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Abstract: The development of effective multi-modality imaging methods 
typically requires an efficient information fusion model, particularly when 
combining structural images with a complementary imaging modality that 
provides functional information. We propose a composition-based image 
segmentation method for X-ray digital breast tomosynthesis (DBT) and a 
structural-prior-guided image reconstruction for a combined DBT and 
diffuse optical tomography (DOT) breast imaging system. Using the 3D 
DBT images from 31 clinically measured healthy breasts, we create an 
empirical relationship between the X-ray intensities for adipose and 
fibroglandular tissue. We use this relationship to then segment another 58 
healthy breast DBT images from 29 subjects into compositional maps of 
different tissue types. For each breast, we build a weighted-graph in the 
compositional space and construct a regularization matrix to incorporate the 
structural priors into a finite-element-based DOT image reconstruction. Use 
of the compositional priors enables us to fuse tissue anatomy into optical 
images with less restriction than when using a binary segmentation. This 
allows us to recover the image contrast captured by DOT but not by DBT. 
We show that it is possible to fine-tune the strength of the structural priors 
by changing a single regularization parameter. By estimating the optical 
properties for adipose and fibroglandular tissue using the proposed 
algorithm, we found the results are comparable or superior to those 
estimated with expert-segmentations, but does not involve the time-
consuming manual selection of regions-of-interest. 
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Mammography; (100.3190) Inverse problems. 
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1. Introductions 

Accurate diagnosis of diseases, particularly cancers, requires more detailed, disease-specific 
and preferably non- or minimally-invasive imaging information. The morphological images, 
traditionally obtained from X-ray based imaging modalities, are becoming insufficient in 
many cases [1]. In the past several decades, increasing research efforts in combining multiple 
imaging modalities, particularly those providing complementary information, have formed the 
grounds and active frontiers of multi-modality imaging [2]. Dual- or triple-modality systems 
are becoming abundant in publications and gradually become part of the standard clinical 
practices. Among them, a successful example is the combined Positron Emission Tomography 
and Computed Tomography (PET/CT) [3]. In PET/CT, the low-resolution albeit disease-
specific PET image is co-registered to a high-resolution 3D CT image providing the 
background tissue anatomy. By interpreting the functional PET and structural CT images 
simultaneously, one is able to show a diagnostic accuracy that is not achievable by each 
individual modality [4]. PET/MRI (magnetic resonance imaging) [5], SPECT(single photon 
emission computed tomography)/CT [6] and MicroCT-Bioluminescence [7,8] are among 
other examples of multi-modality imaging that are gaining popularity for human or animal 
disease model studies. 

Diffuse optical tomography (DOT) is another emerging technique that can provide 
functional assessment about tissue status [9,10]. By measuring the scattered light at multiple 
wavelengths within the near-infrared frequency range, one can recover hemoglobin 
(oxygenated, HbO, or deoxygenated, HbR), water and lipid concentrations as well as the 
tissue scattering properties. These measured quantities were found to be clinically relevant 
and are particularly promising as biomarkers for breast cancer diagnosis [11–15]. However, 
similar to PET, standalone DOT images suffer from low resolution due to the diffusive nature 
of the photons inside the tissue and the subsequent ill-posedness in solving the inverse model. 
Combining DOT with a high-resolution structural-oriented imaging modality can be highly 
beneficial [2]. Various dual-modality breast imaging systems involving DOT have been 
developed in the past decade and yielded different levels of success. Zhu et al. [16] built a 
combined DOT/Ultrasound hand-held probe for breast tumor diagnosis. Ntziachristos et al. 
[17], Brooksby et al. [18] and Carpenter et al. [19] have reported efforts combining DOT with 
MRI by either simultaneous measurement or post-registration. At Massachusetts General 
Hospital, we have developed a combined DOT and digital breast tomosynthesis (DBT) system 
for breast cancer screening [20,21]. In the past 4 years, we have been focusing on the clinical 
evaluation of the system by measuring healthy or tumor-bearing breasts from nearly 200 
volunteers; we have shown promising diagnostic efficiency for malignant tumors using the 
reconstructed optical parameters from this pilot clinical study [22]. 

