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Abstract
Purpose Due to the restricted expression of αvβ3 in
tumours, αvβ3 is considered a suitable receptor for tumour
targeting. In this study the αvβ3-binding characteristics of
68Ga-labelled monomeric, dimeric and tetrameric RGD
peptides were determined and compared with their 111In-
labelled counterparts.
Methods A monomeric (E-c(RGDfK)), a dimeric (E-[c
(RGDfK)]2) and a tetrameric (E{E[c(RGDfK)]2}2) RGD

peptide were synthesised, conjugated with DOTA and
radiolabelled with 68Ga. In vitro αvβ3-binding character-
istics were determined in a competitive binding assay. In
vivo αvβ3-targeting characteristics of the compounds were
assessed in mice with subcutaneously growing SK-RC-52
xenografts. In addition, microPET images were acquired
using a microPET/CT scanner.
Results The IC50 values for the Ga(III)-labelled DOTA-E-c
(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E{E[c
(RGDfK)]2}2 were 23.9±1.22, 8.99±1.20 and 1.74±
1.18 nM, respectively, and were similar to those of the In
(III)-labelled mono-, di- and tetrameric RGD peptides (26.6±
1.15, 3.34±1.16 and 1.80±1.37 nM, respectively). At 2 h
post-injection, tumour uptake of the 68Ga-labelled mono-, di-
and tetrameric RGD peptides (3.30±0.30, 5.24±0.27 and
7.11±0.67%ID/g, respectively) was comparable to that of
their 111In-labelled counterparts (2.70±0.29, 5.61±0.85 and
7.32±2.45%ID/g, respectively). PET scans were in line with
the biodistribution data. On all PET scans, the tumour could
be clearly visualised.
Conclusion The integrin affinity and the tumour uptake
followed the order of DOTA-tetramer > DOTA-dimer >
DOTA-monomer. The 68Ga-labelled tetrameric RGD pep-
tide has excellent characteristics for imaging of αvβ3

expression with PET.
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Introduction

Angiogenesis, the formation of new blood vessels from
existing ones, is an essential process if solid tumours are to
grow beyond 2–3 mm3, since diffusion is no longer
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sufficient to supply the tissue with oxygen and nutrients [1].
Tumour-induced angiogenesis is a complex multistep
process that follows a characteristic cascade of events
mediated and controlled by growth factors, cellular recep-
tors and adhesion molecules [2–4].

Activated endothelial cells express the integrin αvβ3

receptor, whereas this integrin receptor is absent on
quiescent endothelial cells. In addition, αvβ3 is expressed
on the cell membrane of various tumour cell types such as
ovarian cancer, neuroblastoma, breast cancer and melano-
ma. αvβ3 Integrin expressed on endothelial cells modulates
cell migration and survival during angiogenesis, whereas
αvβ3 integrin expressed on carcinoma cells potentiates
metastasis by facilitating invasion and movement across
blood vessels. Due to this restricted expression of αvβ3 in
tumours, αvβ3 is considered a suitable candidate for tumour
targeting [5]. Radiolabelled ligands for this integrin could
be used as tracers to noninvasively visualise αvβ3 expres-
sion in tumours. Noninvasive visualisation of αvβ3 expres-
sion might provide information about the angiogenic
process and the responsiveness of a tumour to antiangio-
genic drugs. Furthermore, noninvasive determination of
αvβ3 expression potentially can be used to monitor the
effect of antiangiogenic drugs in patients.

The αvβ3 integrin is a transmembrane protein consisting
of two noncovalently bound subunits, α and β. This
integrin can bind to the arginine-glycine-aspartic acid
(RGD) amino acid sequence present in extracellular matrix
proteins such as vitronectin, fibrinogen and laminin [6].
Based on the RGD tripeptide sequence a series of small
peptides have been designed to antagonise the function of
the αvβ3 integrin [7]. Especially the cyclic peptide
derivatives have a relatively high affinity for the αvβ3

integrin. Radiolabelled cyclic RGD peptides have the
potential for early detection of rapidly growing tumours
and noninvasive visualisation of tumour metastasis and
therapeutic response in cancer patients.

