the position of each charge. Based on the continuum electrostatics, the reaction
field potential is the difference between the electrostatic potential in the solvent environment
ϕs(x) and the reference electrostatic potential ϕref(x), i.e, ϕrf(x) = ϕs(x) − ϕref(x). Here ϕrf(x)
can be computed by solving the PBE twice with corresponding settings. Specifically, ϕref(x)
is calculated by setting a uniform dielectric constant in the whole computational domain,
while ϕs(x) is calculated by setting the dielectric constants for solute and solvent differently.
Therefore, ϕref(x) can be obtained by the standard linear PB equation with the Dirichlet
boundary condition via the standard finite difference or FFT methods but ϕs(x) is solved by
using the MIBPB algorithm.

The performance of the MIBPB method for calculating solvation energies has already been
examined in our previous work [30]. It has been shown that the MIBPB solver has high
accuracy and good convergence order because of the use of interface treatments but has
relatively low numerical efficiency due to the absence of appropriate matrix acceleration
techniques. The MIBPB matrix requires longer CPU time to solve. The Krylov theory and
associated preconditioners discussed in the present work make the MIBPB solver more
efficient. Here the new results are presented for various proteins.

Figure 5 gives the comparison of the calculated solvation energies from the MIBPB and the
APBS packages. It is seen that the solvation energies calculated from the MIBPB agree very
well with those from the APBS. The mesh sizes of h = 1Å is used in the MIBPB and h =

Chen et al. Page 13

J Comput Chem. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



0.25Å is used in the APBS methods, respectively. The reader is referred to Ref. [30] for a
more detailed comparison among the MIBPB, the APBS and the PBEQ methods.

Once the preconditioning techniques are applied, the required CPU time is significantly
reduced. Figure 6 illustrates the differences of the CPU time needed to calculate solvation
energies for nineteen moderately large proteins at three different grid resolutions. The solid
lines are the CPU time for preconditioned (PCed) systems and dashed lines are for
unpreconditioned (unPCed) systems. It can be concluded that at each grid resolution,
preconditioners can save more than half of the overall CPU time.

Table 5 lists the results for the tested proteins at different grid resolutions and compares the
values with the original MIBPB-III scheme in terms of solvation energies and CPU time.
For each protein case from different grid resolutions, the CPU time increases in nonuniform
pattern from less than 10 seconds for h =1.0Å, several tens of seconds for h =0.5Å, to a few
hundreds of seconds for h =0.25Å. Note that there is an eight times increase in the number
of unknowns when the mesh size is halved. The increase in the CPU time is roughly linear
with the increase in the number of unknowns.

It is found that, at resolution of 0.25Å, the results from the MIBPB+KS and from the
original MIBPB-III have less than 0.1% disagreement. This is due to the use of different
convergence norms in the KS solvers and the regular solver. The solvation energy
calculations show a correct convergence tendency. The values from resolutions of 0.25Å
and 0.5Å are pretty close, while calculations at h = 0.25Å cost much more CPU time.
Therefore, we can conclude that grid resolution between 0.5Å and 1.0Å is sufficient for the
calculation and can guarantee the accuracy.

Table 6 shows the robustness and efficiency of the MIBPB package for calculating solvation
energies of large proteins which exceed 7000 atoms. For time efficiency, all the calculations
are carried out at the grid resolution of h = 1.0Å. Note that the reliability of these solvation
free energies has been cross-checked with other popular PB solvers. The reported CPU time
can be used as a reference.

4.4 Application to salt effects on protein-protein binding
In this section, the ability of the MIBPB package to solve the nonlinear PBE is tested by
checking solvent salt effect on protein-protein binding. The nonlinear PBE has had
considerable success in describing biomelocular electrostatics with salt effects on the
binding of ligands, peptides and proteins to nucleic acids, membranes and proteins. The
binding free energies reflect the non specific salt dependence of the formation of
macromolecular complex and the measurement is the binding affinity. Some experimental
data are available and the binding affinity is calculated as the ratio between salt dependent
binding energy ΔΔGel(I) at a specific salt strength I and the natural logarithm of I. In the
present work, we have implemented the nonlinear version of the PBE solver in the MIBPB
package. Simulation results are obtained by varying the ionic strengths.