In most multi-modality DOT studies as mentioned above, the structural imaging 
modalities were only used to provide the exterior boundary of the breast, or overlaid on the 
reconstructed DOT images and used for image interpretation. This appears to be an under-use 
of the available information as the internal tissue structures are not fully exploited. In fact, the 
under-used internal structure is the key ingredient that is missing to produce DOT images of 
higher spatial resolution. To incorporate this ingredient into the optical image construction, 
novel algorithms were proposed and tested by combining a spatial prior to “inform” the 
optical image recovery. The simplest approach to bind a spatial structure to the DOT 
reconstruction is to segment the structural image and represent nodes within the same tissue 
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segment by a single set of optical parameters, i.e. the so-called “hard-prior” approach [18,23]. 
Several limitations were found for this approach. The implied piecewise-constant optical 
properties within each tissue type is likely inaccurate in realistic biological tissue. The highly 
over-determined reconstruction equation effectively cancels the information from most optical 
measurements, which are usually precious to get. The resulting images are also intolerable to 
segmentation error, as it is essentially identical to the segmentation itself. To balance the 
contributions from the structural prior and optical measurements, “softer” constraints, in the 
form of regularizations, have been investigated. Li et al. has applied different regularization 
coefficients for different tissue types based on a segmented structural image [24]. Brooksby et 
al. [23] and Yalavarthy et al. [25] used a regularization matrix, defined by a Laplacian 
operator for the nodes sharing the same tissue type. Although these algorithms allow certain 
variations from the structural prior, the underlying piecewise-constant assumption remains to 
be arguable in realistic tissues. Only recently, researchers begin to exploit more general prior-
guided DOT reconstruction by treating a target domain as statistical mixtures of different 
tissue types [26,27]. 

Here, we present a structural-prior guided DOT reconstruction algorithm using a 
compositional segmentation. Different from the binary approach, in a compositional 
segmentation we assume each pixel/node in the structural image is a combination of two or 
more tissue components. Using a weighted-graph representation in the compositional space, 
we are able to construct a regularization matrix, being the modified Laplacian operator of the 
weighted-graph, and use it in the DOT image reconstruction. We investigate the control of the 
“softness” of the structural constraints by changing the weight of the regularization. To test 
this algorithm, we use a clinical data set collected in the past few years with both DOT and 
DBT measurements. With these clinical data, we are able to identify the potential 
improvement in image resolution and quality using the proposed algorithm. We also calculate 
the estimates for the optical properties for each component of the breast tissue, i.e. adipose 
and fibroglandular tissue, using the compositional priors and compare them to our previous 
results using prior-free reconstruction and expert segmentation. 

In the Methods section of the paper, we first report the theory for compositional 
segmentation of a structural image and then the formulations of the regularization matrix. In 
the Results section, we use a subset of our healthy breasts measurements (N = 31) to establish 
an empirical correlation between the X-ray image intensities for adipose and fibroglandular 
tissue. Using this relationship, we apply the compositional segmentation to another 58 healthy 
breasts from bilateral measurements of 29 subjects and study the improvement in image 
resolution and accuracy. Our findings are summarized in the Discussion section. 

2. Methods 

The proposed algorithm includes two essential steps. In the first step, we decompose a 
structural image into a compositional map using a given set of components and their pre-
defined characteristics. After the decomposition, each pixel or node in the structural image is 
represented by a vector recording the concentration of each component. In the second step, we 
build a regularization matrix based on the previously generated compositional maps and run a 
DOT image reconstruction to produce a solution informed by the structural constraints. These 
steps are explained in detail in the following sub-sections. 

