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Abstract
Complex diseases such as cancers are influenced by interacting networks of genetic and
environmental factors. However, joint analysis of multiple genes and environmental factors is
challenging, owing to potentially large numbers of correlated and complex variables. We describe
Bayesian generalized linear models for simultaneously analyzing covariates, main effects of
numerous loci, gene-gene and gene-environment interactions in population case-control studies.
Our Bayesian models use Student-t prior distributions with different shrinkage parameters for
different types of effects, allowing reliable estimates of main effects and interactions and hence
increasing the power for detection of real signals. We implement a fast and stable algorithm for
fitting models by extending available tools for classical generalized linear models to the Bayesian
case. We propose a novel method to interpret and visualize models with multiple interactions by
computing the average predictive probability. Simulations show that the method has the potential
to dissect interacting networks of complex diseases. Application of the method to a large case-
control study of adiponectin genes and colorectal cancer risk highlights the previous results and
detects new epistatic interactions and sex-specific effects that warrant follow-up in independent
studies.
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Introduction
Genome-wide association studies have successfully identified many single nucleotide
polymorphisms (SNPs) or candidate genes that are associated with complex diseases such as
cancers. An important follow-up procedure is to characterize their effects on disease risk,
including any interactions among them or with environmental exposures, and to identify
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undiscovered genes (Cordell 2009; Manolio et al. 2009; Thomas et al. 2009; Cantor et al.
2010). Since complex diseases are caused by a network of interacting factors, the ideal
analysis is to simultaneously consider multiple loci, environmental factors, and their
interactions. Such joint analyses would improve the power for detection of causal effects
and hence potentially lead to increased understanding about the genetics of diseases.

There are considerable challenges, however, to perform joint analyses of multiple genetic
and environmental variables. First, with multiple SNPs and environmental factors, there are
many possible main effects and interactions, most of which are likely to be zero or at least
negligible, leading to high-dimensional sparse models. In addition, there are many more
possible interactions than main effects, requiring different modeling and parameterization
for main effects and interactions. Second, genetic association studies usually genotype SNPs
with strong linkage disequilibrium (LD), introducing highly correlated variables. Third, SNP
data often include genotypes with low frequencies that create predictors with near-zero
variation. Finally, separation, which arises when a predictor or a linear combination of
predictors is completely aligned with the outcome, is a common phenomenon in logistic
regression with discrete predictors (e.g., Gelman et al. 2008). Because SNP data are discrete,
separation can be a serious problem in case-control association studies. These and other
complications result in challenges in terms of modeling, computation and interpretation, and
thus require sophisticated techniques.

One way to handle these problems is using a Bayesian or penalized likelihood approach that
uses appropriate prior information on coefficients to obtain stable, regularized estimates.
Various prior distributions or penalties have been suggested. Park and Hastie (2008) propose
logistic regression with quadratic penalization (i.e., normal prior) to fit gene-gene (G×G)
and gene-environment (G×E) interactions. They show that the penalized logistic regression
overcomes the problems and outperforms other popular methods such as multifactor
dimensionality reduction (MDR) (Ritche et al. 2001) and tree-structure learning method
(FlexTree) (Huang et al. 2004). Malo et al. (2008) apply ridge regression to fit all SNPs in a
single genomic region and show that such multiple-SNP analyses accommodate linkage
disequilibrium among SNPs and have the potential to distinguish causative from
noncausative variants. Several authors have made substantial progress in adapting
alternative Bayesian or penalized high-dimensional models to genetic association studies
(e.g., Tanck et al. 2006; Xu 2007; Hoggart et al. 2008; Yi and Banerjee 2009; Wu et al.
2009; Sun et al. 2010).

In this article we describe Bayesian generalized linear models for simultaneously analyzing
environmental exposures, main effects of numerous loci, G×G and G×E interactions.
Following Gelman et al. (2008), we use the Student-t family as prior distributions on the
coefficients, with the innovation that different hyperparameters are assigned to different
types of effects (i.e., main effects, G×G and G×E interactions). This prior specification
allows us to reliably estimate both main effects and interactions and hence to increase the
power for detection of real signals. We show that our approach includes many previous
methods as special cases and thus inherently takes over advantages of the previous
approaches. Similarly to Gelman et al. (2008), we fit our Bayesian generalized linear models
by incorporating an expectation-maximization (EM) algorithm into the usual iteratively
weighted least squares as implemented in the general statistical package R. This strategy
leads to stable and flexible computational tools and allows us to apply any generalized linear
models to genetic association studies. Our algorithm differs from that of Gelman et al.
(2008) in treating variances rather than coefficients as missing data and hence avoids
computationally intensive matrix calculation in the E-step. Another methodological
contribution made in this article is a novel method to interpret and visualize models with
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multiple interactions by computing the average predictive probability. The proposed method
has been incorporated into the freely available package R/qtlbim (Yandell et al. 2007).

