
Corrections to linear methods for diffuse
optical tomography using approximation

error modelling

Tanja Tarvainen1,2, Ville Kolehmainen1,
Jari P. Kaipio1,3, and Simon R. Arridge2

1 Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627,
70211 Kuopio, Finland

2Department of Computer Science, University College London, Gower Street, London WC1E
6BT, UK

3 Department of Mathematics, University of Auckland, Private Bag 92019, Auckland Mail
Centre, Auckland 1142, New Zealand

Tanja.Tarvainen@uef.fi

Abstract: Linear reconstruction methods in diffuse optical tomography
have been found to produce reasonable good images in cases in which
the variation in optical properties within the medium is relatively small
and a reference measurement with known background optical properties
is available. In this paper we examine the correction of errors when using
a first order Born approximation with an infinite space Green’s function
model as the basis for linear reconstruction in diffuse optical tomography,
when real data is generated on a finite domain with possibly unknown
background optical properties. We consider the relationship between
conventional reference measurement correction and approximation error
modelling in reconstruction. It is shown that, using the approximation
error modelling, linear reconstruction method can be used to produce good
quality images also in situations in which the background optical properties
are not known and a reference is not available.
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1. Introduction

In diffuse optical tomography (DOT), the goal is to produce quantitative images of the optical
properties of an unknown medium based on near-infrared light transport measurements made
on the surface of the object [1, 4, 7]. Since the photons travel randomly inside the medium, im-
age reconstruction is a highly ill-posed problem and needs to be approached within the frame-
work of inverse problems. In these methods, light propagation is modelled using the radiative
transport equation (RTE) or its approximations [1, 5, 13]. In turbid media, the most commonly
applied model is the diffusion approximation (DA) to the RTE. The accurate modelling of light
transport and usage of sophisticated image reconstruction methods have enabled production
of good quality optical images which strongly supports the view that DOT is one of the most
promising new medical imaging modalities. However, DOT still needs further development,
and, in particular, accurate and fast image reconstruction methods that could be used simulta-
neously with measurements and in online monitoring need to be developed.

The existing approaches in DOT can be classified into those based on inverse scattering
theory (IST) and analytical (Green’s function) solutions to the light propagation model [21],
and those based on data fitting using optimisation techniques and numerical solutions to the
underlying partial differential equations [1], also known as the parameter identification method
(PIM). Although these two methods are thought of as quite different, we will show in this
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paper that both can be put into a common framework when we consider a Bayesian approach
to analysing the underlying model errors.

In both the IST and PIM frameworks, either a linear or a non-linear approach to the inverse
problem can be developed, and the central computational requirement for the forward problem
is to construct a suitable model for the sources and detectors which can be used to match the
experimental data taken on the turbid medium’s surface. However, it is generally true that the
difficulty of producing highly accurate computational models can be significant, and is counter-
intuitive in regard to the inherently poor resolution of DOT. In practice, the models used are
only approximate and have to be ’corrected’ (or to use a more principled term ’calibrated’) to
actually work in practice. Usually, the correction is achieved using reference measurements.

Linearisation of the inverse problem is explicit in the IST approach and in iterative New-
ton type algorithms in the PIM approach. In the former technique, the linearisation is built
from analytic Green’s functions which solve the DA in predetermined domain such as an in-
finite space [2, 20]. These linear methods are limited by the fact that they cannot predict large
changes in the optical parameters and that they assume the background optical properties to
be known [6]. However, such methods have been found to produce good quality images in
situations in which these limitations are fulfilled and a reference measurement from known
background medium is available [15]. The linearisation error in an another diffuse imaging
modality, electrical impedance tomography, has been addressed in [23].

In this paper, we use the approximation error modelling theory to explain the connection
between the IST and PIM approaches. The approximation error approach for the treatment of
modelling errors was introduced in [11, 12]. The method has been applied in DOT in com-
pensating modelling errors due to discretisation, domain mismodelling and in compensating
modelling errors between the RTE and the DA [3, 8, 14, 24]. Outside optical imaging, the ap-
proximation error approach has been utilised in electrical impedance tomography [11, 16–19]
and it has been extended to time-dependent inverse problems [9, 10]. In this paper, we develop
an approach in which the approximation error approach is used to correct the linear recon-
struction method in DOT. In this approach, a reference measurement is not needed and the
background optical properties do not need to be known but a model for the uncertainty of the
background coefficients is needed.

