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Abstract
Genome-wide association studies have led to a large number of single-SNP association findings,
but there has been, so far, no investigation resulting in the discovery of a replicable gene-gene
interaction. In this paper, we examine some of the possible explanations for the lack of findings,
and argue that coverage of causal variation not only has a large effect on the loss in power, but that
the effect is larger than in the single-SNP analyses. We show that the product of linkage
disequilibrium measures, r2, between causal and tested SNPs offers a good approximation to the
loss in efficiency as defined by the ratio of sample sizes that lead to similar power. We also
demonstrate that, in addition to the huge search space, the loss in power due to coverage when
using commercially available platforms makes the search for gene-gene interactions daunting.

1 Introduction
Recent research in the genetics of complex human traits has been fueled by the advances in
genotyping technology that have permitted the simultaneous genotyping of hundreds of
thousands (up to a million) of Single Nucleotide Polymorphisms (SNPs). This has led to a
large number of genome-wide association studies (GWAS) (e.g. WTCCC, 2007) that have
yielded an impressive number of discoveries. The vast majority of these discoveries have
come from scanning the genome one marker at a time, and searching for relatively strong
main effects. Although the field of complex traits genetics has been flooded with discoveries
of genetic associations, they have failed to account for all the variation in phenotype
(Manolio et al., 2009). Interactions such as gene-environment(GxE) and gene-gene (GxG)
can explain some of the missing heritability, and have been the focus of many
investigations.

It has been argued (Marchini et al., 2005) that testing strategies incorporating both single
SNP and SNP-SNP interactions can be more powerful in the context of GWAS data than
performing single-SNP analyses, even with a conservative penalty for multiple testing. The
results from simulations provide convincing evidence for that claim, but the applications
have not matched the theoretical expectations thus far. There have, as of yet, been no
replicable G×G interactions discovered for a complex human disease. Some of the issues
with published findings are: (i) there is some confusion on the difference between
interaction versus marginal association; (ii) some papers describe interactions between loci
in the same region, and in this situation it is difficult to assess the difference between
interaction and main effects; (iii) some manuscripts report p-values calculated on sparse data
using asymptotic approximations; (iv) some use incorrect corrections for multiple testing.

There are many methods for testing for GxG interaction (Cordell, 2009) and also many
papers on the definition of interaction and on the difference between statistical and

NIH Public Access
Author Manuscript
Ann Hum Genet. Author manuscript; available in PMC 2012 January 1.

Published in final edited form as:
Ann Hum Genet. 2011 January ; 75(1): 105–111. doi:10.1111/j.1469-1809.2010.00615.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biological epistasis (Cordell, 2002, for example). An important aspect that has not yet
enjoyed much attention is how to interpret the observed lack of replicable findings. The
focus of this paper is on starting the discussion on study design and search planning which
has a crucial effect on the discovery process. Note that these are directly related to power
that tends to be much lower for GxG studies than single-SNP association. The obvious
explanation for low power is the combination of sample sizes and underlying genetic
models. It is possible that the deviation from statistical additivity in 2-SNP models is small,
so only studies with very large sample sizes will detect it. It is also possible that the effects
are concentrated in combinations of genotypes that have low population frequencies, and the
sample size in these cells is relevant for determining the efficiency of the inference process.
Moreover, in the case of a genome-wide search, one of the main hindrances is the huge
search space (even in the case of 2-SNP models) that leads to stringent thresholds for
declaring discovery.

In this paper we focus on a different reason behind the lack of findings, namely the coverage
of causal variation. This issue has been explored extensively in the context of single-SNP
analysis (see next section), but only partially in the context of GxG interactions; the effect of
LD on power was indirectly quantified by measuring the effect of LD on odds ratios
(Marchini et al., 2005). Here the questions we are trying to answer are: (i) what is the effect
of using tag SNPs or platform SNPs on power? (ii) can we quantify that potential loss of
power using measures of linkage disequilibrium (LD) as we do in the single-SNP case?
Throughout, we measure power loss in terms of relative efficiency, which is the ratio of
sample sizes of two statistical hypothesis tests that lead to the same level of power. In the
GxG interaction testing context, coverage is the relative efficiency of these two scenarios: (i)
test for interaction at the genotyped SNPs that best tag the causal SNPs; (ii) test for
interaction at the causal SNPs. We argue below that this metric of coverage can be
approximated using measures of LD. The accuracy of these metrics in the marginal
association and interaction settings is also investigated.