2.1 Compositional segmentation and applications to DBT images 

We consider that the imaging target is composed of a finite number of components, where 
each component is independent of the others and has differentiable and additive contrast when 
measured in the structural imaging modality. We assume the image intensity of the target in 
the structural image is a linear combination of the separate contrast from each of its 
components, which is proportional to its concentration. We define a compositional vector at a 
given location r in the target as 

 ( ) { ( )}, 1, 2,..., ,i cr C r i N r  C   (1) 
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where Ci(r) denotes the concentration (0Ci(r)1) of the i-th component at location r, 
 denotes the target domain and Nc is the total number of components. By definition, Eq. (1) 
also implies ( ) 1ii

C r   for r  . If we assume the imaging intensity produced by the 

components can be represented by a transfer function f(·) governed by the biophysics of the 
tissue, then we have 

 ( ) ( ) ( )s i ii
I r C r f P    (2) 

where Is(r) is the image intensity in the measured structural image and f(Pi) is the intensity 
anticipated if the target at r is occupied by the pure i-th component (Pi). The image 
segmentation problem is now identified as the task to uncover C = {Ci(r)} from Is(r) for 
r . If there are only two components, i.e. Nc = 2, from Eq. (2) and ( ) 1ii

C r  , we are 

able to uniquely solve for Ci(r) if all f(Pi) are known. When there are more than 2 
components, additional knowledge needs to be acquired in order to uniquely solve for Ci(r). 

For a healthy breast, two major tissue types are concerned: fibroglandular (denoted with 
subscript “f”) and adipose (denoted with subscript “a”) tissue. From a 3D DBT image, it is 
possible to identify a small region where considered as pure adipose (or fibroglandular) tissue, 
from which, we can estimate f(Pa) (or f(Pf)), and the compositional vector C(r) = {Cf,(r), 
Ca(r)} can be calculated as 

 
( ) [ ( ) ( )]

1

f s a f a

a f

C I f P f P f P

C C

  

 
  (3) 

The above approach can be extended to other types of structural images, for example, 
anatomical MRI. One may use the Gaussian-Mixture-Model (GMM) [28] or other data-
clustering algorithms to identify the compositional vectors inside the target domain [27]. For 
algorithm and simulation studies, one can also derive such a compositional map from a 
published segmented breast data archive [29]. 

When such a compositional map is available for a given target, for any reconstructed 
functional image within the same domain, we can compute the functional values for each 
“pure” component by a least-square estimation as 

 1,...,{ }
ci i N H 

  μ   (4) 

where matrix H is a horizontal concatenation of the vertical compositional vectors for all 
parameter nodes and H+ = (HTH)1 is the Moore-Penrose pseudo-inversion of H; μ represents 
a vertical vector recording the reconstructed functional values at all parameter nodes. 

2.2 Regularized image reconstruction 

In this subsection, we illustrate the compositional-map-guided regularization using our dual-
modality data processing pipeline. This approach is general and can be easily extended to 
other pipelines that share a similar reconstruction scheme. 

In a prior-guided DOT image reconstruction, we first discretize the target domain by 
generating a pair of meshes, a fine one for the forward solution (referred to as the forward 
mesh), and a coarse one for the inversion (referred to as the parameter mesh) [30]. For a co-
registered dual-modality experiment, we register the meshes to the structural image space. 
Subsequently, we map the nodes on the forward mesh to the structural image volume, and 
assign a compositional vector, {Cf(r),Ca(r)} for each forward node. Using the mapping 
between the forward and parameter meshes, we calculate the compositional vectors at each 
node on the parameter mesh by weighted averages. 