Over the last several years, significant progress has been
made in the development of αvβ3-targeting radiotracers for
the visualisation of αvβ3 expression in tumours by single
photon emission computed tomography (SPECT) and
positron emission tomography (PET).

Haubner and coworkers developed the first αvβ3-
specific PET tracer [18F]Galacto-RGD [8], a glycosylated
cyclic pentapeptide, which demonstrated that PET with
[18F]Galacto-RGD enables receptor-specific monitoring of
αvβ3 expression in murine tumour models. It was the first
PET tracer applied in patients with cancer which could
successfully image αvβ3 expression with good tumour to
background ratios [9]. In addition, a strong correlation
between tracer uptake and αvβ3 expression was observed
[10]. In the mean time, another RGD-based PET tracer,
[18F]AH111585, has been developed and evaluated in

breast cancer patients [11]. [18F]AH111585 was demon-
strated to be safe and metabolically stable and could
visualise tumours in breast cancer patients. Although both
18F-labelled RGD monomers bind specifically to the αvβ3

integrin, their clinical translation is partly hampered by the
time-consuming multistep 18F-labelling procedure and the
necessity of a cyclotron facility to produce this PET
isotope.

An interesting alternative is the use of the generator-
produced radionuclide 68Ga. The application of 68Ga-
labelled peptides has attracted considerable interest for
cancer imaging, because of its physical characteristics [12].
68Ga decays at 89% through positron emission of
1.92 MeV (max. energy) and can be eluted from an in-
house 68Ge/68Ga generator (68Ge, T1/2=270.8 days) which
renders it independent of an on-site cyclotron. Furthermore,
with a half-life of 68 min, 68Ga is also compatible with the
pharmacokinetics of many peptides.

Recently, Decristoforo et al. compared the in vitro and in
vivo properties of [68Ga]DOTA-RGD with that of the
corresponding [111In]DOTA-RGD [13]. They found that
especially in the blood and also in tumour the uptake of the
68Ga-labelled peptide was higher than the 111In-labelled
counterpart which could be explained by different complex
stabilities for the Ga-DOTA and the In-DOTA complexes,
resulting in transmetallation of gallium to transferrin. The
group in Stanford conjugated RGD monomers and multi-
mers to p-SCN-Bn-NOTA and labelled them with 68Ga for
imaging integrin expression in a U87MG glioblastoma
xenograft model [14, 15]. They clearly observed by
increasing RGD units an increase in αvβ3 affinity and
tumour uptake. In addition, it was possible to increase the
αvβ3 receptor-binding affinity of the RGD dimer by
coupling the two RGD peptide units via Gly3 and PEG4

linkers.
Here, we radiolabelled mono-, di- and tetrameric RGD

peptides with 68Ga and studied the tumour targeting
potential of these peptides in vitro and in vivo. This is the
first study in which mono-, di- and tetrameric RGD
peptides labelled with 68Ga, for PET imaging of αvβ3

expression, are directly compared with their 111In-labelled
counterparts.

Materials and methods

Synthesis of DOTA-conjugated RGD peptides

The mono-, di- and tetrameric RGD peptides were
synthesised using Fmoc-based solid-phase peptide synthe-
sis (SPPS) as described previously [16–19]. The structural
formulas of DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2
and DOTA-E{E[c(RGDfK)]2}2 are shown in Fig. 1.
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Radiolabelling of the RGD peptides

111In labelling

DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E
{E[c(RGDfK)]2}2 were radiolabelled with 111InCl3 as
described previously [17]. Briefly, 18.5 MBq 111InCl3

(Mallinckrodt, Petten, The Netherlands) was added to 5–
20 nmol DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and
DOTA-E{E[c(RGDfK)]2}2 dissolved in 300 or 500 μl
ammonium acetate buffer, pH 6.0, containing 0.6 mg/ml
gentisic acid. The mixtures were heated at 100°C for
15 min. For in vitro and in vivo studies, the reaction
mixtures were diluted in phosphate-buffered saline (PBS).