The rest of the paper is organised as follows. In Section 2, linear reconstruction methods in
DOT are reviewed. In Section 3, the approximation error approach is described and its relation
to reference measurement approach is explained. In Section 4, simulation results are shown and
in Section 5 conclusions are given.

2. Deterministic model based reconstruction and correction methods

2.1. Definitions

We are considering the fitting of a model

y = A(x)+ e, A : X → R
m (1)

where y ∈ R
m is discrete data, x ∈ X is a function in some space X representing the absorption

and scattering images, and e denotes the noise which is usually modelled to be Gaussian distrib-
uted e ∼ N (0,Γe) with zero mean and covariance Γe ∈ R

m×m. In the ’true’ physical problem
we assume X ≡ L∞(Ω) but in a practical implementation the solution and forward mapping are
represented in discrete vector spaces

x �→ xh ∈ R
n , A �→ Ah (2)

where Ah : R
n → R

m is a linear or non-linear operator.
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Throughout this paper, within both the IST and PIM frameworks we assume that the light
propagation model is the diffusion approximation(

−∇ ·D∇+ μa +
iω
c

)
Φ = 0, in Ω (3)

Φ+2ζD
∂Φ
∂ν

= J−, on ∂Ω (4)

which is denoted as
L (x)Φ = J−. (5)

In Eqs. (3)–(5), D = (3(μa + μ ′
s))

−1 is the diffusion coefficient, μ ′
s is the reduced scattering

coefficient, μa is the absorption coefficient, Φ is the photon density, J− is prescribed input
source function, i is the imaginary unit, c is the speed of light in the medium and ω is the angu-
lar modulation frequency of the input signal. Furthermore, in this paper we use the following
notations

background optical parameters: x0 = (μa,0,μ ′
s,0)

T

perturbed optical parameters: x = (μa,μ ′
s)

T = x0 +δx
estimated optical parameters: x̂
measured data : gobs

reference data : gref

modelled data : y
modelled reference data : y0
discretized (incorrect) background optical parameters: xh,0

discretized (incorrect) optical parameters: xh = xh,0 +δxh

exact model for the forward operator in domain Ω: A
approximate model in (incorrect) domain Ω̃: Ah

augmented model : Ãh

Jacobian: J
modelling error: ε

2.2. Linear reconstruction model within inverse scattering theory

In the IST approach we represent the operator A in Eq. (1) as the measurement of the Green’s
function

A(x) = MG (x)J− (6)

where G (x) is the Green’s operator, parameterised by x, that solves for the internal field Φ
given the source function and the light propagation model (5) and M is the measurement of
Φ at the boundary of the domain Ω. In practice, measurements are needed for multiple input
sources functions {J−1 ,J−2 , . . .} where the functions {J−i } form a basis for general functions on
the boundary ∂Ω, leading to a vector form for the forward model

A(x) =

⎛
⎜⎜⎜⎝

M1G (x)J−1
M2G (x)J−2

...
MSG (x)J−S

⎞
⎟⎟⎟⎠ . (7)

Under this notation, given a reference state x0, a series solution for a perturbed state x0 +δx
is given by

A(x0 +δx) = M [I −G (x0)V (δx)]−1 G (x0) (8)

= A(x0)+M
[
G (x0)V (δx)+(G (x0)V (δx))2 + . . .

]
G (x0) ,
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where I is an identity operator and V (δx) is a potential operator determined by the perturba-
tion. Eq. (8) is a general Born series for diffuse photon density waves.

