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1. Introduction 

Optical imaging is fast developing as an imaging modality of choice in preclinical settings 
owing to its high sensitivity, low cost of implementation and ease of adaptability to functional 
and molecular imaging applications [1]. The unique advantages of optical imaging combined 
with the recent advances of transgenic animal models and optical molecular markers 
underscore the potential of diffuse optical techniques in whole-body small animal imaging [2]. 
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Several molecular imaging platforms localizing and quantitating the expression of 
bioluminescent reporters (Bioluminescence Tomography) and the concentration of fluorescent 
molecular markers (Fluorescence Molecular Tomography) in vivo have been developed in the 
recent years [3,4]. The quantitative accuracy of the molecular imaging platforms is however 
dependent on the a priori knowledge of in vivo distribution of optical properties [5–7]. These 
properties can be obtained by Functional Diffuse Optical Tomography (FDOT) which allows 
the reconstruction of the absolute concentrations of endogenous molecules in the tissue, like 
hemoglobin, deoxy-hemoglobin, water and lipids in vivo [8], thereby improving the accuracy 
of molecular imaging platforms. 

Whole-body functional DOT of small animals however presents a particularly challenging 
problem due to the complex distribution of a wide-range of optical properties in the small 
volumes encountered in murine models [5,9]. Moreover, the ill-posed nature of the inverse 
problem in DOT due to the high scattering of photons even in the Near-Infrared (NIR) 
window hampers the quantitative accuracy and resolution of the reconstructed parameters 
[10]. Furthermore, as FDOT is a model based imaging technique, the accuracy of the 
reconstructed images is critically dependent on the accurate estimation of the average 
background optical properties [11]. 

In this paper, we present the development of an optical imaging platform for molecular 
and functional imaging, with a focus on its performance in FDOT applications. We consider 
three distinct approaches towards performing accurate FDOT of small animals. First, the 
datatype used for reconstruction plays a critical role in optical tomography performances and 
is related to the type of instrumentation employed. Current instrumentation for DOT may be 
classified into three domains based on the characteristics of the light source employed, 
namely, continuous wave (CW), intensity modulated (Frequency Domain - FD) and pulsed 
(Time Domain - TD). CW systems are the most commonly used systems owing to the ease of 
implementation and the relatively robust measurements. However, as these systems measure 
the change in the amplitude of photons exiting the tissue, they have limited information 
content and are unable to separate the effects of absorption and scattering [9]. Frequency 
domain systems employ intensity modulated sources and the changes in amplitude and phase 
of the photons transmitted through the tissue are used to reconstruct the functional parameters. 
However, FD platforms are limited in their application in small animal imaging due to the 
small volumes encountered in murine models which necessitates the modulation of the source 
in the GHz range for robust contrast in the phase function [12]. DOT systems employing a 
time domain approach record temporally resolved measurements of photon flux on the tissue 
surface referred to as the temporal point spread function (TPSF). The time-domain 
measurements provide a superior data set which can be processed to provide numerous 
datatypes in the time-domain (time-gates, mean time-of-flight, Laplace transform, Mellin 
transform) [13], in the frequency domain (datatypes equivalent to intensity modulation in the 
range of several hundred Mhz) [14] and continuous wave by integration of the TPSF [15]. The 
time-resolved data sets however are extremely sensitive to system noise and thus TD DOT 
platforms demand a careful calibration of the system parameters to obtain accurate 
reconstructions [16]. 

Second, the use of constraints derived from the known spectral behaviors of the 
chromophores in the NIR window is another approach used to overcome the non-uniqueness 
of the inverse problem in FDOT and have shown an improvement in quantitative accuracy 
when used with the CW and FD datatypes [17–19]. Multispectral FDOT platforms classically 
employ multiplexed laser diodes to probe the tissue at select wavelengths. The use of a 
tunable laser source allows the use of a wide range of wavelengths while improving the 
configurability of the system apropos the selection of optimal wavelengths. 