The binding energy (ΔGel) has several components while the one related to electrostatics is
the difference of the electrostatic free energies of the complex and each of its free molecules
[8]

(12)

where ,  and  represent the electrostatic free energies of the complex AB,
component A and component B, respectively, at a given ionic strength I.
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The electrostatic free energy can be further split into three components

(13)

where Gcoul is the Coulomb energy calculated in a homogeneous medium, Grxn is the
corrected reaction field energy and Gsalt(I) is the electrostatic energy contributed by mobile
ions. Among the three terms in Eq. (13), only Gsalt(I) is salt dependent. Thus, the salt
dependence of the binding free energy ΔΔGel(I) is electrostatic component of the binding
energy in Eq. (12) calculated at some salt strength I minus the one calculated at the zero salt
concentration [8]

(14)

where various energy terms are calculated at different ionic strengths by using the MIBPB
package.

To verify our nonlinear solver, one hetero-dimeric and one homo-dimeric complexes are
studied in this work. The experiments on these two protein complexes can be found in
[59,72] and biological features(1emv and 1beb) are listed in Table 7. The first four columns
describe the properties of proteins and the last two columns are the slopes (binding affinity)
of the lines in Fig. 7. It can be seen in a quantitative view that the slopes obtained from
experiments and simulations are very close to each other. The calculations were performed
assuming that all Arg, Asp, Glu and Lys residues are ionized in both free and bound states.
The results are obtained with dielectric constants of 2 and 80 for the solute and the

continuum solvent, respectively. The parameter  is determined by:

(15)

where ec, kBT are the same as those defined in Eq. (1), Na is the Avogadro's number. After a

simple derivation,  is given by

(16)

for T = 298K. Here the ion strength I is in the unit of mole.

Figure 7 depicts the experimental and calculated salt dependence of the binding free
energies ΔΔGel(I) for the two complexes. The ΔΔGel(I) are plotted against the logarithm of
the salt strength I. The salt dependence is assumed as in a linear pattern therefore the least
square fitting line is applied to calculate the binding affinity, which is the slope of the line. It
should be explained that experimental data dots for ΔΔGel(I) are read from the graphs in
Ref. [8], while the fitting line slope is explicitly given based on the experimental data with
error bars. The diamond points and solid line are experimental data and the corresponding
fitting line, respectively. The circle points and dashed line are numerical stimulations.
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In the homo-dimeric complex, the experimentally observed binding free energies decrease
with the increase of ionic strength, while for the hetero-diemric complex, the experimental
measurement had detected an increase. Our results obtained from the MIBPB package
reproduced these observations. The calculated magnitudes of the slopes of the salt
dependence are in quite good agreement with experimental results within the range of errors,
as the fitting lines are almost parallel. The discrepancies between the experimental data and
simulation results are also expected: the PBE, no matter in linear or full nonlinear form, only
gives the ideal situation of the solute-solvent system but many details, such as the “protein
conformation change, pKa shifts upon complexation or possible ionization states”, are
lacking [8]. Despite these approximation, the application of PBE for static protein structures
is suggested in general by these good agreements with experimental data.

5 Conclusion
This paper introduces the matched interface and boundary based Poisson-Boltzmann solver
(MIBPB) software package and its work flow for practical applications in biochemistry,
biophysics and structural biology. Two applications, the solvation free energy calculation
and the salt dependence binding affinity calculation are carried out to justify the robustness,
accuracy and efficiency of solving the linear and nonlinear PBEs. The results of solvation
free energy calculations are compared with those from a traditional PBE solver and the
results of binding affinity are compared with experimental data. The MIBPB solver is
verified to be highly accurate – by far the only existing second-order accurate method for
solving the Poisson-Boltzmann (PB) equation with discontinuous dielectric constants,
singular charge sources and geometric singularities from the molecular surfaces of
biomolecules. More specifically, the MIBPB has built in advanced interface techniques that
are able to deal with discontinuous solvent-solute interfaces and geometric singularities of
molecular surfaces. The Dirichlet to Neumann mapping, or Green's function approach, has
been developed in the MIBPB solver to analytically resolve the singular point charges.
Consequently, the MIBPB solver is able to deliver high accuracy at relatively coarse
meshes. The MIBPB solver provides reliable electrostatic potentials at the mesh of about
1Å, whereas traditional methods have to resort to about 0.25Å mesh resolution to achieve a
similar level of reliability.