We demonstrate the effectiveness of our method in an application to a large case-control
study of adiponectin genes and colorectal cancer risk described in Kaklamani et al (2008).
Current epidemiological evidence suggests an association between obesity,
hyperinsulinemia, and colorectal cancer risk. Adiponectin is a hormone secreted by the
adipose tissue, and its serum levels are inversely correlated with obesity and
hyperinsulinemia. Kaklamani et al (2008) is the first report of an association between
variants of the adiponectin pathway and risk of colorectal cancer. However, their analyses
fitted separate logistic models for each SNP and did not consider interactions. Our reanalysis
highlights the previous results and detects new epistatic interactions and sex-specific effects
that warrant follow-up in independent studies. We evaluate our method using extensive
simulations based on the real genotypic data. The simulations show that our method has the
potential to dissect interacting networks of complex diseases.

Statistical Methods
Generalized Linear Models of Interacting Genes in Case-Control Studies

We consider genetic association analysis of population case-control studies in which
unrelated individuals are typed at a number of SNPs. We describe our method for modeling
interactions in targeted genetic studies with moderate numbers of SNPs (for example, 100
SNPs). For i = 1, 2, ⋯, n, let yi denote the disease status of individual i, where yi = 1
represents a disease case and yi = 0 represents a control. For each individual, the SNP data
consist of the genotypes at S loci. Let gis ∈ {1,2,3,NA} denote a three-level factor indicating
the genotype of individual i for SNP s, with gis = 1 if homozygous for the more common
allele, gis = 2 if heterozygous, gis = 3 if homozygous for the minor allele, and gis = NA if the
genotype is missing. Hereafter, for each SNP we denote common homozygote,
heterozygote, and rare homozygote by c, h, and r, respectively. In addition to the SNP data,
for each individual we have exposure variables, referred to as environmental factors, which
are included in the model as covariates to adjust for confounding effects and/or to detect
gene-environment interactions.

We use generalized linear models (GLMs) to relate disease status to SNP genotypes and
environmental factors. We simultaneously fit environmental effects, main effects of
markers, pairwise gene-gene (G×G or epistatic) and gene-environment (G×E) interactions.
The generalized linear model is expressed as

(1)

where h is a link function or transformation which relates the linear predictor Xiβ to the
disease probability Pr(yi = 1), β0 is the intercept, βE and βG are the vectors of environmental
effects and all possible main effects, respectively, βGG and βGE are the vectors of all
possible G×G and G×E interactions, respectively, and XE, XG, XGG, and XGE are the
corresponding design matrices of effect predictors.

Various link functions are provided in GLMs (McCullagh and Nelder 1989), all of which
can be adapted in our Bayesian framework. The logit transformation defines h(p) = logit(p)
= log(p/(1-p)), leading to a logistic regression which is commonly used in case-control
studies. The probit transformation is h(p) = Φ−1(p), where Φ is a cumulative standard
normal distribution function. The probit link is obtained by postulating the existence of a
latent normally distributed variable underlying the binary outcome. Another commonly used
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transformation is the complementary log-log (cloglog) link, h(p) = log[-log(1-p)]. Wray and
Goddard (2010) recommend use logistic and probit models for multi-locus analysis of
genetic risk of disease in case-control studies. Wray et al. (2010) provide a genetic
interpretation of area under the ROC curve (AUC) in genomic profiling based on a probit
model.

We code the main-effect predictors using the Cockerham genetic model, although other
models, for example, the codominant model, also can be used. The Cockerham model
defines two main effects for each SNP (i.e., additive and dominance effects). The additive
predictor is coded as (g–2), leading to −1, 0, and 1 for genotypes c, h, and r, and the
dominance predictor as (g−1)(3-g)–0.5, equaling −0.5 for c and r and 0.5 for h, respectively
(Cordell 2002; Zeng et al. 2005; Yi et al. 2005). The epistatic predictors are constructed by
multiplying two corresponding main-effect variables, introducing four G×G interactions for
a pair of SNPs, i.e., additive-additive, additive-dominance, dominance-additive, and
dominance-dominance interactions. Following Gelman and Hill (2007), we code each binary
exposure input as 0 and 1, and standardize other exposures to have a mean of 0 and a
standard deviation of 0.5. This scaling puts continuous variables on the same scale as
symmetric binary variables. Finally, we construct G×E predictors by multiplying two
corresponding main-effect and environmental variables.

Missing SNP data are a common phenomenon in association studies. Removing individuals
with any missing SNP genotypes largely reduces sample size and thus results in the loss of
valuable information. We use a simple, but reasonable, method to impute missing SNP data.
For each SNP with missing genotypes, we compute the sample proportions of three
genotypes, and then assign the missing additive and dominance predictors by the expected
values, i.e., xa = fr - fc and xd = 0.5 (fh – fc - fr), where xa and xd are the additive and
dominance predictors, fc, fr and fh are the sample proportions of genotypes c, r, and h,
respectively. This computationally efficient method is widely used for gene mapping in both
animal experimental crosses (e.g., Haley and Knott 1992) and human association studies
(e.g., Park and Hastie 2008). The previous studies and the analyses in this work show that
this imputation method yields a reasonable result (Haley and Knott 1992; Park and Hastie
2008).