Third, the resolution of the reconstruction of a complex 3D volume can be improved by 
increasing the number of point source-detector pairs acquired by the system [20]. The 
application of this strategy to whole-body FDOT however requires a prohibitively long 
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acquisition time making it impractical for live animal imaging studies. The recent 
development of wide-field illumination strategies presents a novel tomographic approach 
where the point source excitation is replaced by structured excitation schemes [21,22]. The 
resolution of subsurface absorption contrasts by the modulation of spatial frequency of the 
excitation patterns has been experimentally validated in the CW and frequency domain in a 
reflectance scheme [22,23]. Moreover, the optical intensities dependent on the modulation 
frequencies can be used to estimate the absorption and scattering coefficients [24,25]. 
Recently, Bassi et al experimentally demonstrated the temporal propagation of spatial 
frequencies in a turbid media and its feasibility for the reconstruction of absorptive 
perturbation in the transmittance geometry [26]. The use of wide-field patterns reduces the 
number of source-detector pairs required for tomographic reconstruction drastically reducing 
the time of acquisition. However, the application of spatially modulated patterns becomes 
more complex when used with irregular boundaries, such as those encountered in murine 
models, and requires a correction based on the surface profile [27]. Alternatively, the 
reconstruction of absorptive inclusions using the CW and time-gate datatype using wide 
patterns having uniform intensity has been demonstrated [28,29]. It should be noted that the 
limited spatial frequency information present in the uniform intensity patterns limits their 
application in estimating the average optical properties; however, the ease of adaptability of 
such patterns to complex geometries combined with the fast acquisition time of fully time-
resolved tomographic data sets makes it an ideal excitation scheme for whole-body FDOT of 
small animals. 

In this paper, we describe the development and characterization of a novel small animal 
imaging platform for functional DOT. The system acquires multispectral measurements to 
allow functional tomography with spectral constraints. A wide-field excitation scheme is 
employed to allow dense spatial sampling within a short acquisition time and a gated CCD 
camera is used as the detector to acquire the optimal time-resolved data sets. In Section 2, we 
first provide a brief description of the theoretical approaches we employed to perform time-
resolved spectroscopy and solve the inverse problem in functional tomography. Second, we 
provide a detailed description of the platform. In Section 3 we establish in vitro the operating 
parameters to be optimized for accurate estimation of optical properties in transmittance in a 
murine geometry. In Section 4 we present investigations validating the performance of the 
platform in functional imaging and tomographic reconstruction of absorption and scattering 
coefficients in vitro. In Section 5 the characteristics of the system are summarized and the 
future investigations towards further development of this platform are described. 

2. Methods 

2.1 Theory 

In this section the theoretical framework used in conjunction with this platform is described. 
First, the model used for estimating the bulk optical properties using time-resolved 
spectroscopy is detailed. Second, a Monte Carlo based model of photon propagation using the 
time-gate datatype, is described. 

2.1.1 Time resolved spectroscopy 

Time-resolved spectroscopy (TRS) is the most accurate technique to estimate the optical 
properties of thick highly scattering tissue. TRS fits the experimentally acquired TPSF to the 
analytical expression describing the temporal propagation of photons through the medium 
[30]. As stated previously, a pattern excitation scheme may be used as the source in TRS; 
however, the analytical expression is prone to error in the case of a mouse model with 
irregular surface geometry. Therefore, to mitigate the associated source of inaccuracy, a point 
excitation scheme is employed to spectroscopically estimate the average optical properties of 
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the medium by measuring the TPSF at finite points on the model. The analytical expression 
utilized for TRS in this paper is defined below. 

For a homogeneous slab of thickness d and absorption coefficient µa and reduced 
scattering coefficient µs', the temporal point spread function measured at a distance ρ from the 
axis of excitation is given by Eq. (1). 
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where, 1,nz and 2,nz are the positions of the image sources used to model the extrapolated 

boundary conditions [31], 1 / 3( ')
a s

D µ µ= + and c is the speed of light in the medium. The 

infinite series of source images are used to force the fluence rate to zero at the two boundaries. 
In our implementation only the first 4 pairs of image sources were considered. The analytical 
function from Eq. (1) is convolved by the instrument response function (IRF) representative 
of the impulse response of the system to obtain the theoretical TPSF for this system. The 
experimental TPSF (10% of the peak value on the rising edge to 1% of peak value on the 
falling edge) is fit to the above computed theoretical TPSF using a sequential quadratic 
programming method (fmincon, MATLAB). 