2 Measuring coverage in single-SNP association via r2

In the case of single-SNP analysis, the LD measure r2 has been used to characterize the loss
of power due to using tag-SNPs in place of causal variants. The motivation for using it
comes from one of the interpretations of this LD metric: the r2 between the causal and tested
SNPs is approximately equal to the ratio of sample sizes (for testing the causal versus the
genotyped SNP) that leads to the same power (Kruglyak, 1999; Pritchard and Przeworski,
2001) when testing for association with a particular phenotype. In other words, the sample
size when using a proxy SNP needs to be larger by a factor of 1/r2 to maintain power similar
to when using the causal variant.

There are several papers (Nicolae et al., 2006; Barrett et al., 2006; Eberle et al., 2007) that
use this interpretation of r2, or measures of multi-locus LD developed based on similar ideas
(Nicolae, 2006), for comparing and characterizing GWAS platforms. It is not widely known
that the r2 approximation of the relative efficiency offers, in many situations, an optimistic
view on coverage. To illustrate, we simulated genotype data, G, for a SNP that is in LD, r2 =
0.5, with a causal SNP with data denoted by X. For simplicity we fixed the population allele
frequency at 0.5 for both SNPs. We generated data under three different genetic models
where the non-risk genotype penetrance was 10%: (i) recessive; (ii) dominant; and (iii)
additive. We simulated genotypes for nX cases and nX population controls at the causal
locus, and nG cases and nG population controls at the SNP in LD with the causal variant,
with n’s between 1000 and 8000. For each setting, we performed 10000 repetitions, and
estimated the power for a χ2 test at the 0.01 significance level. Figure 1 shows the ratio of
sample sizes, nX/nG, that leads to similar power for the causal and proxy variants. Note that
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r2 offers a very good approximation under an additive model, but it is overly optimistic
under recessive and dominant models. For these models, it is not sufficient to double the
sample size in order to obtain similar power, but it is necessary to increase the sample size
by a factor of 1/0.4 which is 2.5.

3 The coverage of SNP-pairs
In this section we investigate the coverage of SNP pairs when testing for gene-gene
interactions. Here we argue that not genotyping the causal variant results in a higher loss of
efficiency in the case of gene-gene interaction tests than in the case of single-SNP analysis.
This is a consequence of the loss of information at both loci, loss that accumulates in a
multiplicative fashion.

We use notation similar to that used in the previous section. We assume that the two causal
SNPs genotypes are denoted by X1 and X2, and that the sample size corresponding to a study
where these variants are typed is nXX. The SNPs that are genotyped in the study of interest
have genotypes denoted by G1 and G2, where Xi and Gi (i=1,2) are correlated (in linkage
disequilibrium). The sample size corresponding to a study on these SNPs is denoted by nGG.
We denote with  the LD measure between Xi and Gi. The goal is to quantify the loss in
power due to not typing the causal variants. We do this by evaluating the ratio of sample
sizes, nXX/nGG, that leads to similar power under the two scenarios.

We argue here that for the case only gene-gene interaction test, the product of the two LD
measures,  offers a good approximation to relative efficiency. The argument is clear
from the following diagram,

where we show three testing scenarios (each scenario corresponds to testing one SNP pair).
We assume that the sample sizes (nXX, nXG, nGG) are such that we have approximately equal
power under the three scenarios. We are trying to quantify

Note that nXX/nXG corresponds to the loss in power when having a proxy at the second locus,
and thus depends on the accuracy of the proxy (or the linkage disequilibrium between X2
and G2) and on the underlying genetic risk model. In the case-only interaction test, the
sufficient statistics consist of the cases counts for the 3×3 tables of genotype combinations.
In its simplest form, the interaction is tested using a chi-square statistic, and it is equivalent
to a genotype association test on X2 when the “case-control” status is given by the genotypes
at X1. Therefore, the loss in power for not typing X2 (the first part of the above diagram) can
be quantified using , with the same caveats discussed in the previous section: r2 offers, for
many genetic models, an optimistic view on coverage. In other words,  is an
approximation of nXX/nXG in the case-only GxG test. Similarly, the loss in power
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corresponding to the second part of the diagram can be approximated by . Overall,
coverage can be quantified using

This approximation of the effect of coverage does not restrict to case-only inference. We
show in the next section, using simulations, that the product of r2’s can be also used when
the test is based on logistic regression using both cases and controls.