Prior Distributions
Nonidentifiability is a common phenomenon in classical analysis of genetic case-control
data, owing to the problems of high-dimensionality, collinearity and separation. We handle
these problems by using a Bayesian approach that places appropriate prior distributions on

coefficients to obtain stable estimates. We assume independent Student-t priors  on
coefficients βj, with µj, νj and sj predetermined. We are motivated to use the t distribution
because it allows for flexible modeling, robust inference, and easy and stable computation

(Gelman et al. 2003; Gelman et al. 2008; Yi and Banerjee 2009). The distribution 
can be expressed as a mixture of normal distributions with mean µj and variance distributed
as scaled inverse-χ2:

(2)

where J is the number of the coefficients, and the hyperparameters µj, νj > 0 and sj > 0
represent the center, the degrees of freedom and the scale of the distribution, respectively.
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The coefficient-specific variances  result in distinct shrinkage for different coefficients.
These variances are not the parameters of interest, but they are useful intermediate quantities
to allow easy and efficient computation. The hyperparameters νj and sj control the global

amount of shrinkage in the effect estimates; larger νj and smaller  induce stronger
shrinkage and force more effects to be near zero. Using cross-validation on a corpus of data
sets, Gelman et al. (2008) showed that the Cauchy prior distribution with center 0 and scale
0.75 (i.e., µj = 0, ν = 1, sj = 0.75) is a good consensus choice, but for any particular datasets,
other hyperparameters can perform better. Following the usual principles of noninformative
or weakly informative prior distributions, Gelman et al. (2008) recommends using, as a
default prior, independent Cauchy distributions on all coefficients, each centered at 0 and
with scale 10 for the intercept and 2.5 for all other coefficients. However, this default prior
is not appropriate for our models of multiple interacting genes, because 1) as illustrated
earlier, our models are high-dimensional and sparse, thus requiring priors that can shrink
most coefficients near zero while allowing for occasional large coefficients, and 2) our
models include many more interactions than main effects, thus requiring different priors for
different types of effects.

We set all µj = 0 and propose the following way to choose νj and sj. For β0, βE and βG, we
use the priors recommended by Gelman et al. (2008), i.e., (ν0, s0) = (1, 10) for β0, and (νj, sj)
= (1, 2.5) for βE and βG. For G×E interactions βGE, we set (νj, sj) = (1, 2.5kG/kGE), where kG
and kGE are the total numbers of main effects and G×E interactions, respectively. For G×G
interactions βGG, we set (νj, sj) = 1, 2.5kG/kGG), where kGG are the total number of G×G
interactions. This prior applies more stringent restrictions on interactions. The prior chosen
by this approach may not be optimal for some particular datasets, but it is easy to implement
and performs well as shown later in this report. We developed our computational algorithm
based on the general form of the Student-t prior (2), allowing users to choose appropriate
priors for any particular datasets.

Relationship with Similar Methods
The Bayesian model with the Student-t priors includes previous methods in the literature as
special cases:

1. At sj = ∞, the t prior corresponds to a flat distribution. Placing flat priors on all βj
corresponds to a classical model, which usually fails in our problem as illustrated
earlier. However, our framework has the flexibility of setting flat priors to some
predictors (e.g., relevant covariates) that perform no shrinkage;

2. At νj = ∞, the t prior is equivalent to a normal distribution , which leads
to a ridge regression when setting a common scale sj ≡ s. Malo et al. (2008) applied
ridge regression to multiple-SNP analysis for continuous traits. Park and Hastie
(2007) proposed using ridge logistic regression to fit G×G and G×E interactions in
case-control studies;

3. Setting νj = sj = 0 corresponds to placing Jeffreys’ prior upon each variance,

, which is equivalent to a flat prior on , leading to improper priors
p(βj) ∝ |βj|−1. The normal-Jeffreys prior has been studied (Figueiredo 2003; Griffin
and Brown 2007) and applied to genetic analysis (Xu 2003; Kiiveri 2003; Bae and
Mallick 2004);

4. At νj = 1, the t prior is equivalent to the Cauchy distribution, which has been
extensively studied by Gelman et al. (2008).
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Our framework is closely related to some existing methods which use the double-
exponential priors (Tibshirani 1996; Park and Casella 2008; Griffin and Brown 2007; Yi and
Xu 2008; Wu et al. 2009; Sun et al. 2010). Because a double-exponential distribution can be
expressed as a mixture of normal distributions with mean 0 and variance distributed as
exponential, the algorithm described in the next section can be used with minor
modification. Although the double-exponential priors have been widely applied, Gelman et
al. (2008) show the Cauchy class of prior distributions to outperform existing
implementations of the double-exponential priors using cross-validation on a corpus of data
sets.

EM Algorithm for Model Fitting
Our Bayesian generalized linear model can be computed using Markov chain Monte Carlo
(MCMC) algorithms that fully explore the joint posterior distribution of the parameters by
alternatively sampling each parameter from its conditional posterior distribution. However,
it is desirable to have a faster computation that provides a point estimate (i.e., the posterior
mode) of coefficients and standard errors (and thus the p-values). Such an approximate
calculation has been routinely applied in statistical analysis (Gelman et al. 2008).