2.1.2 Time-gated reconstruction using Perturbation Monte Carlo 

The anatomical complexity of the imaged volume in pre-clinical DOT necessitates the use of 
a rigorous model of light propagation in tissues for quantitative accuracy, especially when 
considering time-resolved data types such as early gates [32]. In this work, a perturbation 
Monte Carlo (pMC) based forward model is used for modeling the photon propagation in 
murine models [33]. The flexibility of the pMC model allows the accurate modeling of 
complex boundary conditions and remains valid for the wide range of optical properties 
encountered in small animal models. We provide below a brief description of this model. 

The Monte Carlo method for light propagation is a photon tracing method where the path 
of photon propagation from a point source to a point detector, referred to as the sd pair, 
through the model having background optical properties µa and µs' is simulated. The path 
length and the number of scattering events along the path of propagation are recorded. The 
final measurement of the photon packet at the detector, W referred to as the photon weight, 
can be then calculated. In the pMC framework, a perturbation in the average optical properties 

(δµa and δµs), results in a perturbed detector reading ˆ ( )W t  at the time gate t and is given by 

Eq. (2). 
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where, ( )W t is the unperturbed detector reading, p(rj,t) is the number of collisions and L(rj,t) 

is the path length in voxel rj at time gate t and n is the total number of photons. ˆ
a

µ  and ˆ
s

µ are 

the perturbed optical properties and 
t a s

µ µ µ= + . ˆ ( )W t  computed in Eq. (2) is extended to an 

arbitrary wide-field excitation scheme by assigning a uniform probability of photon injection 
across the area of excitation with initial photon weights on source plane simulating the 
intensity profile of the pattern. The unperturbed detector reading is used to compute the 
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Jacobian matrix for a specific gate and can be linearized using the Born formulation and is 
expressed as, 
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It may be noted that Eq. (3) can be extended to multiple gates. The average optical properties 
obtained by TRS are used to compute the unperturbed detector measurements W(t) and in turn 
the Jacobian matrix J. The experimental measurements obtained at time-gate t and the 
Jacobian J is used to solve the inverse problem in Eq. (3) to simultaneously compute the 
perturbation in µa and µs' in the 3D volume. 

In this work, a set of simple binary patterns spanning half of the space along the x and y 
axis are employed as the wide-field illumination scheme [29]. This set was selected for the 
ease of experimental implementation. Moreover, the use of uniform wide patterns ensures the 
injection of significant number of photons into the medium allowing the acquisition of 
measurements with high signal to noise ratio. It should be noted that the optimal illumination 
scheme may be dependent on the surface geometry and the distribution of optical properties in 
the model [34] and they have not been investigated in this work. 