4 Empirical Study
In this section we present two sets of simulations to study the difference in power, in testing
for interactions, between the complete (testing the causal SNPs) and incomplete (using tag
SNPs for causal variation) data settings. Our main goal is to compare the power loss in
several genetic models to the product of the r2. We do not attempt to completely describe the
nature of the power loss, as that is beyond the scope of a small scale simulations section, but
merely to explore enough to gain an understanding of how coverage could impact the results
of a GWAS for gene-gene interactions.

In our first set of simulations, we consider four genetic models labeled A–D. The penetrance
tables, assuming 5% disease prevalence, are shown in Table 1. We assume that all allele
frequencies are 50%. In model A there is only one nonzero interaction term, while each
consecutive model has one additional interaction term from its predecessor. In each case, the
signal is divided evenly amongst the interaction terms. We use samples of half cases and
half controls throughout. For various r2 combinations we simulate the power curves (α =
0.01 and 1000 repetitions for each point on each curve), as a function of the sample size,
when testing for a significant interaction term in a full logistic regression model for the
complete and incomplete data settings. We then compare the curves to see what ratio of
incomplete/complete sample sizes lead to the same power.

The top left panel of Figure 2 is a plot of the ratio of sample sizes (y-axis) that lead to the
same power (x-axis) for the various r2 combinations in model A. We also include horizontal
lines corresponding to the product of the two r2 values. As we can see, the product of the r2

slightly underestimates the power loss, but is still a fairly good approximation in this setting.
The top right panel of Figure 2 shows the corresponding results for model (B). The product
of the r2 is still a lower bound on the power loss, but does not approximate it well. The
bottom left and bottom right panels of Figure 2 shows the corresponding results for models
(C) and (D) respectively. As in model (B), the product of the r2 is a lower bound on the
power loss, but is far from the true power loss.

Interestingly, the power loss seems to depend heavily on the number of significant
parameters in the model. The higher the number of parameters, the higher the power loss.
The product of the r2 is a lower bound, but things could be much worse.

For our second set of simulations we examine the effect allele frequency has on power loss.
We consider Model A, but for varying allele frequencies. For each linked pair of SNPs
(causal and tag), we assume that the minor allele frequencies are the same, but that the
frequencies differ between the pairs; we consider allele frequencies of 0.5, 0.4, 0.3, and 0.2.
For these simulations we used 2000 repetitions. Table 2 gives the relative efficiency for
power levels 0.3, 0.6, and 0.9 and we consider r2 values of 0.9, 0.7, and 0.5. Each entry of
the table is around or a bit below the products of the r2 values, which is what we would
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expect from the discussion in the previous section. This suggests the allele frequencies do
not play a large role in the power loss, supporting the viability of the products of the r2 as a
prescreening metric.

5 The coverage of commonly used platforms
We explore here the coverage of the platforms that are commonly used for GWAS studies.
Our interest is in testing for gene-gene interactions, and so the coverage is measured by 
defined in the previous sections. In an ideal setting, we would examine the platform
coverage of the complete set of variants in the human genome as this would include all
causal variation. Unfortunately this is not yet possible, although the 1000 Genome Project
will soon yield a more complete picture of human variation. Instead we use the data in Phase
II HapMap (The International HapMap Consortium, 2005), and pairwise LD measures we
obtained from the database SCAN (SNP and Copy number ANnotation database;
http://www.scandb.org) that contains SNP information such as LD patterns and eQTLs from
expression studies in LCLs (Gamazon et al., 2010; Nicolae et al., 2010).

We used LD patterns in both the Caucasian (CEU) part of HapMap as well as in the samples
of African descent (YRI). The YRI LD data capture patterns we would see in a GWAS on
African-American cohorts, for example. SCAN contains data on 2,543,887 SNPs in the
CEU dataset and 2,852,184 in the YRI. We focus the array comparison to three platforms
for which there are data in SCAN: Affymetrix 6.0, Illumina HumanHap 650K and Illumina
1M. For each of these platforms, and for each SNP in HapMap, the database contains the
pairwise r2 between the SNP and the best proxy on the platform (e.g. the maximum r2 over
all SNPs in the same region). For each platform and each pair of SNPs in Phase II HapMap,
we calculated the product of these r2 and summarized the results in Figure 3.