We use the EM algorithm to fit the models with the Student-t priors by estimating the
marginal posterior modes of the coefficients βj’s (Yi and Banerjee 2009). The algorithm

treats the unknown variances ’s as missing data and replaces the terms including these
variances in the joint posterior of (β, τ2) by their conditional expectations at each step. Then,
at each step of the algorithm, we update β by maximizing the expected value of the joint
posterior density,

(3)

where , and the likelihood p(yi | Xiβ) is defined in Equation (1) and depend
on the link function.

The E-step of the EM algorithm computes the expectation of (3), averaging over ’s and
conditional on the current estimates, β̂j’s, and the observed data yi’s. We need evaluate only

the expectation , because other terms in (3) are not linked to β and will not affect the

M-step. It can be easily shown that the conditional posterior of  is

 (e.g., Yi and Xu 2008), and thus the conditional

expectations of  equals . Therefore, the E-step of our EM algorithm
is equivalent to replacing the variances by
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(4)

In the M-step, we use a modified iterative weighted least squares (IWLS) algorithm to
update β by maximizing log p(β,τ̂2 | y) (Gelman et al. 2008; Yi and Banerjee 2009). The
standard IWLS algorithm approximates a generalized linear model by a normal likelihood
and then updates parameters from the weighted normal linear regression (Gelman et al.
2003). The generalized linear model likelihood p(yi | Xiβ) is approximated by the weighted
normal likelihood

(5)

where the pseudo-data zi and pseudo-variances  are determined by the likelihood p(yi |
Xiβ) and depend on the current estimates, β̂j’s, and yi’s (Gelman et al. 2003; Gelman et al.
2008; Yi and Banerjee 2009). Under the classical framework (i.e., with uniform prior), β can
be easily updated from this normal linear regression if it is identified. For our Bayesian

model, however, we update β from the model: , which is
equivalent to the augmented weighted regression

(6)

where  is the vector of all zj and all (J + 1) prior means µj,

 is constructed by the design matrix X of the regression 
and the identity matrix I(J+1), and Σ* is the diagonal matrix of all pseudo-variances  and

prior variances . With the augmented X*, this regression is identified even if the original
data are high-dimensional and have collinearity or separation (Gelman et al. 2008). Thus, we
can update β by performing this augmented weighed regression.

Following Gelman et al. (2008), we implement these computations by altering the glm
function in R for fitting generalized linear models, inserting the steps for calculating the
augmented data and updating the variances into the iterative procedure. However, our
algorithm differs from Gelman et al. (2008) in treating the variances rather than the
coefficients as missing data and thus avoids computationally intensive matrix calculation in
the E-step. Therefore, our algorithm should be faster and converges more rapidly than
Gelman et al. (2008) for large-scale models.

The EM algorithm is initialized by setting each τj to a small value (say τj = 0.1) and β to the
starting value provided by the standard IWLS as implemented in the R function glm. We
repeat the E-step and the M-step until convergence. At convergence of the algorithm, we
obtain all outputs from the R function glm, including the estimate β̂, standard errors, p-
values (for testing βj = 0), and deviance and Akaike information criterion (AIC). The
standard errors are calculated from the inverse second derivative matrix of the log-posterior
density evaluated at β̂ (Gelman et al. 2008). The p-values are then determined by the
estimate β̂ and standard errors as in the classical framework.
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Interpreting the Fitted Models
Models involving multiple interactions are difficult to interpret because variables jointly
affect the outcome and thus single coefficients are less informative. The warnings from
linear models for normally distributed traits apply to generalized linear models of interacting
genes with two important additions. First, the linear predictor is used to predict the link
functions h(Pr(yi = 1)), which are nonlinear on the case probability Pr(yi = 1), and thus the
coefficients cannot be interpreted on the scale of the data. Second, the predictors are coded
as functions of the genotypes, rather than the genotypes themselves, leading to further
difficulty in interpreting the coefficients.

We propose to interpret the fitted models by presenting the average predictive probability
for each of the SNPs and each pair of SNPs (or a SNP and a covariate) that significantly
interact each other. We compare these probabilities with those from the null model that
includes only an intercept term. Thus, the average predictive probabilities clearly show
which genotypes increase or are protective against the risk averaging over the data points
and all other predictors. To calculate the average predictive probability for the genotype gs =
k of the sth SNP, we construct new main-effect matrix XGs by replacing the additive and the
dominance variables of the sth SNP for all individuals by (k–2) and (k−1)(3-k)–0.5,
respectively, and remaining other columns of XG unchanged. We then construct interactions
XGGs and XGEs from XGs and XE. The average predictive probability for the genotype gs = k
of the sth SNP is

(7)

where k = 1, 2, or 3 represent genotypes c, h, and r, respectively, n is the number of
individuals, β̂ is the estimate of β, and  is the ith row of the new design matrix (1, XE, XGs,
XGGs, XGEs). Similarly, the average predictive probability for the two-locus genotype (gs,
gs’) = (k, k’) is

(8)

which can be easily modified to a SNP and a discrete covariate by replacing the second SNP
by the covariate. For a continuous covariate, we can extend this calculation by comparing a
unit difference in the covariate (e.g., x = 0 with x = 1) (Gelman and Hill 2007).