2.2 Instrumentation 

Figure 1 shows a schematic of the platform presented in this paper. The system employs a 
tunable Ti-Sapphire laser (Mai Tai HP, Spectra-Physics, CA, USA) which generates 100fs 
pulses at 80MHz in the NIR spectral band (690nm-1020nm) as the source. The average laser 
power has dynamic range of 760mW-3W over its tuning range. A computer-controlled power 
controller (Application Note 30, Newport, CA, USA) is used in conjunction with the laser to 
maintain the incident laser power at a constant value with an accuracy of 100 µW when tuning 
the laser during the imaging session. The source is injected into a 400µm multi-mode fiber 
with 0.22 numerical aperture which guides the pulses to a 97/3 non-polarizing beam-splitter 
(Ozoptics, ON, Canada). The 3% channel is connected to a variable attenuator (Ocean Optics, 
FL, USA) and is focused directly on a diffusing paper on the imaging stage through a 400 µm 
multi-mode fiber. This channel is used as a temporal reference measured simultaneously 
during acquisition. The variable attenuator is used to adjust the signal level on the reference 
channel while tuning to correct for the change the spectral sensitivity of the detector. This 
allows for an in-experiment calibration of the incident power and t0 of the IRF reducing the 
estimation errors due to uncertainties in the time of injection [35]. The 97% channel is 
injected into 15x beam expander (BE15M-B, Thorlabs). The expanded beam is incident on 
digital micro-mirror device based light processing (DLP) board (Discovery 1100, Texas 
Instruments). The DLP comprises of 1024 x 768 micro-mirrors which are independently 
controlled by pulse-width modulation to generate a maximum of 256 grayscale levels. The 
pixelated nature of the micro-mirrors however results in 2D diffraction patterns in the 

#129757 - $15.00 USD Received 7 Jun 2010; revised 7 Jul 2010; accepted 13 Jul 2010; published 15 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 1,  No. 1 / BIOMEDICAL OPTICS EXPRESS  148



reflected beam where the higher order diffraction beams appear as ghost images [36]. In this 
system, the higher-orders are re-imaged on the imaging chamber using a bi-convex lens 
(75mm focal length) to provide an area of excitation spanning 40mm x 25mm. It may be 
noted that the position of the lens used can be modified to optimize the area of illumination on 
the imaging chamber. Moreover, as the tip of the fiber is directly imaged on the chamber, the 
intensity profile of the excitation pattern is non-uniform which necessitates the calibration of 
the excitation pattern within each experiment protocol. Furthermore, the pattern thus obtained 
can be supplied directly to the MC model allowing an accurate modeling of the experimental 
settings. 

 

Fig. 1. System Schematic 

The time-gated detection system is implemented using an ultrafast gated intensified CCD 
camera (Picostar HR, LaVision GmbH, Germany) as the detector. The synchronization of the 
laser pulses with the intensifier shutter is achieved using an optical trigger (OCF-401, Becker 
& Hickl GmbH, Germany). The pulse train is conditioned using the HRI-delay unit (Kentech 
Instruments, UK) to potentially achieve 1ps resolution in the temporal measurements over a 
50ns scan range. The output from the delay unit is connected to the High-Rate Imager (HRI) 
which controls the intensifier gating and gain modulation. Intensifier gating refers to the 
operation of the shutter where the photons are integrated at each time bin over a specified 
duration, referred to as the gate-width. The gate-width can be set to a preset value ranging 
from 200ps to 1000ps, (COMB modes) or can be controlled through external signals (RF or 
logical triggering). In this implementation the HRI is operated in the COMB mode where the 
gate is shifted over the measurement window at specific intervals to measure the TPSF. The 
total number of photons measured at each time-bin is referred to as the time-gate data type. 
The measured signals are further amplified by changing the gain voltage across the micro-
channel plate (MCP) in the intensifier before impinging on a P43 phosphor screen. The 
images formed on the screen are imaged by the 12-bit CCD at a resolution of 1376 x 1040. 
The ICCD camera can detect a maximum of 4096 photons at each gate and the recorded 
images are binned over 8 x 8 pixels post-acquisition to create 1mm2 detector measurements. 

3. System Characterization 

In this section we investigate and identify system control parameters which can impact the 
stability and noise characteristics of the platform. The set of optimal operating parameters 
necessary for quantitatively accurate performance of the system are defined based on their 
impact on the accuracy in the estimation of optical coefficients by time-resolved spectroscopy. 
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3.1 Temporal Characteristics 

System stability in time-resolved instrumentation is characterized by the stability of the IRF 
characteristics during the system operation. Three characterization experiments were 
conducted to determine the effect of individual system components on the IRF characteristics. 
In each experiment the IRF was measured by focusing the source at a single point on a white 
paper on the imaging stage. 

 

Fig. 2. (a) IRF of the system across the NIR window for gatewidth of 300ps (b) IRF measured 
for varying gatewidth settings on the ICCD. 