Linear inversion methods in DOT based on the series Eq. (8) consider only the first term in
the series and make the approximation

A(x0 +δx) = A(x0)+J(x0)δx, (9)

where the Jacobian J(x0) is the discrete representation of the Fréchet derivative of the nonlinear
mapping A(x), and seek to invert the linear expression

gobs − y0 = J(x0)δx, (10)

where gobs are measurements and y0 = A(x0) is assumed to be an accurate prediction of the
measurements that would correspond to the reference state x0.

It is natural to consider both the accuracy of the prediction of y0 at measurement position
rm due to source located rs as well as the accuracy of representation of the linearisation J(x0)
which both depend on the accuracy of the Green’s functions

y0|rm = M
∫

Ω
G(rm,rs;x0)J−(rs)drs (11)

(y− y0)|rm = M
∫

Ω
G(rm,r′;x0)V (δx)G(r′,rs;x0)J−(rs)drs . (12)

In many approaches, G is taken to be an analytic expression such as the infinite domain Green’s
function for the diffusion equation

G∞(r1,r2) =
e−σ |r1−r2|

|r1 − r2| (13)

where σ =
(

μa+iω/c
D

)1/2
and |r1 − r2| is the distance between points r1 and r2. Expression

(13) is the one employed in this paper, although Green’s functions in other geometries can be
defined [2], including general domains using the Kirchoff Approximation [22].

2.3. Linear reconstruction model within the parameter identification method

In the parameter identification method, we adopt a non-linear data fitting procedure, such as the
regularized output least square method

x̂ = arg minx

{
1
2

∥∥∥gobs −A(x)
∥∥∥2

Γe
+Ψ(x)

}
(14)

where x̂ denotes the estimated optical parameters and Ψ(x) is a regularizing penalty functional.
Taking only the linear approximation Eq. (9) leads to

x̂ = x0 + arg minδx

{
1
2

∥∥∥gobs −A(x0)−J(x0)δx
∥∥∥2

Γe
+Ψ(δx)

}
. (15)

2.4. Model correction using a reference measurement

Within both approaches, the model used is not necessarily accurate. Let A(x0) represent an
’exact’ model for the forward operator in domain Ω and state x0 and let Ah(xh,0) represent an
approximate model in the incorrect domain Ω̃ with incorrect optical parameters xh,0. Consider
an additive correction ε0 so that the two models agree at the reference state x0

ỹh = Ah(xh)+ e+ ε0. (16)
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In the literature of optical tomography, it is common practice to use a measurement set gref from
background x0 and then to use the augmented model

Ãh(xh) = Ah(xh)+gref −Ah(xh,0). (17)

We can now thus define the Reference measurement correction

ε0 = gref −Ah(xh,0) ⇒ gref = Ah(xh,0)+ ε0. (18)

Using the reference measurement correction in Eq. (9) leads to the corrected linear inversion
method

gobs −gref = J(xh,0)δxh (19)

where δxh = (xh − xh,0). Thus, the minimisation is

x̂ = arg minxh

{
1
2

∥∥∥gobs −Ah(xh)−gref +Ah(xh,0)
∥∥∥2

Γe
+Ψ(xh)

}
(20)

which in the case of the linear approximation can be written as

x̂ = xh,0 + arg minδxh

{
1
2

∥∥∥gobs −gref −J(xh,0)δxh

∥∥∥2

Γe
+Ψ(δxh)

}
. (21)

3. Bayesian reconstruction and approximation error modelling

Because of the computational limitations the discrete mapping may contain modelling errors.
The general principle behind approximation error modelling is to examine the difference

ε(xh) = A(x)−Ah(xh) (22)

between an ’exact’ model A(x) and its computational approximation Ah(xh). We thus define the
‘augmented model’

Ãh(xh) = Ah(xh)+ ε(xh). (23)

The simplest way to improve the reference measurement correction is to use the average ε̄
between many solutions of the approximative model and measurements (or accurate forward
solutions) from known targets as a reference. In this case, first order statistics of the error model
(EM-1) is used and the linear minimization problem is of the form

x̂ = xh,0 + arg minδxh

{
1
2

∥∥∥gobs −Ah(xh,0)−J(xh,0)δxh − ε̄
∥∥∥2

Γe
+Ψ(δxh)

}
(24)

where Ah(xh,0) is the solution of the linear forward model such as the Green’s function and
J(xh,0) is the Jacobian calculated with optical properties xh,0.