Fig. 1 a Structural formula of the
DOTA-conjugated monomeric
RGD peptide, DOTA-E-c
(RGDfK). b Structural formula of
the DOTA-conjugated dimeric
RGD peptide, DOTA-E-[c
(RGDfK)]2. c Structural formula
of the DOTA-conjugated tetra-
meric RGD peptide DOTA-E{E[c
(RGDfK)]2}2
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68Ga labelling

DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E
{E[c(RGDfK)]2}2 were labelled with 68GaCl3 eluted from a
TiO2-based 1,110 MBq 68Ge/68Ga generator (Cyclotron Co.
Ltd., Obninsk, Russia) using 0.1 M HCl (Ultrapure, J.T.
Baker, Deventer, The Netherlands). Five 1-ml fractions
were collected and an aliquot of the second fraction was
used for labelling the peptides.

68Ga-labelled DOTA-E-c(RGDfK), DOTA-E-[c
(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 were prepared
by adding 250 μl 1 M HEPES, pH 7.0, solution to 10–28 μl
of the peptide dissolved (1 μg/μl) in 0.25 M ammonium
acetate, pH 5.5. Then, the second millilitre eluted from the
generator (315–365 MBq) was added. After 20 min at 95°C,
the 68Ga-labelled peptides were further purified on an
Oasis® HLB (1 cm3, 30 mg) cartridge (Waters, Milford,
MA, USA). After applying the sample on the cartridge, the
cartridge was washed with 3 × 1 ml H2O and eluted with
200 μl 25% EtOH in H2O (v/v). For in vitro and in vivo
studies, the eluate was diluted to <5% EtOH in PBS.

Analysis

The radiochemical purity was determined by reversed-phase
high-performance liquid chromatography (RP-HPLC) on an
Agilent 1100 system (Agilent Technologies, Palo Alto, CA,
USA) using a C18 column (RX-C18, 4.6×250 mm, Zorbax)
eluted with a gradient mobile phase [0–5 min 97% buffer A,
5-15 min 97% buffer A to 0% buffer A, buffer A=0.1%
trifluoroacetic acid (TFA) in H2O, buffer B=0.1% TFA in
acetonitrile] at 1 ml/min. The radioactivity of the eluate was
monitored using an in-line NaI radiodetector (Raytest
GmbH, Straubenhardt, Germany). Elution profiles were
analysed using Gina Star software (version 2.18, Raytest
GmbH, Straubenhardt, Germany). An additional quality
control after purification on an HLB cartridge was performed
by instant thin-layer chromatography (ITLC) using TEC-
Control™ chromatography strips (Biodex Medical Systems,
Shirley, NY, USA). The strips were developed using two
different mobile phases. Mobile phase I was 0.1 M
CH3COONH4/0.1 M EDTA (1:1 v/v) and mobile phase II
was 0.25 M CH3COONH4/MeOH (1:1 v/v). The strips were
analysed using a Fujifilm BAS-1800II Scanner (Fuji Photo
Film Co., Tokyo, Japan).

Octanol/water partition coefficient

To an Eppendorf tube filled with 0.5 ml of the radiolabelled
peptide in PBS, pH 7.4, 0.5 ml octanol was added. After the
tube was vigorously vortexed for 2 min at room tempera-
ture, the two layers were separated by centrifugation (100 g,
5 min). Then, 100-μl samples were taken from each layer

and radioactivity was measured in a well-type gamma
counter (Wallac Wizard 3”, PerkinElmer, Waltham, MA,
USA) and Log P values were calculated (n=3).

In vitro stability

The stability of the 111In- and 68Ga-labelled RGD peptides
was determined by incubating the compounds in both PBS
and human serum for 2 h at 37°C. Before analysis of the
serum samples the serum proteins were precipitated by
adding an equal volume of MeCN to the samples.
Subsequently, serum samples were centrifuged for 5 min
at 13,500 g. The PBS samples were analysed without any
sample preparation. An aliquot of the serum and the PBS
sample were injected onto HPLC.

Protein binding

To determine their serum protein-binding properties, the
68Ga- and 111In-labelled peptides were incubated in fresh
human serum at 37°C. After 2 h, the samples were analysed
with fast protein liquid chromatography (FPLC), using a
BioSep-Sec-S 3000 column (300×4.60 mm, Phenomenex,
Utrecht, The Netherlands) with an isocratic mobile phase
(PBS, 1 ml/min).