Adiponectin Genes and Colorectal Cancer Risk
Case-Control Design, Selection of SNPs, and Genotypes

Epidemiological evidence suggests an association between obesity, hyperinsulinemia, and
colorectal cancer risk. Adiponectin is a hormone secreted by the adipose tissue, and its
serum levels are inversely correlated with obesity and hyperinsulinemia. Approximately one
third of colorectal cancer are inherited (Lichtenstein et al. 2000) but colorectal cancer
susceptibility genes discovered thus far only account for a small fraction of cases (Xu and
Pasche 2007; Valle et al. 2008). A better understanding of the genetic causes of this disease
is likely to lead to decreased morbidity and mortality from colorectal cancer. Kaklamani et
al. (2008) investigated the association of variants of the adiponectin (ADIPOQ) and
adiponectin receptor 1(ADIPOR1) genes with colorectal cancer risk in two case-control
studies. We reanalyzed the main study by using the proposed method. The study
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participants, the haplotype-tagging SNPs of genes ADIPOQ and ADIPOR1 and genotyping
are briefly summarized here.

The case-control study included a total of 441 patients with a diagnosis of colorectal cancer
and 658 unrelated controls. All cases and controls were white and of Ashkenazi Jewish
ancestry and from New York, New York. Information regarding sex, current age for
controls, and age at colorectal cancer diagnosis for cases was recorded. The colorectal
cancer risk was significantly associated with sex and age (see Table 1). Thus, our analyses
included these two factors as covariates.

Five haplotype-tagging SNPs were selected to capture variations in the major blocks in each
of genes ADIPOQ and ADIPOR1. The selected SNPs are functionally-relevant, show a
minimum allele frequency of 10% in Caucasians, and either affect adiponectin levels or are
associated with risk for insulin resistance, cardiovascular disease and diabetes. The
genotypic frequencies of these ten SNPs are shown in Table 1. The frequencies of missing
genotypes were low, from 0.3% to 3%. No significant deviation from Hardy-Weinberg
equilibrium (HWE) was found for each SNP among controls.

Results
Using single-SNP analyses under codominant and dominant or recessive models, Kaklamani
et al. (2008) found that three SNPs (rs266729, rs822395 and rs1342387) were associated
with colorectal cancer risk. However, their analyses did not fit all variables simultaneously
and did not consider interactions. We used the proposed method to reanalyze the data of
Kaklamani et al. (2008) by fitting two models; the first model jointly fitted age, sex, all 20
main effects of the ten SNPs and 20 sex-gene interactions (Analysis I), and the second
simultaneously fitted age, sex, all 20 main effects, 20 sex-gene interactions and 180 epistatic
interactions (Analysis II). Three link functions, logit, probit and complementary log-log
(cloglog), were used. We employed the Cockerham model to construct main-effect, sex-
gene and epistatic variables, coded the variable sex as 0 or 1 for female or male, and
standardized age by subtracting the mean and dividing by 2 standard deviation, and imputed
the missing SNP genotypes using the method described earlier. We used the proposed prior
distributions for the coefficients.

Figure 1 displays the coefficient estimates, standard errors, and p-values for all main effects
and sex-gene interactions under Analysis I. The results from the three models with different
link functions were qualitatively similar, detecting three significant main effects rs266729a,
rs822395a and rs822395d, and one significant interaction rs266729d.sex under significance
level of 0.05. There were additional interactions that were close to the significance level of
0.05. The main effect of rs1342387, which was found in the original analysis under the
dominant model, was not significant in our Cockerham model, although it came up as a
marginally significant gender interaction. The estimated coefficients of the covariates age
and sex were very significant and positive in sign (not shown here), indicating that older and
male subjects were associated with the increased risk of colorectal cancer.

Figure 2 shows the coefficient estimates, standard errors, and p-values for all main effects,
sex-gene interactions and significant epistatic interactions under Analysis II. The Bayesian
logistic model identified four epistatic interactions involving three pairs of SNPs, which
were also significant in the probit and cloglog models. The latter two models each detected
one additional interaction. The estimated coefficients of age and sex were similar to those in
Analysis I. Most of the significant main effects and sex-gene interactions detected in
Analysis I remained or were close to significant, although uncertainties about some of them
became slightly larger. Importantly, the epistatic models detected additional main effects, all
of which were associated with the interacting SNPs. We used two summary measures, the
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deviance and the Akaike information criterion (AIC), to compare different models; lower
deviance indicates better fit to data and lower AIC means better predictive power. The
epistatic models had lower deviance and AIC than the non-epistatic models. This indicated
that inclusion of epistatic interactions improved the fit of the model to data and reduced out-
of-sample prediction error.