In the approximation error approach [11,12], second order statistics of the error model (EM-
2) is considered. Thus, both the mean and the covariance of the errors between the ’exact’
model and approximative model are taken into account. This leads to the minimisation

x̂ = arg minxh

{
1
2

∥∥∥gobs −Ah(xh)− ε
∥∥∥2

Γe+ε
+Ψ(xh)

}
(25)

where {ε ,Γε} are the mean and covariance of the distribution of ε(xh) and Γe+ε = Γe +Γε . In
the linear case, this minimisation problem is written as

x̂ = xh,0 + arg minδxh

{
1
2

∥∥∥gobs −Ah(xh,0)−J(xh,0)δxh − ε̄
∥∥∥2

Γe+ε
+Ψ(δxh)

}
. (26)
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In order to determine estimates of {ε ,Γε}, samples are drawn from an appropriate prior dis-
tribution model of the unknowns and used to determine samples from both the ’exact’ and
’approximate’ data distributions. In [3] this approach was used to examine the model error be-
tween fine and coarse meshes, whereas in this paper it is used to examine the error between
a finite element (FE) solution of the DA and Green’s function model. The computation of the
approximation error statistics is explained in more detail in Section 4.1.

Remark 1 (Approximation error vs. reference data)
By comparison of Eq. (25) with Eq. (20) we see that the reference measurement correction

makes the assumptions
ε 	 gref −Ah(xh,0) , Γε 	 I . (27)

Remark 2 (Reference method and the Rytov approximation)
Another commonly used approach is to consider the logarithm of the forward model in

Eq. (6)
Alog(x) = M logG (x)+ e (28)

with linearisation
Alog(x0 +δx) = Alog(x0)+SJ(x0)δx+ e (29)

with S = diag
[

1
y0

]
. Introducing the reference measurement correction we find

log Ãh(xh) = logAh(xh,0)+ logA(x)− logA(x0)+ e (30)

= log

[
y0

gref A(x)
]

+ e (31)

This is a multiplicative zeroth order correction. Linearising both these models we arrive at a
scaling for the Jacobians

diag

[
1
y0

]
J(xh,0) 	 diag

[
1

gref

]
J(x0). (32)

This is a multiplicative correction but with a diagonal scaling matrix, rather than the covariance
which is found in the approximation error model using second order statistics.

4. Results

4.1. Model implementation

4.1.1. The target distribution

We tested the approach with simulations using a cylinder domain with radius r = 35mm and
height h = 110mm. The sources and detectors were placed on two rings located 6mm above
and below the central xy-plane of the cylinder. Both rings contained 16 sources and 16 de-
tectors. The target consisted of homogeneous background with two small cubic inclusions. The
edge lengths of the inclusions were d = 12.2mm and the heights were h = 16.4mm. The in-
clusions were located in such a way that the central xy-plane of one inclusion was located at
the level of the upper source-detector ring and the central xy-plane of the other inclusion was
located at the level of the lower source-detector ring. The simulation domain is illustrated in
Fig. 1.

We tested a situation in which the background optical properties were known and situations
in which the background optical properties were mismodelled and the true homogeneous values
were 10%, 20%, 30% and 40% larger or smaller than the expected values. In all of the simu-
lations the modulation frequency of the input signal was ω = 100MHz and the refractive index
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Fig. 1. Simulation domain with two inclusions. Locations of sources and detectors are
marked with black dots.

Table 1. The absorption coefficient μa(mm−1) and the reduced scattering coefficient
μ ′

s(mm−1) of the background medium and the inclusions.

Background Inclusion 1 Inclusion 2
μa μ ′

s μa μ ′
s μa μ ′

s
Case 1: 0.01 1 0.04 1 0.01 4
Case 2: 0.007 0.7 0.04 1 0.01 4

of the medium was 1.56. The absorption and reduced scattering coefficients of the background
medium and the inclusions are given in Table 1 for the case 1 in which the true background
optical properties were known and the case 2 in which the background optical properties were
−30% off from the linearisation point xh,0 = (μa,0,μ ′

s,0)
T = (0.01,1)T .