First, the stability of the overall system was characterized by measuring the IRF at 700nm 
with the ICCD employing 200ps gates at 5ps temporal resolution over a 2hr period at 90s 
intervals. A temporal drift of 5ps was observed after a 1.5hr stabilization/warm-up period. The 
power control has negligible effect on the IRF with less than 5ps change in the IRF FWHM 
and less than 10ps variation in t0 with the change in power from 7mW to 150mW. Second, the 
effect of tuning the laser on the IRF was characterized by measuring the IRF at seven 
wavelengths, 700nm-740nm-770nm-805nm-825nm-860nm-880nm, with the ICCD employing 
300ps gates at 20ps intervals. Figure 2(a) shows a t0 drift of 500ps across this range which can 
be attributed to the pulse generation mechanism of the laser source. An increase in the FWHM 
was also observed with the width increasing from 150ps at 700nm to 220ps at 880nm. The 
shift in the position of t0 and the broadening of the pulse due to the tuning operation requires 
the measurement of the IRF at each wavelength during the imaging session. 

Third, the ICCD control parameters for the MCP voltage and the gatewidth were tested for 
their effects on the temporal characteristics of the system. The MCP voltage was found to 
have minimal effect on the IRF with less than 5ps variation in the t0 and FWHM for a change 
in MCP voltage from 400V to 800V. However, as expected, the gatewidth had a pronounced 
effect on the FWHM with the width of the IRF approximating the size of the gate especially 
for the larger gates (Fig. 2(b)). 

3.2 Noise Characteristics 

The signal-to-noise ratio of the measurements becomes an important system characteristic 
when using the ICCD camera in the NIR spectral window due to the relatively low sensitivity 
of the photocathode. In this implementation a TPSF with ~4000 photons measured at the 
maximum gate is defined as the optimal signal level and the SNR for the measurements on 
this platform is defined as the ratio of integrated counts to the standard deviation of the counts 
at each detector. The CCD counts (signal) in each experiment maybe amplified by increasing 
the gain voltage applied to the MCP or by increasing the power of the incident excitation 
field. However, the SNR for a given number of CCD counts decreases with the increase in 
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gain voltage due to the amplification of the native dark noise of the detectors [37]. The system 
has a dark noise of ~40 counts after warm-up and is removed by background subtraction of 
dark images averaged over 16 frames. It may be noted that the dark noise level is dependent 
on the ambient temperature and the room temperature must be carefully controlled to avoid 
fluctuations in the dark noise level during the imaging session. 

 

Fig. 3. Variation of the estimated optical properties with increasing MCP voltage. 

In this experiment we investigated the impact of the deterioration of SNR due to increase 
in gain voltage on the accuracy of estimated optical properties. TPSF were recorded in 
transmittance through a 3.44 cm thick resin phantom having homogeneous optical properties 
(µa = 0.06cm−1 and µ s' = 11.3cm−1) at multiple MCP voltages (400V-800V) with the ICCD 
employing 200ps gates at 20ps intervals. The incident power of the source was kept constant 
through the experiment at 30mW. The optical properties in a 1.2cm radius area around the 
axis of excitation (~450 detectors) were estimated by TRS. The coefficient of variation (cv) 
given by the ratio of the standard deviation of the estimated optical properties to the mean 
value of the estimated optical properties was used as the figure of merit used to evaluate the 
impact of SNR. Figure 3 shows that the estimated absorption coefficient is more sensitive than 
the scattering coefficient to the reduced SNR with the cv of both coefficients increasing by 
more than 50% for MCP gain voltages above 600V. Therefore the ICCD camera should be 
operated below 600V for accurate estimation of optical properties. In experimental scenarios 
where higher CCD counts are required (e.g. highly absorbing media) the signal can be 
amplified by increasing the incident power. 