The fitted models included multiple effects and interactions and thus were difficult to
understand. As described earlier, however, the average predictive probability provides a
useful way to interpret the interaction models. We computed the average predictive
probabilities based on the epistatic logistic models. The probit and cloglog models gave
similar results. Figure 3a displays the average predictive probabilities of each SNP, clearly
showing which genotypes were associated with increased or decreased risk. Figure 3b and
Figure 3c plot the average predictive probabilities of rs12733285 and rs266729 separately
for males and females. These two SNPs were estimated to have sex-specific effects. As
illustrated in these figures, the interactions were larger for the rare homozygotes. Figure 3d–
f displays the average predictive probabilities of three pairs of SNPs that significantly
interacted. This graph shows that the average predictive probabilities of a SNP varied with
the other SNP.

Simulation Studies
We used simulations to validate the proposed models and algorithm and to study the
properties of the method. We compared the proposed method with several alternative
models described earlier. Our simulation studies used the real genotype data of the 10 SNPs
and the covariates sex and age in the above case-control study, and generated the case-
control indicator yi for each individual from the binomial distribution Bin(1, logit−1(Xiβtrue))
conditional on the assumed ‘true’ coefficients βtrue, where Xi was constructed as in the
above real data analysis. Two sets of βtrue were considered and corresponded to the two
fitted logistic models illustrated above (see Figures 1 and 2), taking the estimated values for
the significant effects and 0 for the others. Therefore, the first simulation (Simulation I)
assumed six non-zero coefficients (two covariates, three main effects, and one sex-gene
interaction), and the second (Simulation II) assumed 13 non-zero coefficients (two
covariates, five main effects, two sex-gene and four gene-gene interactions). The assumed
values βtrue are displayed in the right panels of Figures 4 and 6. For each situation, 1000
replicated datasets were simulated. We calculated the frequency of each effect estimated as
significant at the threshold level of 0.05 over 1000 replicates. These frequencies
corresponded to the empirical power for the simulated non-zero effects and the type I error
rate for other effects, respectively. We also examined the accuracy of estimated coefficients
by calculating the mean and 95% interval estimates.

For each of 1000 simulated datasets in Simulation I, we jointly fitted age, sex, all 20 main
effects of the ten SNPs and 20 sex-gene interactions. We first used the three link functions
(logit, probit and cloglog) and the proposed priors as in our real data analysis (i.e.,
independent Student-t distributions on all coefficients with center 0, degrees of freedom 1,
and scale 10 for the intercept and 2.5 for the covariates, main effects of SNP and sex-gene
interactions). As shown in Figure 4, all the simulated non-zero effects were detected with
reasonably high power, ranging from 58% to 100%, and the frequencies for other effects
were close to zero. The estimates of all effects were accurate; the estimated means
overlapped the simulated values.

We then analyzed the simulated datasets using logistic regressions with three alternative
priors on all coefficients, i.e., uniform distribution, normal distribution N(0, 2.52), and
Jeffreys’ prior. These priors lead to the existing models described earlier. For this simulation
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with relatively small number of variables, the logistic models with flat and normal priors
performed reasonably, detecting all the simulated effects, although the powers were slightly
lower than the proposed model for most of the simulated effects (Figure 5). The model with
Jeffrey’s prior also detected all the simulated effects, but generated a high type I error rate
for two spurious effects.

In Simulation II, we analyzed each of 1000 simulated datasets by jointly fitting age, sex, all
20 main effects of the ten SNPs, 20 sex-gene interactions, and 180 epistatic interactions. We
first used the three link functions and the proposed priors as in our real data analysis, i.e.,
independent Student-t distributions on all coefficients with center 0, degrees of freedom 1,
and scale 10 for the intercept, 2.5 for the covariates, main effects of SNP and sex-gene
interactions, and 2.5*20/180 (= 0.27) for epistatic interactions. As shown in Figure 6, the
analyses detected all the simulated non-zero effects with reasonably high power, ranging
from 50% to 100%, and the frequencies for other effects were close to zero. The estimates of
all effects were also accurate.

We then used logistic regressions with five alternative priors, i.e., uniform distribution,
normal distribution N(0, 2.52), Cauchy distribution with scale 2.5, Cauchy distribution with
scale 0.27, and Jeffreys’ prior. All these priors put the same global shrinkage parameters for
different effects. We found that for most of simulated datasets the logistic model with
uniform priors on all coefficients (i.e., classical logistic model) was non-identifiable,
yielding meaningless estimates that are a function of the iterations (not shown in Figure 7).
The other four informative priors generated identified models, but provided much lower
power for detection of the simulated effects (Figure 7).