The data was generated using the finite element method (FEM) with the diffusion approx-
imation as light transport model. The data types considered were logarithm of amplitude and
phase shift of the measured light. Gaussian distributed noise e with standard deviation of 0.5%
of corresponding amplitude and phase was added to the simulated data.

4.1.2. Computational forward models

For the ’exact’ model A(x) we take a FE-approximation of the DA with a dense mesh. Let
{N,T,U} represent a set of nodes N = {Nk;k = 1 . . .nh}, elements T = {τ j; j = 1 . . .ne}, and
shape functions U = {uk(r);k = 1 . . .nh} and G = K−1 where K the nh ×nh system matrix. We
used a tetrahedra mesh with nh = 148276 nodes. For the representation of the optical parameters
xh we used 8748 cubic voxels both for absorption and scattering.

The ’approximate’ model Ah(xh) is taken to be

Ah(xh) = G∞(xh,0)+J∞(xh,0)δxh (33)

where G∞(xh,0) is the infinite domain Green’s function, Eq. (13). The Green’s function Jacobian

J∞ =
[
J
(μa)
∞ J

(μ ′
s)∞

]
is constructed by sampling the forward and adjoint fields on the same mesh
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node points {Nk} :

J(μa)
∞ =

⎛
⎜⎜⎝

...
...

. . .
. . . G∗(rk,rd,i)G(rk,rs, j) . . .
...

...
. . .

⎞
⎟⎟⎠ (34)

and

J(D)
∞ =

⎛
⎜⎜⎝

...
...

. . .
. . . ∇G∗(rk,rd,i) ·∇G(rk,rs, j) . . .
...

...
. . .

⎞
⎟⎟⎠ (35)

where G∗ is the adjoint Green’s function and utilising the chain rule to obtain the derivatives
for the scattering. In all of the approaches, the Jacobian was calculated using the homogeneous
optical properties μa,0 = 0.01mm−1 and μ ′

s,0 = 1mm−1.

4.1.3. Approximation error statistics

The approximation error mean and covariance were calculated similarly as in [14]. Thus, we
used a proper smoothness prior model as the prior distribution π(x) and draw r = 200 samples

x(�)
h from it. The correlation length for both absorption and scattering was set as 14mm which

means that this is (roughly) the prior estimate of the spatial size of the inhomogeneities in the
target domain. The prior means for absorption and scattering were set as μ̄a = 0.01mm−1 and
μ̄ ′

s = 1mm−1, and the marginal variances for the inhomogeneity and background part were set
such as 2 s.t.d. limits for the contrast of the inhomogeneities and background corresponded
to 1% of the mean values for both absorption and scattering. The approximation error was
computed from the samples as

ε� = A(x(�))−Ah(x
(�)
h ) (36)

where the accurate model was the FE-solution of the DA and the reduced model was the solu-
tion of the Green’s function, Eq. (33). Furthermore, the mean and the covariance of the approx-
imation error were computed as

ε̄ =
1
r

r

∑
�=1

ε(�)
h (37)

Γε =
1

r−1

r

∑
�=1

ε(�)ε(�)T − ε̄ ε̄T. (38)

We note that the variance of the contrast of the inhomogeneities in the prior model was
chosen unrealistically small since the assumption behind the linear model needed to be fulfilled
when creating the approximation error statistics. This however, as shown later in Sec. 4.2, does
not limit the applicability of the approach to reconstruct larger variations in optical parameters.
For more information about the Gaussian smoothness prior model, see e.g. [3, 14].

Furthermore, we note that the setting up the error model is computationally intensive task
and the time required is roughly the number of samples r multiplied by the time for the forward
solutions of the accurate and approximative models [14]. The error model, however, needs to
be estimated only once for a fixed measurement setup and it can be done off-line.