Solid-phase αvβ3 binding assay

The affinity of Ga(III)/In(III)-DOTA-E-c(RGDfK), Ga(III)/
In(III)-DOTA-E-[c(RGDfK)]2 and Ga(III)/In(III)-DOTA-E
{E[c(RGDfK)]2}2 for αvβ3 was determined using a solid-
phase competitive binding assay.

For the “cold” labelling of DOTA-E-c(RGDfK), DOTA-E-
[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 with either Ga
(III) or In(III), each of the peptides was dissolved in an
aqueous solution. Subsequently, a 3 M excess of InCl3
(Aldrich Chemical Company, Inc., Milwaukee, WI, USA) or
Ga(NO3)3 (Sigma-Aldrich Chemie, Steinheim, Germany) was
added. The Ga(III) or In(III) complexation was performed at
room temperature overnight or at 40°C for 2 h, respectively.

111In-labelled DOTA-E-[c(RGDfK)]2 (3 MBq/μg) was
used as the tracer in this assay. Microtiter 96-well vinyl assay
plates (Corning B.V., Schiphol-Rijk, The Netherlands) were
coated with 100 μl/well of a solution of purified human
integrin αvβ3 (150 ng/ml) in Triton X-100 Formulation
(Chemicon International, Temecula, CA, USA) in coating
buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM
CaCl2, 0.5 mM MgCl2 and 1 mM MnCl2) for 17 h at 4°C.
The plates were washed twice with binding buffer [0.1%
bovine serum albumin (BSA) in coating buffer]. The wells
were blocked for 2 h with 200 μl blocking buffer (1% BSA
in coating buffer). The plates were washed twice with
binding buffer. Then, 100 μl binding buffer containing

Eur J Nucl Med Mol Imaging (2011) 38:128–137 131



10 kBq of 111In-DOTA-E-[c(RGDfK)]2 and appropriate
dilutions (2×10−6–8×10−11 M) of Ga(III)- or In(III)-labelled
DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E
{E[c(RGDfK)]2}2 in binding buffer were incubated in the
wells at 37°C for 1 h. After incubation, the plates were
washed three times with binding buffer. The wells were cut
out and counted in a gamma counter. IC50 values of the
RGD peptides were calculated by nonlinear regression using
GraphPad Prism (GraphPad Prism 4.0, GraphPad Software,
San Diego, CA, USA). Each data point is the average of
three determinations.

Biodistribution studies

In the right flank of 6- to 8-week-old female nude BALB/c
mice, 0.2 ml of a cell suspension of 2×106 cells/ml SK-RC-
52 cells was injected subcutaneously (s.c.). Two weeks after
inoculation of the tumour cells, mice were injected
intravenously (i.v.) with the 111In- or 68Ga-labelled RGD
peptides (0.2–0.89 nmol) in 0.2 ml PBS+0.5% BSA. Mice
were killed by CO2 asphyxiation 2 h post-injection (p.i.)
(five mice/group). Blood, tumour and the major organs and
tissues were collected, weighed and counted in a gamma
counter. The percentage injected dose per gram (%ID/g)
was determined for each sample.

The receptor-mediated localisation of the radiolabelled
RGD peptides was investigated by determining the bio-
distribution of the 111In- or 68Ga-labelled compounds in the
presence of an excess (100-fold excess) unlabelled DOTA-
E-[c(RGDfK)]2 (n=3). DOTA-E-[c(RGDfK)]2 was used for
these “blocking studies” as in our previous studies this
compound was demonstrated to be αvβ3 specific [20, 21].
All animal experiments were approved by the local Animal
Welfare Committee in accordance with the Dutch legisla-
tion and carried out in accordance with their guidelines.