Discussion
We have proposed Bayesian generalized linear models with Student-t prior distributions on
the coefficients for jointly analyzing environmental exposures, numerous SNPs, and their
interactions. We recommend a simple, but reasonable, method to specify the global
shrinkage hyper-parameters for main effects and interactions. Real and simulated data
analyses have shown good performance. Our method has remarkable features. First, our
model includes existing methods as special cases that have been particularly designed to
handle problems encountered in genetic association studies. Second, our method can deal
with various types of continuous and discrete phenotypes and any generalized linear models,
although the focus here is on binary disease traits. This flexibility allows us to conveniently
analyze data using different models. Statistical interactions are defined relative to some
particular models and thus affected by changes of models or scale (Berrington and Cox
2007; Cordell 2002; Cordell 2009). Our hierarchical generalized models would allow us to
investigate whether an interaction can be removed by a transformation of the scale and to
detect additional interactions that are only present in a particular model. Finally, we fit our
Bayesian model using an adaption of the standard algorithm and software for classical
generalized linear models, leading to a stable and easily used computational tool. Although a
fully Bayesian computation that fully explores the posterior distribution of parameters
provides more information, our mode-finding algorithm quickly produces all results as in
routine statistical analysis, can be valuable for identifying significant variables, and is
potentially applicable to large-scale genetic data. It would be appealing to treat the hyper-
parameters as unknowns and estimate them from the data so that the model can shrink the
coefficients as much as can be justified by the data. Yi and Xu (2008) developed MCMC
algorithms to jointly estimate all hyper-parameters and model parameters. Future research
will extend the proposed algorithm to estimate the hyper-parameters.
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The current study attempts to reanalyze data from a previous case control study on the role
of adiponectin polymorphisms in colon cancer risk. Using single-SNP analyses under
codominant and dominant or recessive models, Kaklamani et al. (2008) found that three
SNPs (rs266729, rs822395 and rs1342387) were associated with colorectal cancer risk. The
previous analysis did not evaluate interactions between SNPs or any sex-specific effects.
Our current analysis confirmed the significant association of rs266729, rs822395 and
rs1342387 and colon cancer and detected several interactions between SNPs. More
specifically we found that there were significant interactions between rs1342387 and
rs2232853, rs2232853 and rs7539542, rs1342387 and rs7539542. Furthermore we found
that two SNPs, rs12733285 and rs266729, had a sex-specific effect. Although there is a need
for confirmatory studies the new findings from our current analysis highlight the importance
of Bayesian analysis of genetic interactions.

Jointly modeling genetic, environmental factors and their interactions has important
implications for disease risk prediction and personalized medicine (Moore and Williams
2009). Studies using only a limited number of significant loci have typically failed to
achieve satisfactory prediction performance (Jakobsdottir et al. 2009; Kraft et al. 2009).
However, joint analysis of many markers may largely improve the accuracy of risk
prediction (Lee et al. 2008; Wei et al. 2009), and interaction effects could be beneficial for
risk prediction models (Wei et al. 2009; Moore and Williams 2009). Although interactions
sometimes enhance the risk prediction only marginally based on the commonly used ROC
curve, these models can identify combinations of multiple susceptibility loci that confer very
high or low risk (Bjornvold et al. 2008; Clayton 2009). We have proposed to interpret the
models using the average predictive probabilities for any factors, which clearly show which
genotypes increase or are protective against risk. With respect to the adiponectin genes and
colorectal cancer risk, the epistatic model increases the area under the ROC curves (AUC)
slightly (0.87) compared to the nonepistatic model (0.82) (Figure 8). As shown in Figure 3,
however, the epistatic model is highly predictive for some combinations of interacting loci,
but frequencies of multi-locus genotypes are usually low and thus inclusion of interactions
may not largely improve the overall prediction in the entire population.

We illustrate our method by jointly fitting 222 predictors. In principle our Bayesian method
can effectively fit many more variables in a single model. We have experimented with up to
thousands of main effects and interactions, as in a candidate gene study involving ~ 100
SNPs, or following an initial screen in a GWAS. If the data include potentially huge
numbers of possible variables (as in GWAS or large-scale candidate gene studies), however,
we recommend to perform a preliminary analysis to weed out unnecessary variables or use a
variable selection procedure to build a parsimonious model that includes the most important
predictors. Our Bayesian method can be incorporated into various variable selection
procedures. Yi and Banerjee (2009) propose a model search strategy that provides a flexible
way to deal with large-scale data. Their procedure differs from most variable selection
methods by simultaneously adding or deleting many correlated variables.