4.2. Reconstructions

Reconstructions were calculated using three different approaches: the reference measurement
correction (RM), the approximation error using first order statistics (EM-1), and the approxi-
mation error using second order statistics (EM-2).
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Fig. 2. Horizontal slices at the heights z = 59mm (two columns from the left) and
z = 50mm (two columns from the right) from 3D reconstructions of absorption (left) and
scattering (right) distributions with known background. The images from top to bottom are:
target distribution (top row), and reconstructions using RM (second row), EM-1 (third row)
and EM-2 (fourth row).

In all of the reconstructions, the penalty functional Ψ was the proper smoothness prior model
with otherwise same parameters as in creating the approximation error statistics except that the
marginal variances for the inhomogeneity were set such as 2 s.t.d. limits for the contrast of the
inhomogeneities corresponded to 40% of the mean values for absorption and scattering and the
marginal variances for the background part were set such as 2 s.t.d. limits for the contrast of
the background corresponded to 20% of the mean values for absorption and scattering which
is more realistic choice when considering absorption and scattering variations typical in DOT.

The reconstructions using the RM correction were obtained as the solution of the minimisa-
tion problem (21) where the gobs was the simulated measurement data, gref was the reference
data which is the FE-solution of the DA with optical properties of the linearisation point xh,0

which were for the absorption and scattering μa = 0.01mm−1 and μ ′
s = 1mm−1 throughout

the domain. Further, J(xh,0) was the Jacobian which was calculated as described in Sec. 4.1,
Eqs. (34) and (35), using optical parameters of the linearisation point xh,0 (μa = 0.01mm−1 and
μ ′

s = 1mm−1).
The reconstructions using the EM-1 were obtained by solving the minimisation problem (24)

and the reconstructions using the EM-2 were obtained by solving the minimisation problem
(26). In the approaches, the approximative model Ah(xh) was the infinite domain Green’s func-
tion, Eq. (33) and the Jacobian J(xh,0) was calculated similarly as in the RM. The mean and the
covariance of the approximation error statistics were constructed as described in Section 4.1.

4.2.1. Reconstructions when the background properties are known

As the first case we investigated the situation in which the background optical properties were
known, thus xh,0 = x0, see case 1 of Table 1. Two horizontal and two vertical slices of the 3D
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Fig. 3. Vertical slices at the depths x = 21mm (two columns from the left) and x = 45mm
(two columns from the right) from 3D reconstructions of absorption (left) and scattering
(right) distributions with known background. The images from top to bottom are: target
distribution (top row), and reconstructions using RM (second row), EM-1 (third row), and
EM-2 (fourth row).

reconstructions are shown in Figs. 2 and 3. The locations of the slices were chosen such that
they cut through the inclusions.

As it can be seen, RM, EM-1 and the EM-2 give similar results. In all of the reconstruc-
tions, the inclusions can be well distinguished and they look similar to the target distribution.
Furthermore, in all of the reconstructions, the estimated absorption and scattering parameters
are close to the original values. There exists some crosstalk between the absorption and scat-
ter images. This, however, is typical for DOT reconstructions and utilising more sophisticated
approximation error and prior models does not seem to reduce the amount of the cross talk in
linear reconstruction as was shown to happen with the DA based reconstructions in [3].

Thus, the results show that the linear reconstruction method with a reference measurement
correction can reconstruct the absorption and scattering distributions well if the background
optical properties are known. On the other hand, the approximation error modelling, in which
statistical properties of the modelling error are utilised instead of a reference measurement, can
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Fig. 4. Horizontal slices at the heights z = 59mm (two columns from the left) and
z = 50mm (two columns from the right) from 3D reconstructions of absorption (left) and
scattering (right) distributions with mismodelled background. The images from top to bot-
tom are: target distribution (top row), and reconstructions using RM (second row), EM-1
(third row), and EM-2 (fourth row).

be used to obtain as good quality reconstructions as the reference approach.