MicroPET imaging

Mice with s.c. SK-RC-52 tumours were injected i.v. with
10 MBq 68Ga-labelled mono-, di- or tetrameric RGD
peptide per mouse (0.89 nmol). Two hours after the
injection of the peptide, mice were scanned on an animal
PET/CT scanner (Inveon®, Siemens Preclinical Solutions,
Knoxville, TN, USA) with an intrinsic spatial resolution of
1.5 mm [22]. The animals were placed in a supine position
in the scanner. PET emission scans were acquired over
15 min. CT images were acquired for anatomical correla-
tion directly after PET imaging (spatial resolution 113 μm,
80 kV, 500 μA, exposure time 300 ms).

Scans were reconstructed using Inveon Acquisition
Workplace software version 1.2 (Siemens Preclinical
Solutions, Knoxville, TN, USA), using an ordered subset
expectation maximisation 3-D/maximum a posteriori

(OSEM3D/MAP) algorithm with the following parameters:
matrix 256×256×159, pixel size 0.43×0.43×0.8 mm3 and
a beta value of 0.1.

Statistical analysis

All mean values are given ± standard deviation (SD).
Statistical analysis was performed using the one-way analysis
of variance. Bonferroni corrections for multiple comparisons
were applied. The level of significance was set at p<0.05.

Results

Radiolabelling

RP-HPLC analysis indicated that the radiochemical purity
of the 68Ga- or 111In-labelled DOTA-E-c(RGDfK), DOTA-
E-[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 prepara-
tions used in these experiments ranged from 93 to 97%.

The HPLC chromatograms of 111In-DOTA-E-c(RGDfK),
111In-DOTA-E-[c(RGDfK)]2 and 111In-DOTA-E{E[c
(RGDfK)]2}2 showed a single peak for each of the
compounds with a retention time of 14, 26 and 15 min,
respectively. Note that different gradients were used.

The ITLC profiles of 68Ga-DOTA-E-c(RGDfK) (Rf=0.35),
68Ga-DOTA-E-[c(RGDfK)]2 (Rf=0.53) and 68Ga-DOTA-E
{E[c(RGDfK)]2}2 (Rf=0.08) after HLB purification demon-
strated a purity of 97, 98 and 99%, respectively. The
maximum specific activity of the 68Ga-labelled mono-, di-
and tetramer was 11.2 MBq/nmol.

Octanol/water partition coefficient

To determine the lipophilicity of the 68Ga- and 111In-labelled
DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E{E
[c(RGDfK)]2}2, the octanol/water partition coefficients were
determined. The Log Poctanol/water values for the

68Ga-labelled
RGD mono-, di- and tetramer were −4.37±0.13, −4.04±0.15
and −3.76±0.07, respectively. The Log P octanol/water values of
the 111In-labelled RGD mono-, di- and tetramer were −4.38±
0.25, −3.95±0.05 and −4.15±0.07, respectively.

In vitro stability

Determination of the stability of the 111In- and 68Ga-
labelled RGD peptides indicated high stability of the
compounds. There was no evidence of release of 68Ga or
111In from the peptides or radiolysis of any of the
compounds in both PBS and human serum (data not
shown). After 2 h incubation at 37°C more than 95% of
the activity was still associated with the DOTA-conjugated
cyclic peptides and no significant reduction was observed.
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Protein binding

No differences in the protein-binding properties between
the 68Ga- and 111In-labelled RGD peptides were observed
by FPLC (data not shown). The protein-bound activity was
negligible (<5%) after 2 h incubation in human serum for
the 68Ga- as well as for the 111In-labelled peptides. For each
of the peptides >95% of the activity eluted as a monomeric
peak at 13 min.

Solid-phase αvβ3 binding assay

We determined the affinity of Ga(III)-DOTA-E-c(RGDfK),
Ga(III)-DOTA-E-[c(RGDfK)]2 and Ga(III)-DOTA-E{E[c
(RGDfK)]2}2 and their In(III)-labelled analogues for integ-
rin αvβ3 in a competitive binding assay. The results of
these assays are summarised in Fig. 2. Binding of 111In-
labelled dimeric peptide, 111In-DOTA-E-[c(RGDfK)]2, to
αvβ3 was competed by Ga(III)- or In(III)-labelled DOTA-
E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E{E[c
(RGDfK)]2}2 in a concentration-dependent manner. The
IC50 values were 23.9±1.22 nM, 8.99±1.20 nM and 1.74±
1.18 nM for Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-
E-[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2, respective-
ly (Table 1). The affinities of the In(III)-labelled mono-, di-
and tetrameric RGD peptides were similar: 26.6±1.15 nM,
3.34±1.16 nM and 1.80±1.37 nM, respectively.