In our particular pipeline, we compute the forward solutions using an FE solver and 
perform an iterative Gauss-Newton reconstruction to recover the 3D profiles of the optical 
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properties on the parameter mesh. For each iteration, the general form of the update equation 
looks like [31] 

 1
1( ) ( )T T T

k k k k kJ J L L J A 
   μ y μ   (5) 

where M N
kJ C   is the complex Jacobian matrix at the k-th iteration, M is the number of 

measurements and N is the number of parameters; λ is the regularization parameter and L is 
the regularization matrix; kμ is the update to the parameters; A is the forward matrix and 

1kA μ  is the forward solution using the estimated parameters from the k-1 iteration. Note that 

matrix ( )T T
k kJ J L L  has dimension of NxN. In practice, N is typically substantially bigger 

than the number of measurements M. In this situation, an under-determined form [32] of the 
update equation is more computationally efficient: 

 
11 1

1( )T T
k k k kJ J J I A

 
       μ y μ   (6) 

where T NxNL L R    and can be pre-computed for each parameter mesh, and I is an 
identify matrix. Very often, when there are multiple (S>1) optical properties associated with 
each node, for example, HbO, HbR, scattering amplitude and scattering power, the 
calculations in Eq. (6) in the full-matrix form can be slow as it involves the multiplications of 
large matrices. This can be accelerated by the block-diagonal nature of the system. We simply 
expand Eq. (6) by 

 

 

 

1

1

1

1 1
, ,

1

( )

T

T

S
T T T

k k i k i k
i

L L

L L

J J J L L J







 



 
 
    
 
  

  


  (7) 

where the sub-matrix ,i kJ  represents the Jacobian of the i-th optical property at iteration k. 

Using the above block-diagonal formula leads to a significant saving in memory and 
computational time. 

 

Fig. 1. Weighted graph representation of the target domain in the compositional space. Each 
solid dot is a node in the parameter mesh and ui,j is the weight of the edge between nodes i and 
j. 

2.3. Compositional-map-guided regularization 

A non-trivial regularization matrix L ( L I ) encodes the prior knowledge about the solution. 
When L is defined as a spatial Laplacian or Helmholtz operator [23] based on the mesh 
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connectivity, it essentially penalizes large gradients and ensures smoothness of the solution. 
In the binary “soft-prior” approach [25], it penalizes the differences between the nodes falling 
into the same piecewise-constant segment. Here, we further extend this notion by taking 
advantage of the refined compositional segmentation scheme. To illustrate the method, we 
first construct a weighted graph in the composition space. In Fig. 1, we plot all nodes in the 

parameter mesh using its compositional vector. In fact, it is a hyper-plane in the 1cNR   space 
defined by ( ) 1ii

C r  . For each node, we connect it to the nodes sharing similar 

compositions within a predefined limit, i.e || ||i j cN C C  where || ||  is the L2 norm. 

Scalar (0,1)   is a regularization parameter and was heuristically set to 0.2 in our 
simulations. Smaller α values appear to produce sharper images Then we add an edge 
between the nodes satisfying the above condition and assign a weight to this edge 
proportional as , || ||i j i j cu N  C C  where Nc is the number of total components. To this 

end, we have constructed a weighted graph in the compositional space. 
Based on [33], the (normalized) Laplacian operator, L = [li,j], for a weighted graph is 

defined by 

 ,
,

1 if 

if  and  are connected

0 otherwise

i j
i j

i j

i j

u
l i j

d d

 



 




  (8) 

where di is the “weighted” degree of the i-th node, defined by ,, || ||i n c
i i nn N

d u 
  C C

. To 

avoid degeneracy and ensure the existence of   1TL L


, we slightly modified L by 

 ,
,

1 if 

if  and  are connected

0 otherwise

i j
i j

i j

i j

u
l i j

d d

 



 




  (9) 

where β>1 is a constant. We choose β = 1.2 although other values may also be used. Using the 
L defined in Eq. (9) effectively penalizes the differences between nodes sharing similar 
compositions. One can combine it with the spatial Laplacian to impose additional smoothness 
constraints. 