In the present work, we further equip the MIBPB solver with advanced Krylov subspace
techniques to accelerate the speed of the convergence of solving linear equation systems
originated from the MIBPB discretization. The performances of various solver-
preconditioner combinations have been carefully examined through mathematical analysis
and numerical experiments. Dramatic reductions in condition numbers are found when
appropriate preconditioners are utilized. Upon the use of appropriate combinations of
preconditioners and solvers, significant reductions in the CPU time are found in solving the
PB equation for large proteins. Both the PETSc and the SLATEC are employed in the
present MIBPB package to speed up the convergence rate of the iterations of the linear
systems. The PETSc package is found to be more reliable and efficient. In the present work,
the structure preparation of proteins is conducted via the PDB2PQR software package, while
the MSMS software package is utilized for the molecular surface generation.

Additionally, the nonlinear MIBPB solver has been developed in the present work. This is
achieved via the standard inexact Newton method, assisted by the Krylov subspace
acceleration techniques. The present nonlinear MIBPB solver has been tested and applied to
the salt dependence analysis of protein-protein binding interactions. Our results of binding a
nities are compared with experimental data.
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Appendices

A Linear equation systems and MIBPB matrix
A system of linear algebraic equations is formed after discretizing the PB model

(17)

where Lh is a real non-singular n by n matrix under grid spacing h, uh is the numerical
solution vector and fh is the source term vector. The matrix Lh is viewed as a linear operator
mapping  into , the space  being a linear space equipped with an inner-product (·, ·)
inducing a norm  defined as follows

where ui represents the i-th component of the vector u.

Generally, systems of linear algebraic equations are commonly solved by using direct
methods and iterative methods. Direct methods, such as Gaussian elimination, and LU
decomposition work for general matrices with arbitrary structure but require large computer
memory. Therefore, they are not computationally efficient and hence unsuitable for solving
the 3D PB model of biomolecules, even for small proteins.

Some of the iterative methods such as Richardson, Jacobi, Gauss-Seidel and SOR iterations,
also work well for general structured matrices but they are barely employed due to the
reduced robustness for large protein system. The classic linear iteration methods for solving
Eq. (17) can be viewed as the following form

(18)

where B is matrix approximating  in some sense. Different construction of matrix B
results in a different iterative method. The necessary and sufficient condition for the
convergence of algorithm (18) is that the spectrum ρ of the error propagation operator must
be smaller than 1, i.e., E = Ih − BLh and ρ(E) < 1 [53], where Ih is the identity operator
associated with the grid resolution h. The smaller value of ρ(E) indicates the better
convergence of the method. The spectra of this family of iteration methods can be expressed
as ρ(E) = 1 − O(h2), which implies that as grid spacing gets smaller, these methods converge
more and more slowly. This property severely restricts the wide applications of these
methods for large linear systems.

The conjugate gradient (CG) method is a very efficient iterative method if the matrix is
symmetric and positive definite. Actually it is the main workhorse of most popular PBE
solvers since the matrices from the standard FDMs or FEMs satisfy these good properties.
The multigrid (MG) method is an accelerating technique and can be applied in combination
with any of commonly used solvers. Using a hierarchy of discretizations, MG shifts the
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computation between coarser and finer grids by extrapolation and restriction, and thus
accelerates the convergence. It is almost the fastest accelerating technique known so far and
applied in many popular PB solvers, such as the APBS.

Unfortunately, the matrix Lh from the MIB can barely take advantages from the described
methods due to its notoriously complicated structure. For the discretization of the Laplace
operator in the PBE by standard FDMs, every grid point except the boundary ones takes the
following form:

(19)

where i, j, k represent the discretization indices along the x, y, z directions, respectively. The
coefficients cm,m = 0, 1, ...6 only depend ε and grid spacing h. The symmetric structure of

Eq. (19) and the facts  and c1 = c2 = c3 = c4 = c5 = c6 make the whole matrix
symmetric and positive definite.