Biodistribution studies

The results of the biodistribution studies of both 111In- and
68Ga-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2
and DOTA-E{E[c(RGDfK)]2}2 are summarised in Fig. 3.
DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 and DOTA-E

{E[c(RGDfK)]2}2 radiolabelled with either 68Ga or 111In all
cleared rapidly from the blood. At 2 h p.i. the blood level of
all compounds was below 0.4%ID/g. Tumour uptakes of
the 68Ga-labelled mono-, di- and tetrameric RGD peptides
(3.30±0.30, 5.24±0.27 and 7.11±0.67%ID/g, respectively)
were comparable to those of their 111In-labelled counter-
parts (2.70±0.29, 5.61±0.85 and 7.32±2.45%ID/g, respec-
tively). At 2 h p.i., the tumour uptake was significantly
higher for the 68Ga-labelled tetramer (7.11±0.67%ID/g),
compared to that of the dimer (5.24±0.27%ID/g) and that
of the monomer (3.30±0.30%ID/g). For the 111In-labelled
analogues, there was no difference in tumour uptake
between the tetramer (7.32±2.45%ID/g) and dimer (5.61±
0.85%ID/g), whereas the tumour uptake of the 111In-
labelled dimer was significantly higher than that of the
111In-labelled monomer (2.70±0.29%ID/g).

Coinjection of an excess unlabelled DOTA-E-[c
(RGDfK)]2 (50 μg) along with 0.5 μg of 68Ga- or 111In-
labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]2 or
DOTA-E{E[c(RGDfK)]2}2 resulted in a significantly re-
duced radioactivity concentration in the tumour, indicating
that uptake of the major fraction of DOTA-E-c(RGDfK),
DOTA-E-[c(RGDfK)]2 and DOTA-E{E[c(RGDfK)]2}2 in
the tumour was αvβ3 mediated. Uptake in nontarget organs
such as lung, spleen and intestine was also reduced in the
presence of an excess of unlabelled RGD peptide, indicating
that the uptake in these tissues was at least partly αvβ3

mediated. The kidney uptake of the 68Ga- and 111In-labelled
monomer and dimer could partly be blocked. However, renal
uptake of the 68Ga- and 111In-labelled tetramer could not be
blocked. Kidney uptake was remarkably high for the 68Ga-
labelled tetramer compared to its 111In-labelled analogue.

Fused PET and CT scans are shown in Fig. 4. PET scans
were in line with the biodistribution data. On all PET scans,
the tumour could be clearly visualised. The 68Ga-labelled
tetramer showed the highest tumour uptake compared to the
monomer and dimer. All three tracers showed some uptake
in the kidneys, especially the tetramer. On the other hand,
the monomer demonstrated relatively high intestinal uptake.
The 68Ga-labelled tetramer showed the highest tumour to
background ratio and therefore this tracer is the most
suitable for imaging αvβ3 expression by PET.

Discussion

In this study, the feasibility of using 68Ga-labelled multimeric
RGD peptides for radionuclide imaging of the αvβ3 integrin
expression with PET was investigated. The radiolabelled
mono-, di and tetrameric RGD peptides were very hydro-
philic as demonstrated by their partition coefficients (Log
Poctanol/water). The Log P values varied between −4.38±0.25
for the 111In-labelled monomer and −3.76±0.07 for the 68Ga-