2.4. Clinical measurements for algorithm validation 

We test the proposed regularization algorithm with a set of healthy subjects measured with 
our combined DOT/DBT imaging system. The details of the experiments and protocols are 
described in [21] and [22]. Both radio-frequency modulated (RF) and continuous-wave (CW) 
lasers at 685 nm and 830nm were used for the data acquisition. From these data, we recover 
the 3D profiles of total hemoglobin concentration (HbT = HbO + HbR), oxygen saturation 
(SO2 = HbO/HbT), scattering amplitude and scattering power of the target breast. Water and 
lipids volume fractions are assumed to be constants at 23% and 58%, respectively, based on 
our previous studies [21]. 

3. Results 

In this section, we show the recovered images for healthy breasts using the above described 
algorithm and compare the output with the results from unconstrained image reconstructions. 
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We also estimated the optical properties for adipose and fibroglandular tissue and compare the 
findings with the previous results computed based on expert segmentation. 

First, using a set of 31 DBT images of healthy breast as a learning set, we study the X-ray 
contrasts of different tissue types and seek possibilities for an automatic compositional 
segmentation approach. The intensity values in all DBT images were first rescaled to the 
range of 0-255. For each DBT image, we manually selected two regions-of-interest (ROI) 
corresponding to “pure” adipose and fibroglandular tissue. Each ROI is a 2D rectangular 
region about 1cm x 1cm in size from a selected image slice. From these ROIs, we estimated 
f(Pf) and f(Pa) values by averaging the DBT image intensities inside the ROIs. We plot the 
estimated f(Pf) and f(Pa) pairs for all selected breasts in Fig. 2. 

From Fig. 2, we assume a linear relationship between f(Pf) and f(Pa), i.e. 

( ) ( )f af P af P b    (10) 

and the coefficients a = 1.226 and b = 13.76 are determined by linear regression from the plot 
in Fig. 2. The R2 of the linear fitting is 0.92. Thus, to compute the compositional map from 
Eq. (3), we only need to select a single ROI for adipose (or fibroglandular) tissue and 
compute the other from Eq. (10). 
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Fig. 2. X-ray intensity values (0-255) for “pure” adipose, f(Pa), and fibroglandular tissue, f(Pf), 
extracted from 31 DBT healthy breast images. The red-line denotes the linear regression line 
with the equation labeled in the figure. 

Using the above correlation, we apply the compositional segmentation for another 29 pairs 
of bilateral DOT/DBT measurements. In this case, we only manually select a single ROI 
corresponding to the “pure” adipose tissue, estimate f(Pa) from the ROI and calculate the 
value for f(Pf) from Eq. (10). The compositional maps of the 58 breasts are then obtained by 
Eq. (3). 

To use the compositional maps in our FE-based image reconstructions, we first generated 
forward/parameter meshes using the “iso2mesh” mesh generator [34]. In all reconstructions, 
we first estimated a set of bulk optical properties which served as the homogeneous initial 
guess for the full image reconstruction. We used both RF and CW measurements at 685 nm 
and 830 nm in all the reconstructions. A multi-spectral algorithm [35,21] was used to estimate 
HbO, HbR and scattering properties from multi-wavelength measurements simultaneously. 
All image reconstructions ran for 5 Gauss-Newton iterations. All calculations were performed 
on a single core of an Intel Xeon E5530 (2.4 GHz) CPU. 
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Fig. 3. Sample reconstructed images for a healthy breast: (a) the DBT image, (b) the 
fibroglandular composition map (Cf), and the reconstructed HbT image slices using (c) binary 
“soft-prior”, (d) prior-free and (g)-(j) compositional-prior-guided recon. with different 
regularizations. We also show reconstructed SO2 images (e) without and (k) with the priors, 
similarly for μ’s at 830nm (f) without and (l) with priors. The thin lines are segmentations using 
ITK-SNAP [37]. 
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Fig. 4. Sample reconstructed images from 4 additional healthy breasts: the DBT images, the 
reconstructed HbT images using compositional-priors and prior-free reconstructions are shown 
in the 1st to the 3rd columns, respectively. The corresponding SO2 and μ’s (830nm) images 
reconstructed using the priors are shown as the 4th and 5th columns for each case. The dashed 
vertical lines mark the extent of the optical source/detector coverage. 