However, since the MIB scheme takes into account the interface treatment and at all the
irregular grid points near the interface, discetizations are modified. For the simplest case,
assume that only one fictitious point is needed and without the loss of generality, the
modification is in the form:

(20)

Note that the fictitious value f* is used in Eq. (20) for the smooth extension of the function.
The fictitious value f* can further be expanded as the linear combination of the unknown
function values.

(21)

where  is the nearby function values around  are the
corresponding coefficients. Usually M = 10 in second order MIB scheme for a smooth
interface but could be bigger for interface with singularities. The choice of  and
calculation of  totally depend on the local information of the interface. The introduction of
the fictitious values gives high accuracy for the interface problems but also ruins the good
properties such as symmetry and positive-definiteness of the overall matrix.

To solve the matrices generated from the MIB scheme, the direct methods and regular
iterative methods will be ruled out from the beginning due to the poor convergence for huge
systems. The CG method also does not work because the unpredictably general matrix
structures. Meanwhile, the direct application of the multigrid method, which is an important
accelerating technique, also has a potential problem due to the shift of irregular point
locations during grid refinement cycles. Ref [16] showed the poor behavior of the algebraic
multigrid method (AMD) and proposed a new multigrid scheme based on the local interface
problem but the interpolation operator at the interface will cost much extra work.

Therefore, we put more emphasis on looking for suitable solvers and accelerating techniques
in the Krylov subspace theory. Stabilized biconjugate gradient method (BiCG) and
generalized minimal residual method (GMRES) are two examples in Krylov subspace
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methods, which deal with the general nonsingular matrix that does not have to be symmetric
and positive definite. In the following section, the Krylov subspace (KS) methods and their
analysis are briefly introduced. Different types of preconditioners are associated to the KS
solvers. These combinations are tested in Section 3 to achieve the optimal convergence rate
for solving the linearized or nonlinear MIBPB matrices.

B Krylov subspace method and preconditioning
Suppose u0 is an initial guess for the solution u in system (17) and defines the initial residual
r0 = f − Lu0. For notation simplicity, the subscript h is dropped here. As shown in Ref. [43],
the Krylov subspace can be derived from the following projection method. The mth iteration
um, m = 1, 2, ... is of the form

(22)

where  is some m-dimensional space, called the search space. Strictly speaking, Eq. (22)
is an abused notation, it means that um can be decomposed as the residual r0 and an element
in space . Because of m degrees of freedom, a total of m constraints is required to make
um unique. This is achieved by choosing an m-dimensional space , called the constraint
space, and by requiring that the mth residual is orthogonal to that space, i.e.,

(23)

Here the orthogonality is in the sense of the inner product in the Euclidean space.

If the space  is defined as the Krylov subspace , i,e,

(24)

then the projection method is the so-called Krylov subspace method. More specifically, if
, it is the Galerkin method, which includes the CG method and its generalizations,

and if , it yields the GMRES. These are the basic idea of Krylov subspace methods.

For the convergence analysis, note that conditions (22) and (23) imply that the error u − um

and the residual rm can be written in the polynomial form

(25)

where pm is a polynomial of degree at most m and with value one at the origin. Ref. [43]
gives the error bound for Krylov subspace methods

(26)

where πm denotes the set of polynomials of degree at most m and with value one at the
origin, λk are the eigenvalues of the matrix L. It can be concluded from Eq. (26) that the
convergence behavior of the Krylov subspace methods is completely determined by their
spectra.
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However, as indicated in Ref. [43], it is always difficult to really evaluate the upper bound.
Alternatively, it states that the condition number of the matrix is a criteria which although,
only partially reveals the practice convergence behavior but is easier to calculate. For matrix
L, the condition number is defined as the ratio of the extreme eigenvalues or spectra

(27)