Figure 3 shows, for each of the platforms, the fraction of pairs of Phase II HapMap SNPs
(on the y-axis) that are captured by the best tagging pair of SNPs on the platform at a given
efficiency level. For example, in the YRI panel less than 40% of the pairs of SNPs are
captured at more than 80% efficiency (for any of the platforms), and around 20% of the
pairs of SNPs are captured at full efficiency. As expected from the population LD structure,
the coverage is better in samples of European descent than in samples of African ancestry.
The platforms have similar coverage, with Illumina 1M slightly edging out in both CEU and
YRI samples.

6 Discussion
In single SNP analyses the LD measure r2 is often used to measure the power loss, at least
approximately, when using a tag SNP as a proxy for a causal SNP. We argue here that it is
reasonable to use the product of the r2 as an approximation to the order of power loss when
using proxies for gene-gene interactions. However, our simulations indicate that the product
is in many cases an upper bound and that the power loss could be significantly higher. This
suggests that coverage of causal variation is crucial when searching for gene-gene
interactions as the power loss can be quite high even for larger r2 values.

The plots in Figure 3 provide an overly optimistic view not only because the metric we use
is a lower bound for the loss in power, but also because we assume that Phase II HapMap
(our reference set) contains the causal variants. Single-SNP coverage of the SeattleSNPs
obtained from a resequencing project is around 20% lower than those in HapMap (Bhangale
et al., 2008). For example, at r2 ≥ 0.8, SeattleSNPs coverage in the Illumina 1M is 55%
which is much lower compared to the 80% coverage of HapMap variation (Bhangale et al.,
2008). Also the coverage estimates we show for the various genotyping platforms are
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optimistic because of the design of these arrays: SNPs were chosen to capture HapMap
variation and will perform well under this type of calculation.

Moreover, the power loss is even more significant when moving from 2-SNP models to
settings where several SNPs are studied simultaneously (higher order interactions). It is easy
to see that the power loss is multiplicative in the number of proxy SNPs used in the analysis,
and unless we have strong priors on which variants to use in analysis, a higher order
interaction has an extremely low chance of detection using GWAS data.

For these reasons, a great deal of thought needs to be put in the design of a GxG interaction
search. For example, a strategy for detecting interactions using all data from an African-
American GWAS done with the Affymetrix 100K platform has an extremely low chance of
success and it should likely not be attempted.

Thus the picture is that of a double edged sword. On one hand, if the coverage is low then
the power loss is large when using SNP proxies. On the other hand, a larger coverage
necessarily implies a larger search space, which is typically enormous, when searching for
interactions. Therefore any search strategy that fails to appreciate these limitations is likely
doomed to fail or requires significant luck.

There are many aspects that enter in the evaluation of power for gene-gene interaction
testing, such as: (i) the underlying genetic model; (ii) the statistical test for interaction; (iii)
the number of pairs investigated and the corresponding multiple testing correction (in a
Bayesian setting, the prior on each pair); (iv) the coverage of causal variation. The goal of
this paper is to investigate the latter issue, but obviously a full discussion of power should
involve all of the above and it is beyond the goal of this manuscript. We will not discuss in
detail the effect of (i) and (ii), and just state that our conclusion holds for the models we
tested and the statistical inference (logistic regression) we used. It is worth noting that
different strategies for prioritizing pairs of SNPs can have different effects on the power loss
due to coverage. If the prioritization is done from external resources (e.g. testing pairs of
SNPs in genes that are directly linked in a genetic network), our quantification holds
because the measures of coverage are independent of power. If an alternative strategy is
used, where we first test for marginal effects and then look only at associated loci, our
global measures can be misleading because truly associated SNPs tend to be in higher LD
with causal SNPs than randomly chosen causal-tag pairs of SNPs.
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Figure 1.
Estimated ratios of samples sizes for marginal association testing, nX/nG, are shown for three
genetic models. The sample sizes, nX for the causal SNP and nG for the tag SNP, are chosen
such that the power to detect association at the two markers is similar. The tag and causal
SNPs have an LD r2 = 0.5.
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Figure 2.
The solid line is the ratio of sample sizes (y-axis) that lead to a particular power (x-axis).
The dashed line is the product of the r2. The top left, top right, bottom left, and bottom right
panels correspond to models A, B, C, and D respectively. All results are based on 1000
repetitions.
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Figure 3.
The GxG coverage for three major genome-wide association platforms. We show the
proportion of HapMap SNP pairs that are covered by pairs of SNPs on the genotyping
platform at a level at least as large as the corresponding value on the x-axis. The linkage
disequilibrium measures were calculated from HapMap data on a Caucasian population (top
plot) and an African population (bottom plot).
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