3.3 Impact of gate-width selection on quantitative accuracy 

The gate-width defined as the time of integration of photons at each gate, has a pronounced 
effect on the temporal and noise characteristics of the system. The total number of photons 
detected at each gate can be increased by using longer gates, thereby improving the SNR of 
the measurements. Conversely, as the FWHM of the IRF is comparable to the gate –width, 
increasing the gate-width (Fig. 2(b)) limits the range of optical properties that can be 
accurately estimated on this platform as the width of the IRF becomes comparable to the 
width of the TPSF measured for tissues having high absorption coefficient and/or low 
scattering coefficient. The broad range of optical properties encountered in small animals 
therefore makes the selection of gate-width a critical factor affecting the accuracy of the 
estimated optical properties. 
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Fig. 4. (a)-(b) Estimated absorption and scattering coefficient with increasing volume of ink. 
(c) - (d) Estimated absorption and scattering coefficient with increasing volume of Intralipid-
20%. 

The effect of gate-width on estimation of physiologically relevant optical properties by 
time-resolved spectroscopy was investigated by using a 2cm thick liquid phantom. The liquid 
phantom was constructed by a mixture of Intralipid-20% (Sigma Aldrich, MO, USA) as the 
scattering agent and Black India ink (Higgins-Sanford) as the absorber diluted in water. TPSF 
were measured at a resolution of 20ps using different gate-width settings (200ps, 300ps, 
400ps, 600ps and 800ps) for an MCP gain voltage of 400V and integration time of 100ms. 
Two separate experiments were conducted to estimate the absolute optical properties for the 
above detector settings; first, with increasing absorption coefficient (0.05cm−1 to 0.37cm−1) 
and constant scattering coefficient (8cm−1) by increasing the volume of India ink and second, 
with increasing scattering coefficient (6cm−1 to 16cm−1) for a constant absorption coefficient 
(0.07cm−1) by increasing the volume of Intralipid-20%. Figure 4(a)-(b) shows the estimated 
absorption and scattering coefficients obtained for various values of absorption coefficient. It 
may be noted that the broadening of the IRF for gatewidths has minimal effect on the 
estimation of absorption coefficient below 600ps. However, gatewidths less than 300ps must 
be used for the accurate estimation of the scattering coefficient with an estimation error less 
than 10%. Figure 4(c)-(d) show the estimated absorption and scattering coefficients with 
increasing scattering coefficient. The gatewidth has a less pronounced effect on the estimation 
of scattering coefficient. It is expected as the FWHM of the TPSF increases with increasing 
scattering coefficient and is not significantly biased by the broadening of the IRF. In this case, 
the maximum error of estimation ~8% was obtained when using 800ps gates for the lower 
values of scattering. Nevertheless, the broadening of the IRF affects the estimation of 
absorption coefficient, with estimation error greater than 20% when using 800ps gates. The 
increase in the estimated absorption coefficient with the volume of Intralipid may be 
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attributed to the cross talk between absorption and scattering coefficients [38]. It is therefore 
determined that gatewidths shorter than 300ps must be used for the accurate estimation of 
optical properties in small animal imaging for estimation errors less than 10%. 

4. System Validation 

4.1 Multispectral time-resolved spectroscopy 

In this experiment, performance of the platform in the estimation of the concentration of 
multiple chromophores in a homogenous mixture is investigated. The accurate estimation of 
the mixture composition is dependent on the accuracy of estimated optical properties at 
multiple wavelengths in the NIR window. India ink and Bovine Hemoglobin (Sigma Aldrich, 
MO, US) were selected as the two chromophores for this experiment. The absorption spectra 
of the two chromophores were calibrated before the experiment using a spectrophotometer 
(USB2000, Ocean Optics, FL) (Fig. 5(a)). A 2cm thick liquid phantom was constructed using 
a polycarbonate tank carrying a mixture of, 5.7% hemoglobin and 0.1% ink and water to 
provide µa of 0.18cm−1 and µs' of 7cm−1 at 740nm. Wavelengths of 740-770-840-860-880 nm 
were selected for this experiment based on the spectral behavior of the chromophores (Fig. 
5(a)). TPSF were measured using 300ps gates at 20ps interval over a 1.8ns time window for a 
single source-detector pair. The linear relationship between the absorption coefficient and the 
concentration of each chromophore weighted by its extinction coefficient at each wavelength 
is used to estimate the composition of the mixture [33]. 