In Fig. 3, we show sample reconstructed HbT images (in μM) from the right breast of a 
45-year-old healthy volunteer. The node numbers for forward and parameter meshes are 
14824 and 1934, respectively. We solved for the forward solutions at 13/6 RF source/detector 
and 26/19 CW source/detector locations at two wavelengths and built the Jacobian matrix 
using the adjoint method [36]. The DBT image and the compositional map slice for 
fibroglandular tissue are shown in Figs. 3 (a) and (b). From (g) to (j), we show the image 
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slices reconstructed with the compositional-prior-guided algorithm with different λ values, (λ 
= 2.5 to 0.039 with a multiplicative step factor of 0.25). In (c), we show the reconstruction 
output from the “binary soft-prior” algorithm (the binary segmentation of fibroglandular 
tissue was achieved by thresholding at Cf >0.5) and (d) the result without structural prior (i.e. 
L = I). All images were extracted at a horizontal plane z = 2.6 cm from the bottom of the 
compressed breast. The prior-guided image reconstructions took about 102 seconds per 
iteration, while that for the prior-free reconstruction is around 73 seconds. The relative 
residuals (normalized by the residual from a common initial guess) for the prior-guided 
reconstruction range from 0.27 (λ = 0.039) to 0.34 (λ = 2.5); that for the prior-free 
reconstruction is 0.32. 

Notice that the compositional map in Fig. 3(b) contains an edge artifact due to the 
application of an edge-enhancing algorithm in the DBT image processing. We deliberately 
choose this case as we want to see how the algorithm performs when the compositional map 
contains errors. 

Based on Fig. 3, we chose λ around 1 as the default regularization parameter. We show 
SO2 and μ’s (at 830nm) for the same breast using compositional priors (λ = 1); in comparison, 
those without priors are shown in Figs. 3(e) and 3(f), respectively. Then we ran 
reconstructions for 58 healthy breasts. Similar to the previous cases, we ran 5 Gauss-Newton 
iterations to recover 3D volumetric images for HbO, HbR, scattering amplitude and power, 
respectively. Images from 4 additional healthy subjects are shown in Fig. 4. 

 

Fig. 5. Bilateral correlations between the adipose tissue for left and right breasts from 29 
healthy subjects: (a) HbT, (b) SO2 and (c) scattering coefficients μs’. 

From the recovered images, we estimate the optical properties by Eq. (4) for adipose and 
fibroglandular tissue. In Figs. 5 (a)-(c), we plot the estimated adipose HbT, SO2 and reduced 
scattering coefficient (μs’) at 830nm for left vs. right breasts (circles). We also overlapped the 
results estimated by the prior-free algorithm using manually created ROIs [22] (dots). We also 
used these same manually generated ROIs to extract the optical properties for adipose and 
fibroglandular tissue from the prior-guided images. These were plotted as “pluses” in Fig. 5. 
In Table 1, we summarize the correlation coefficients between the optical properties of the 
adipose tissue between left and right breasts, as well as the parameter values recovered from 
the 3 approaches. Those for the fibroglandular tissue are similar (not shown). 
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Table 1. Correlation coefficients and the corresponding P-values between the bilateral 
adipose tissue properties extracted from 29 pairs of bilateral measurements are reported 
in columns entitled “R (P)”. We also summarize the means and standard deviations of the 

adipose physiological parameters estimated from all 58 breasts. 