Candidate gene studies usually consist of data at different levels, i.e., haplotype tagging
SNPs within multiple candidate genes which may be functionally related or from different
pathways. Most the statistical methods, including the method proposed here, consider only
individual-level predictors (i.e., SNPs and covariates) and ignore gene-level information.
There is a growing need for sophisticated approaches to modeling the multilevel variation
simultaneously (Dunson et al. 2008; Thomas et al. 2009). One way to incorporate the gene-
level information into our method is modeling the means µj in the prior distributions of
coefficients βj using gene-level predictors, µj = Ujγ. Thomas et al. (2009) discuss
possibilities for what could be in the set of predictors Uj. Our future research will develop
algorithms for estimating β and γ simultaneously and investigate the performance of the
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extended model. Another extension of our approach is to model interactions in a structured
way, for example with larger variances for coefficients of interactions whose main effects
are large. This is a hierarchical model version of the general advice for studying interactions
(Gelman and Hill 2007; Kooperberg et al. 2009).
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Figure 1.
Analysis I: jointly fitting age, sex, all main effects of the ten SNPs and sex-gene interactions
with three link functions, logit (left), probit (middle) and cloglog (right). The notation for
main effects, a and d, indicate additive and dominance effects, respectively. The term X1.X2
represents interaction between X1 and X2. Estimated effects of age and sex are not
displayed. The points, short lines and numbers at the right side represent estimates of effects,
± 2 standard errors, and p-values, respectively. The deviance (Dev) and Akaike information
criterion (AIC) under each model are also shown.
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Figure 2.
Analysis II: jointly fitting age, sex, all main effects of the ten SNPs, sex-gene and epistatic
interactions with three link functions, logit (left), probit (middle) and cloglog (right). The
notation for main effects, a and d, indicate additive and dominance effects, respectively. The
term X1.X2 represents interaction between X1 and X2. Estimated effects of age and sex are
not displayed. Only epistatic interactions with p-value smaller than 0.05 are displayed. The
points, short lines and numbers at the right side represent estimates of effects, ± 2 standard
errors, and p-values, respectively. The deviance (Dev) and Akaike information criterion
(AIC) under each model are also shown.
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Figure 3.
Average predictive probability for a) each genotype, b–c) each combination of sex and
genotypes of SNPs rs1273385 and rs266729, and d–f) each two-locus genotype at SNPs that
show significant interactions. The genotypes c, h, and r represent common homozygote,
heterozygote, and rare homozygote, and the notation M and F represent male and female,
respectively. The vertical (a) and horizontal (b–f) dotted gray line represents the mean of
probabilities.
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Figure 4.
Simulation I: jointly fitting age, sex, all main effects of the ten SNPs and sex-gene
interactions using the proposed priors. The left panel shows the frequency of each effect
estimated with p-value smaller than 0.05 over 1000 replicates with three link functions, logit
(circle), probit (square) and cloglog (diamond). The right panel shows the assumed values
(circle), the estimated means (point) and the 95% intervals (gray line) with the logit link
function. Only effects with non-zero simulated value are labeled. The notation for main
effects, a and d, indicate additive and dominance effects, respectively. The term X1.X2
represents interaction between X1 and X2.
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Figure 5.
Comparison with existing models (I): jointly fitting age, sex, all main effects of the ten
SNPs and sex-gene interactions using different priors. Frequency of each effect estimated
with p-value smaller than 0.05 over 1000 replicates using 1) uniform prior (νj, sj) = (∞, ∞)
(□), 2) normal prior (νj, sj) = (∞, 2.5) (◊), and 3) Jeffreys’ prior (νj, sj) = (0, 0) (∇), for all
effects. The points (•) represent the analysis using the proposed priors. Only effects with
non-zero simulated value are labeled. The notation for main effects, a and d, indicate
additive and dominance effects, respectively. The term X1.X2 represents interaction between
X1 and X2.
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Figure 6.
Simulation II: jointly fitting age, sex, all main effects of the ten SNPs, sex-gene and
epistatic interactions using the proposed priors. The left panel shows the frequency of each
effect estimated with p-value smaller than 0.05 over 1000 replicates with three link
functions, logit (circle), probit (square) and cloglog (diamond). The right panel shows the
assumed values (circle), the estimated means (point) and the 95% intervals (gray line) with
the logit link function. Only effects with non-zero simulated value are labeled. The notation
for main effects, a and d, indicate additive and dominance effects, respectively. The term
X1.X2 represents interaction between X1 and X2. Only 15 epistatic interactions with the
smallest p-values are displayed.
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Figure 7.
Comparison with existing models (II): jointly fitting age, sex, all main effects of the ten
SNPs, sex-gene and epistatic interactions using different priors. Frequency of each effect
estimated with p-value smaller than 0.05 over 1000 replicates using 1) normal prior (νj, sj) =
(∞, 2.5) (□), 2) t prior (νj, sj) = (1, 2.5) (◊), 3) t prior (νj, sj) = (1, 0.27) (Δ), and 4) Jeffreys’
prior (νj, sj) = (0, 0) (∇), for all effects. The points (•) represent the analysis using the
proposed priors. Only effects with non-zero simulated value are labeled. The notation for
main effects, a and d, indicate additive and dominance effects, respectively. The term X1.X2
represents interaction between X1 and X2. Only 15 epistatic interactions with the smallest p-
values are displayed.
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Figure 8.
Receiver operating characteristic (ROC) curves for risk prediction with four models
simultaneously fitting: 1) age and sex (gray solid), 2) age, sex, and main effects of SNPs
(gray dotted), 3) age, sex, main effects of SNPs, and sex-gene (black solid), and 3) age, sex,
main effects of SNPs, sex-gene and epistatic interactions (black dotted). The areas under the
ROC curves (AUC) for these four models are 0.79, 0.81, 0.82, and 0.87, respectively.
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