 

Fig. 5. (a) Comparison of the absorption spectra of India ink and Bovine hemoglobin, (b) 
Comparison the estimated and expected absorption coefficients. 

The error in the estimated concentration of ink and blood was 6% and 4.5% respectively 
(Fig. 5(b)). The scattering coefficient was estimated within 10% error. These results validate 
the quantitative accuracy of the platform when using multi-spectral time-gated data sets. 

4.2 Simultaneous reconstruction of absorption and scattering coefficients 

In this experiment we investigated the performance of this system for tomographic 
reconstruction of absorption and scattering coefficients using the time-gate datatype on a 
murine model phantom. The phantom (Fig. 7(a)) consisted of a 2cm thick polycarbonate tank 
carrying a mixture of Intralipid-20% and India ink in (µa = 0.05cm−1; µs' = 9cm−1). Two tubes 
with 10mm inner diameter were suspended in the tank with India ink and Intralipid-20% 
solutions added to tubes 1 and 2 to simulate localized contrast in absorption (µa = 0.4cm−1; µs' 
= 9cm−1) and scattering (µa = 0.05cm−1; µs' = 18cm−1) respectively. The inclusions were 
selected to simulate perturbations comparable to the size of large organs (e.g. liver, lungs) in 
murine models. 
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Fig. 6. Time-gated measurements and contrast functions using wide-field patterns. (Media 1) 

A set of basic bar shaped patterns spanning half of the excited surface (40mm x 25mm) 
are employed as the wide-field illumination scheme for tomographic reconstruction (Fig. 
6(a)). The experiment protocol employed 36 'bar' patterns (18 patterns along the x-axis and 18 
patterns along the y-axis) as the source. The intensifier was operated with a gatewidth of 
300ps at 20ps intervals spanning a 2.2ns time window and two sets of measurements were 
acquired; first, with the tube containing the background mixture (homogeneous) and second, 
with the added India ink and Intralipid solutions (heterogeneous). The optimum signal was 
obtained using 560V across the MCP and an integration time of 50ms per gate on the CCD. 
The entire acquisition protocol was completed in 9 minutes. The acquired images were post-
processed to generate 1mm x 1mm detectors. 88 point detectors at a separation of 3mm along 
the x-axis and 5mm along the y-axis were selected for the reconstruction. Figure 6(b) shows 
the comparison of the homogenous and heterogeneous TPSFs at two point detectors located 
over the absorption and scattering perturbation. It may be noted that the absorptive 
perturbation produces higher contrast for later gates while the scattering perturbation has 
predominant contrast in the early gates with minimal contrast observed in later gates. The 
normalized born contrast function at three time gates (TG1 – 20% of peak intensity on the 
rising edge, TG2 – peak intensity and TG3 – 50% of peak intensity on the falling edge) across 
the excited volume shows a distinct separation of the contrast due to the two perturbations 
with predominant contrast due to the scattering object during the early gate while the 
scattering perturbation showed minimal contrast during the late gates (Fig. 6(c)). 

To solve the inverse problem, the measurement vector was constructed by heuristically 
selecting 6 time gates for each detector (8%, 12% and 17% of the peak on the rising edge; 
peak; 80% and 60% of the peak on the falling edge). It should be noted that the time-gates 
were selected based on the homogenous measurement. The phantom volume was modeled as 
a slab discretized into 2mm x 2mm x 2mm voxels and the Jacobians for perturbations in the 
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scattering and absorption coefficients were computed using the average optical properties. 
The MC simulations using 2x1010 photons were launched on a supercomputer BlueGene 
(CCNI at RPI). The Jacobians calculated were scaled by their mean-column value to reduce 
the inter-parameter cross talk [39]. A spatially varying regularization was applied while 
solving the inverse problem [40]. The regularization parameter was empirically determined to 
have a value of 103 on the source detector layers and 5x102 on the penultimate layers. The 
problem was solved using a least-squares algorithm (lsqr, MATLAB). The 3D visualization of 
the reconstructed optical properties is shown in Fig. 7. The mean value of the 50% isovolume 
for both parameters was found to have an error less than 5% (Absorption coefficient, inclusion 
1: Expected value = 0.35 cm−1, Reconstructed mean value = 0.33 cm−1; Scattering coefficient, 
inclusion 2: Expected value = 9.0 cm−1, Reconstructed mean value = 8.92 cm−1). 