Methods 
HbT (μM) SO2 μs’ (830 nm) (cm1) 

mean ± std. R (P) mean ± std. R (P) mean ± std. R (P) 

Prior-guided 21.8 ± 11.0 0.94 (<108) 0.78 ± 0.048 0.73 (<105) 6.8 ± 1.2 0.83 (<105) 

No-Prior + ROI 16.5 ± 6.9 0.91 (<108) 0.73 ± 0.035 0.53 (0.003) 6.6 ± 1.2 0.86 (<105) 

Prior + ROI 
21.1 ± 

9.6 
0.94 

(<108) 
0.78 ± 

0.050 
0.64 

(104) 
6.8 ± 

1.2 
0.85 

(<105) 

4. Discussion 

The reconstructed images using the compositional priors in Figs. 3 (g)-(j) are very 
encouraging and exhibit several merits over the conventional image reconstructions. First of 
all, for most of the images, we can clearly identify the presence of the compositional map 
patterns in the recovered optical images, indicating that it has indeed informed the image 
reconstruction. Another finding from Figs. 3 is the robustness of the algorithm with respect to 
segmentation error: the edge artifacts in Fig. 3(b) are effectively removed in (g)-(j) with the 
incorporation of the optical data. In comparison, the result from the “binary soft-prior” 
approach seems more sensitive to segmentation error. Comparing the images from (g)-(j) and 
(d), we find that by adjusting the regularization parameter λ we are able to tune the strength of 
the priors: with an increasing λ, the reconstructed images blend toward the compositional map 
as we are giving more weight to the priors; with a small λ, on the other hand, the result 
approaches that of the prior-free reconstruction. By comparing (g)-(j) to (c), we find that the 
compositional prior approach gives more spatial details than the “binary” soft-prior approach, 
which is essentially a smoothed version of the binary segmentation. The images for SO2 and 
μs’ show similar improvement in resolution. In (k), the SO2 for the adipose tissue is generally 
greater than that of the fibroglandular tissue. This is consistent with our previous findings 
[21]. Additional images from 4 other subjects show similar improvement as we observed in 
Fig. 3, except for a few localized SO2 contrasts in (i) and (s), which may be a result of 
coupling differences from the nearby optodes. 

As we discussed in [22], the bilateral correlations serve as a metric to test the robustness 
of the system. From Fig. 5 and Table 1, we found that the optical properties estimated by the 
compositional-map-guided reconstructions generally match those estimated from prior-free 
reconstruction with expert segmentations. Particularly, the least-square estimates using the 
compositional map (circles) show a great similarity to those using the same image but with 
ROIs (pluses). These results render the prior-guided approach a very attractive choice as it is 
almost entirely automated, while the conventional method requires a manual segmentation to 
create the adipose and fibroglandular ROIs. Moreover, the compositional-prior-guided 
approach offers more objectivity than expert segmentation as the latter approach depends on 
the experiences of the operator. We also noticed that the standard deviations for HbT and SO2 
values became larger when using priors in the reconstructions. This may be potentially a 
result of different regularization mechanisms in these methods and deserves further 
investigation. The optical properties estimated using priors are generally consistent with 
literature findings [11,18,21–23]. 

In the next stage of the study, we will further investigate the use of this approach for 
accurate quantification of breast cancers. To add cancer as the third component in the 
segmentation, we can simply segment the tumor and superimpose it on the 
adipose/fibroglandular tissue compositional maps. However, in cases where the size/location 
of the tumor is unknown, the application of this scheme can be more challenging. We will 
consider a two-step reconstruction where in the first step, we treat the breast as a healthy 
breast and reconstruct optical images as described here; in the second step, we use the 
previous result as the initial guess and reduce the strengths of the prior in order to recover the 
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contrast from the tumor. Alternatively, we can use the HbT contrast from a prior-free 
reconstruction to estimate the compositional map for tumor tissue as we know tumors usually 
have high HbT values [11,12,22]. Combining the optically derived tumor tissue composition 
with the DBT-derived adipose/fibroglandular compositions, we can run the prior-guided 
reconstruction. In either case, we will use over 50 available tumor breast measurements in our 
current data set to assess the improvement using the statistical test similar to our previous 
work [22]. In addition, we will also explore strategies for optimal selection of the 
regularization parameters, λ, α and β, which are currently determined in a heuristic fashion. A 
deterministic selection scheme is expected to further improve the robustness of the algorithm. 
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