4.2.2. Reconstructions with mismodelled background

As the second case we investigated a situation in which the background optical properties were
mismodelled. The measurement data was simulated using optical properties where the true
values of the homogeneous background x0 were 10%, 20%, 30% and 40% larger or smaller
than the linearisation point (μa = 0.01mm−1 and μ ′

s = 1mm−1). The absorption and scattering
values of the case 2, in which the background optical properties are 30% smaller than the
linearisation point, are given in Table 1. The reference measurement gref, Jacobian J(xh,0) and
the approximation error statistics were calculated using the expected optical properties xh as
described in Sec. 4.1.

Two horizontal and two vertical slices of the 3D reconstructions of the case 2 are shown in
Figs. 4 and 5. The locations of the slices are the same as in the previous case of the known back-
ground optical parameters. As it can be seen, the RM and the EM-1 approaches give similar
results. However, these reconstructions are unclear and the estimated optical parameters differ
clearly from the values of target distribution. The EM-2 approach, on the other hand, can dis-
tinguish the locations of the inclusions well. Furthermore, the optical parameters are estimated
with better accuracy.

Thus, the results show that when the background optical properties are mismodelled, the
RM and the EM-1 which both utilise only the mean of the statistical information of the error
model, do not produce good quality reconstructions. On the other hand, EM-2, which takes into
account correlation of the modelling errors, is capable of estimating the optical parameters with
good accuracy even if the background values are 30% off from the expected ones.
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Fig. 5. Vertical slices at the depths x = 21mm (two columns from the left) and x = 45mm
(two columns from the right) from 3D reconstructions of absorption (left) and scattering
(right) distributions with mismodelled background. The images from top to bottom are:
target distribution (top row), and reconstructions using RM (second row), EM-1 (third row),
and EM-2 (fourth row).

4.2.3. Comparison and discussion

To compare the capability of the different approaches to estimate the values of optical parame-
ters, the relative errors between the target and estimated optical properties, x and x̂, respectively,
were calculated as

êx =
‖(x− x̂)‖2

‖x‖2 ·100 (39)

for different levels of deviation in optical parameters between the true homogeneous back-
ground and the linearisation point. The relative errors of different models against the difference
in background value are shown in Fig. 6.

The figure shows that when the background optical properties are known, all three ap-
proaches give similar reconstruction errors. When the error in background value compared to
the linearisation point is increased, the errors of the RM and EM-1 estimates increase clearly.
The errors of the EM-2 show also some increase but significantly less than the other approaches.
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Fig. 6. Relative errors between the target optical properties and estimated optical proper-
ties against the difference in background value calculated with the RM (∗), EM-1 (◦) and
EM-2 (+).

Thus, the EM-2 method gives clearly more accurate estimates than the two other approaches
and can compensate the errors caused by using mismodelled background optical properties in
linear reconstruction.

5. Conclusions

In this paper we examined the correction of errors when using a first order Born approximation
with an infinite space Greens function model as the basis for linear reconstruction in DOT, when
real data is generated on a finite domain with possibly unknown background optical properties.
We considered the relationship between conventional reference measurement correction and
the approximation error modelling in DOT reconstruction. The approaches were tested with
simulations in cases in which the background optical properties were known and mismodelled.
The results show that when the background optical properties are known, the conventional ref-
erence correction method and the approximation error approaches using first and second order
statistics give similar results, and thus all of the approaches can be used in DOT reconstruction
with a linear model. However, when the background optical properties are mismodelled, the
conventional reference method and the approximation error approach using first order statistics
fail to give good estimates of the target optical properties. In this case, the approximation error
approach using second order statistics is capable of providing feasible reconstructions of the
optical properties even when the background values are 30% smaller than the expected values.
Thus, the approximation error approach using second order statistics can compensate the errors
caused by inaccurately known background optical properties in linear DOT reconstruction.

Acknowledgments

This work was supported by the Academy of Finland (projects 122499, 119270, 140731 and
213476, Finnish Center of Excellence in Inverse Problems Research) and by EPSRC grant
EP/E034950/1.

#129750 - $15.00 USD Received 7 Jun 2010; revised 9 Jul 2010; accepted 9 Jul 2010; published 16 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 1,  No. 1 / BIOMEDICAL OPTICS EXPRESS  222