 

Fig. 7. (Media 1) (a)-(b) show the 50% isovolumes of the reconstructed differential absorption 
and scattering coefficients respectively. (Boundary maps) The reconstructed slices along y = 
15mm, z = 11mm and x = 13mm and 29mm for (a) and (b) respectively. 

5. Conclusion 

In this work, the design and characterization of a time-domain imaging platform for 3D 
reconstruction of functional parameters in preclinical imaging is described. The system 
integrates a tunable laser spanning the NIR window and a gated intensified CCD camera to 
provide spatially and temporally dense time-gated multispectral data sets. A digital light 
processor is used to generate structured illumination schemes which allow an unprecedented 
reduction in the acquisition time of said data sets while retaining high quantitative accuracy. 

The instrument response function of the system was characterized and the tuning of the 
laser and the gate-width of the gated CCD were found to have significant impact on the 
temporal characteristics of the system. The accurate estimation of optical properties of 
homogenous phantoms by time-resolved spectroscopy was used as the metric for determining 
the optimal system parameters for pre-clinical studies. Gatewidths shorter than 300ps were 
found to be optimal for estimating optical properties in small animal models with estimation 
errors less than 10% obtained when using 300ps gates which is typical for time-resolved 
spectroscopy. The use of gain voltages higher than 600V across the MCP for signal 
amplification resulted in the deterioration of the signal to noise ratio increasing the variability 
of estimated optical properties by more than 50%. 

The estimation of functional parameters was investigated by multispectral time-resolved 
spectroscopy and the composition of the mixture was estimated accurately with an error less 
than 6% demonstrating the quantitative accuracy of this platform for functional imaging 
studies. Further studies will investigate the quantitative and spatial performance of this system 
in 3D functional tomography studies in vivo and future work will also focus on multimodal 
studies using anatomical information provided by Magnetic Resonance Imaging (MRI) 
acquired in a non-concurrent setting to further reduce the ill-posedness of the problem [41]. It 
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may be noted that in the case of an animal model, the background measurements cannot be 
experimentally acquired. In this case, we propose the use of the average optical properties 
determined by TRS to be used to numerically generate the background measurements using 
the MC model, which can then be used for inversion in the perturbative framework. 

Finally, the time-gated data sets acquired using simple wide-field patterns were able to 
successfully separate the two targets exhibiting absorptive and scattering contrasts and 
quantitatively reconstruct the mean optical properties within 5% error. The reconstructed 
absorption coefficient demonstrated minimal inter-parameter crosstalk. The results presented 
were obtained by empirically selected time-gate data. In silico and in vitro studies will be 
undertaken to determine the optimal time-gates for minimizing the cross talk observed in the 
scattering coefficients and also determine the dependence of the optimal gates on the contrast 
levels and baseline optical properties. 

In conclusion, the system described in this paper presents a novel approach towards 
performing whole-body functional imaging of small animals with increased resolution and 
quantitative accuracy. The reduction in the acquisition time of dense data sets using wide-field 
excitation schemes allows the whole-body 3D reconstruction of functional parameters. Thanks 
to the flexibility of the system design, this platform can be easily adapted for applications in 
small animal time-resolved fluorescence molecular imaging studies. Moreover, the concurrent 
acquisition of functional parameters will improve the accuracy of molecular imaging 
techniques. 
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