Fig. 2 Competition of specific binding of 111In-DOTA-E-[c
(RGDfK)]2 with Ga(III)-DOTA-E-c(RGDfK), Ga(III)-DOTA-E-[c
(RGDfK)]2 and Ga(III)-DOTA-E{E[c(RGDfK)]2}2
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labelled tetramer. These values are even lower than the value
found for [18F]Galacto-RGD (Log P=−3.2) which is cleared
almost exclusively via the kidneys [23]. The hydrophilicity
of the 68Ga-labelled monomer and dimer labelled with either
68Ga or 111In was not different. Only for the tetramer was the
Log P value lower for the 111In-labelled variant compared to
its 68Ga-labelled counterpart. Heppeler et al. demonstrated
that for the complexation of gallium by DOTA four nitrogen
atoms of the macrocycle and two oxygen atoms from the
carboxylate groups are involved [24]. Thus, one carboxylic
acid group of the DOTA chelator is not involved in
complexation of 68Ga. However, for 111In it is assumed that

the four nitrogen atoms of the DOTA macrocycle and the
four oxygen atoms of the carboxylic groups are involved in
the complexation. Despite the fact that the 68Ga-DOTA
complex has one more carboxylic acid group that is not
involved in the complexation compared to the 111In-DOTA
complex, the 68Ga-labelled analogue does not have an
increased hydrophilicity.

The binding affinity of Ga(III)-DOTA-tetramer (IC50=
1.74±1.18 nM), as determined in a solid-phase competitive
binding assay, was about 5 times higher compared to Ga
(III)-DOTA-dimer (IC50=8.99±1.20 nM) and about 13
times higher compared to Ga(III)-DOTA-monomer (IC50=
23.9±1.22 nM). The binding affinity of the In(III)-labelled
monomeric (26.6±1.15 nM), dimeric (3.34±1.16 nM) and
tetrameric RGD peptides (1.80±1.37 nM) was comparable.

In the s.c. SK-RC-25 renal cell carcinoma xenograft
model, the tetrameric RGD peptide, labelled with either
68Ga or 111In, showed the highest tumour uptake. Thus,
there is a relation between the binding affinity for αvβ3 and
the accumulation of the compound in αvβ3-expressing
tumours. All three RGD peptides of this study labelled with
either 68Ga or 111In showed specific tumour uptake in

Table 1 IC50 values arising from a competitive binding assay of Ga
(III)- and In(III)-labelled RGD mono-, di- and tetramer

Compound Ga(III)-labelled ± SD
(nM)

In(III)-labelled ± SD
(nM)

Monomer 23.9±1.22 26.6±1.15

Dimer 8.99±1.20 3.34±1.16

Tetramer 1.74±1.18 1.80±1.37

Fig. 3 a Biodistribution of
[68Ga]DOTA-E-c(RGDfK),
[68Ga]DOTA-E-[c(RGDfK)]2 and
[68Ga]DOTA-E{E[c(RGDfK)]2}2
at 2 h p.i. in athymic mice with s.
c. SK-RC-52 tumours in the
absence (five mice/group) or
presence (three mice/group) of an
excess of DOTA-E-[c(RGDfK)]2.
b Biodistribution of [111In]
DOTA-E-c(RGDfK), [111In]
DOTA-E-[c(RGDfK)]2 and
[111In]DOTA-E{E[c(RGDfK)]2}2
at 2 h p.i. in athymic mice with s.
c. SK-RC-52 tumours in the
absence (five mice/group) or
presence (three mice/group) of an
excess of DOTA-E-[c(RGDfK)]2
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athymic mice with s.c. SK-RC-52 tumours: in the presence
of an excess of unlabelled DOTA-E-[c(RGDfK)]2, the
specificity of the tumour targeting of the monomeric,
dimeric, and tetrameric RGD peptides was evident.

Several research groups have applied the multivalent
concept to prepare cyclic RGD peptides with an enhanced
binding affinity and demonstrated that the multimeric RGD
peptides have an enhanced localisation in αvβ3-expressing
tumours [17, 19, 25–30]. Although the advantages of
multimeric RGD peptides as targeting molecules are
universally accepted, the cause of the enhanced affinity of
the multimeric RGD analogues for integrin αvβ3 is still a
matter of debate [31]. Cells can form a cluster of many
monovalent receptors on the cell surface [32], and particu-
larly multimeric ligands with a spacer between the binding
moieties could span the required distance between binding
sites and could then bind multiple receptors simultaneously.
On the other hand, multimeric compounds could have
enhanced affinity due to statistical rebinding: the receptor
binding of one RGD unit will significantly enhance the local
concentration of the second RGD unit in the vicinity of the
receptor. This could lead to an enhanced αvβ3-binding rate
or a reduced αvβ3-dissociation rate of the RGD multimer
[19]. The distance between the RGD units of the multimers
used in this study is relatively short and therefore statistical
rebinding might be the most likely explanation for the
increased affinity in the series tetramer > dimer > monomer.