Since the rate of the convergence of Krylov projection methods for a particular linear system
is strongly dependent on its spectrum, preconditioner is typically used to alter the spectrum
and hence accelerate the convergence rate of iterative techniques. Preconditioner can be
applied to system (17) by

(28)

where ML and MR denote the left and right precondition matrices. Usually if MR = I, the left
preconditioned results and the residual is given by

(29)

Properly preconditioned matrix M−1L may significantly reduce the condition number of L,
hence the rate of convergence is accelerated. The commonly used precondition strategies are
Jacobi preconditioner, block preconditioner and incomplete LU factorization. However,
preconditioning a large sparse system is an empirical exercise. Different preconditioners
work better for different kinds of problems. In Section 3, the combinations of different
Krylov subspace solvers and preconditioners are investigated, and the rate of convergence is
analyzed via the spectra of preconditioned and un-preconditioned matrices.

The accelerated Krylov methods are also crucial for solving the nonlinear Poisson-
Boltzmann equation. The discretization of the nonlinear PB equation results in a linear
equation system of the form

(30)

where the matrix L is still from the MIBPB scheme, the nonlinear term N(·) is diagonal and

. The inexact-Newton method is perhaps one of the most
efficient ways to solve nonlinear system (30)

(31)

(32)

where F′ is the Jacobian matrix [∂Fi(u)/∂uj] and takes the form F′(u) = L + N′(u). Here N′ is

the Jacobian matrix of N(u) and is also diagonal .
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It is easy to see that the inexact-Newton method is a two-layer iterative algorithm. The
correction term vn in outer iteration (32) is considered as a rough solution of inner iteration
(31). The scheme converges linearly when ηn, the ratio of the residual rn between the
function value F(u), is less than 1, and converges super-linearly as the sequence ηn has the
property that limn→∞ ηn = 0. In the MIBPB package, accelerated Krylov subspace methods
are applied to inner iteration (31) in order to attain fast convergence.
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Figure 1.
The implicit protein-solvent system
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Figure 2.
Condition numbers over 15 proteins (PDB IDs from protein 1 to protein 15: 1ajj, 1vii, 1cbn,
1bbl, 1fca, 1sh1, 1vjw, 1fxd, 1bpi, 1a2s, 1frd, 1svr, 1a63, 2erl, 2pde). (a) Condition numbers
for unpreconditioned (unPCed) MIBPB matrices; (b) Comparisons of condition numbers
under three settings.
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Figure 3.
Work flow of the MIBPB package
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Figure 4.
Visualizations of surface electrostatic potentials of protein 1beb. From left to right: (a)
Surface electrostatic potential (I = 0, h = 1.0Å); (b): Surface electrostatic potential with the
ionic strength I = 1 (h = 1.0Å); (c): The difference of surface electrostatic potentials between
in an ionic solvent (I = 1) and in a water solvent (I = 0); (d): The difference of surface
electrostatic potentials in water (I = 0) between grid meshes h = 1.0Å and h = 0.5Å.
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Figure 5.
Comparison of solvation energies of proteins (From protein 1 to 19: 1ajj,1bbl,1vii,1cbn,
2pde,1sh1,1fca,1fxd,1vjw,1bor,1hpt,1bpi,1mbg,1r69,1neq,1a2s,1svr,1a63,1a7m) calculated
by using the MIBPB and the APBS methods.
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Figure 6.
Comparison of CPU time of preconditioned (PCed) and un-preconditioned (unPCed)
MIBPB methods for 19 proteins (from protein 1 to 19: 1ajj,1bbl,1vii,1cbn,2pde,1sh1,1fca,
1fxd,1vjw,1bor,1hpt,1bpi,1mbg,1r69,1neq,1a2s,1svr,1a63,1a7m).
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Figure 7.
(a) Binding affinity of 1emv; (b) Binding affinity of 1beb.
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Table 6

Solvation energies (kcal/mol) and CPU time (second) for large proteins

Protein MIBPB (h = 1.0Å)

ID atoms Solvation energy CPU time (s)

1cbg 7838 -5659.9 181

1c4k 11439 -9901.9 398

1e24 7776 -9506.4 231

1f6w 8243 -5611.2 225

1po7 7796 -5471.2 206
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