The three 68Ga-labelled RGD peptides showed a
remarkable difference in kidney uptake. The uptake of the
68Ga-labelled tetrameric RGD peptide was at 2 h p.i.
significantly higher than that of the 68Ga-labelled dimer and
monomeric RGD peptides. In the integrin specificity

experiment, the excess of nonradiolabelled RGD peptide
partly inhibited the kidney uptake of the radiolabelled
monomer and dimer, but not the kidney uptake of the
radiolabelled tetramer. This indicates that different mecha-
nisms cause the relatively high uptake of the RGD peptides
in the kidneys. Wu and coworkers have recently shown by
immunohistochemistry that the endothelial cells of the
glomeruli vessels in the kidneys express β3 integrins [33],
which could explain the partly specific kidney uptake of the
RGD peptide. Furthermore, the difference in charge
between the three peptides could cause the difference in
tubular reabsorption. A trend has been observed that
positively charged peptides are more efficiently reabsorbed
by the proximal renal tubular cell than neutral peptides
[34]. Due to the presence of more guanidine groups, the
tetrameric RGD peptide is more positively charged than the
dimeric and monomeric RGD peptides. Remarkably, the
68Ga-labelled tetramer demonstrated a much higher kidney
uptake than the 111In-labelled tetramer which may hamper
its clinical application.

Other nontumour tissues such as lung, liver and colon
also showed specific uptake of the mono-, di- and
tetrameric RGD peptides, suggesting αvβ3 expression in
these tissues. Indeed, β3 expression in these tissues has
been described for rodents as well as for humans [33, 35].
Decristoforo and coworkers compared the biodistribution of
[68Ga]DOTA-RGD, [111In]DOTA-RGD and [18F]Galacto-
RGD and found that [68Ga]DOTA-RGD had the highest
tracer uptake in all organs [13]. Especially, the radioactivity
concentration in the blood was significantly higher for
[68Ga]DOTA-RGD compared with [111In]DOTA-RGD. The
authors hypothesised that the lower complex stability of the

Fig. 4 Anterior 3-D volume ren-
dering projections of fused PET
and CT scans of mice with a s.c.
growing SK-RC-52 tumour after
i.v. injection of [68Ga]DOTA-E-c
(RGDfK) (a), [68Ga]DOTA-E-[c
(RGDfK)]2 (b) or [

68Ga]DOTA-
E{E[c(RGDfK)]2}2 (c). Scans
were recorded at 2 h p.i.
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68Ga-DOTA complex could result in transchelation of
gallium to transferrin. In our study, the 68Ga-labelled
peptides, especially the dimer and tetramer, did not show
enhanced blood levels as compared to the 111In-labelled
counterparts. In addition, in our in vitro studies no evidence
of instability of the 68Ga-DOTA complex or protein-
binding activity was observed. This is in line with the
recent observation of Haukkala and coworkers who found
that there was no evidence of dissociation of 68Ga from
DOTA in the blood [36]. Although DOTA has a larger
cavity than NOTA and the log stability constants are in
favour of the Ga-NOTA complex compared with the Ga-
DOTA complex [37, 38], the 68Ga-DOTA complex is stable
enough for in vitro and in vivo studies.

In conclusion, the tetrameric RGD peptide demonstrated
improved tumour targeting compared to the dimeric RGD
peptide. Analogously, the dimeric RGD peptide exhibits
improved tumour targeting compared to the monomeric RGD
peptide. The results of the biodistribution study of the 68Ga-
and 111In-labelled dimer and tetramer are rather comparable.
The 68Ga-labelled tetrameric RGD peptide is a suitable ligand
for the noninvasive visualisation of αvβ3 expression in vivo.
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