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Abstract
Recent experiments have shown that GABAA receptor mediated inhibition in adult hippocampus
is shunting rather than hyperpolarizing. Simulation studies of realistic interneuron networks with
strong shunting inhibition have been demonstrated to exhibit robust gamma band (20–80 Hz)
synchrony in the presence of heterogeneity in the intrinsic firing rates of individual neurons in the
network. In order to begin to understand how shunting can contribute to network synchrony in the
presence of heterogeneity, we develop a general theoretical framework using spike time response
curves (STRC's) to study patterns of synchrony in a simple network of two unidirectionally
coupled interneurons (UCI network) interacting through a shunting synapse in the presence of
heterogeneity. We derive an approximate discrete map to analyze the dynamics of synchronous
states in the UCI network by taking into account the nonlinear contributions of the higher order
STRC terms. We show how the approximate discrete map can be used to successfully predict the
domain of synchronous 1:1 phase locked state in the UCI network. The discrete map also allows
us to determine the conditions under which the two interneurons can exhibit in-phase synchrony.
We conclude by demonstrating how the information from the study of the discrete map for the
dynamics of the UCI network can give us valuable insight into the degree of synchrony in a larger
feedforward network of heterogeneous interneurons.
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1 Introduction
Synchronous rhythms in the brain, in particular gamma rhythms (20–80 Hz) are known to
constitute a fundamental mechanism for cognitive tasks such as object recognition (Mima et
al. 2001; Baudry and Bertrand 1999), associative learning (Gruber et al. 2001, 2002) and the
processing of sensory information in the brain (Engel and Singer 2001; Aoki 1999). A
number of in-vitro slice experiments have demonstrated that fast inhibitory response
mediated by GABAA receptors are both necessary and sufficient for the generation of
sustained gamma-band oscillations in the hippocampus (Whittington et al. 1995; Fisahn et
al. 1998; LeBeau et al. 2002; Mann et al. 2005). Early theoretical work by Wang and Rinzel
(1992), demonstrating the ability for reciprocally connected interneurons to exhibit
synchronous rhythms, provided a mechanistic framework for synchrony exhibited by purely
inhibitory neuronal network. In the subsequent years there have been a number of theoretical
and simulation studies of synchrony in networks of coupled interneurons (vanVreeswijk et
al. 1994; Wang and Buzsaki 1996; Ernst et al. 1995; White et al. 1998; Chow et al. 1998).
The primary conclusion from these studies was that while homogeneous networks of
inhibitory coupled neurons can exhibit synchrony, it was extremely sensitive to
heterogeneity in the network parameters. Most of the earlier theoretical work focused on
hyperpolarizing effects of GABAA mediated fast inhibition. However recent experimental
work by Bartos et.al., has demonstrated that GABAA mediated inhibition in hippocampal
slices of adult mammalian brains, is fast and shunting (Bartos et al. 2002; Vida et al. 2006).
Through simulation studies on a realistic network model of coupled interneurons, the
authors have also demonstrated that shunting enhances robust gamma-band synchrony in the
network even in the presence of moderately high heterogeneity (Bartoset et al. 2007).
However due to the inherent complexity of the realistic network considered by Bartos et.al,
(a large network comprising of 200 interneurons, electrical coupling among neighboring pair
of interneurons, the presence of synaptic propagation delay, fast synaptic decay time, strong
synaptic conductance) it has been difficult to elucidate the contribution of shunting to the
enhancement of synchrony of the network in the gamma-band. Infact recent theoretical work
by Jeong and Gutkin (2007) suggests that shunting may enhance stable asynchronous states
in the network of coupled interneurons. However the authors note that the observed
difference between their results and those obtained by Bartos et.al., may lie in the different
regimes of synaptic coupling considered and the lack of heterogeneity in the intrinsic firing
rates of the coupled neurons.

Here, we investigate whether the analytical framework of spike time response curves
(STRCs) can be used to study synchronous state of 1:1 phase locking between two
unidirectionally coupled neurons (UCI network) interacting through a strong shunting
synapse in the presence of heterogeneity (Talathi et al. 2009). We begin by demonstrating
that synaptic input through shunting inhibition to a neuron periodically firing in the gamma
frequency band persists for 3 consecutive firing cycles as opposed to the case for neuron
receiving strong synaptic input through a hyperpolarizing synapse. We then develop an
analytical framework to approximate the dynamics of 1:1 synchronous state in the UCI
network through a discrete map that takes into account the higher order STRC contributions.
We show that in the limit of zero higher order STRC contributions the discrete map reduces
to the well-known approximation for synchrony between two neurons coupled through a
hyperpolarizing inhibitory synapse (Ermentrout 1996; Acker et al. 2004; Talathi et al. 2008).
We then use the discrete map to determine the conditions under which in-phase synchrony
can be observed in this network. We show that synaptic delays play an important role in the
generation of in-phase synchrony between the two coupled interneurons interacting through
a shunting synapse. In the spirit of White et al. (1998), we conclude by demonstrating that
analysis of smaller networks can be useful in understanding larger network dynamics and
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may provide more insight into the results obtained by Bartoset et al. (2007) for a more
biologically realistic networks.

2 Methods
2.1 Model

Each neuron is modeled based on a single compartment neuron model developed by Wang
and Buzsaki (1996) with a fast sodium channel, a delayed rectifier potassium channel and a
leak channel. The dynamical equation for the model neuron is given by,

(1)

where C = 1μF/cm2. V(t) is the membrane potential, IDC: external DC current, is set such
that the neuron spikes at a given intrinsic frequency F(IDC). IS(t) = gSS(t)(EI – V(t)) is the
synaptic current from external inhibition. gS represents the strength of the synaptic
connection. Er (r = Na, K, L) are reversal potentials of the sodium and potassium ion
channels and the leak channel respectively. EI, is the reversal potential of the inhibitory
synapse. gr (r = Na, K, L) represent the conductance of sodium, potassium and the leak
channel respectively. The steady state activation for sodium current m∞ = αm/(αm + βm).
The inactivation variable for sodium channel h(t) and the activation variable for potassium
current n(t) satisfy the following first order kinetic equation:

, where X(t) = h(t), n(t) with ϕ = 5. The functions
αX and βX are given by:

S(t) gives the fraction of bound receptors and satisfy the following first order kinetic
equation, (Abarbanel et al. 2003; Talathi et al. 2008),

where θ(t) = Σi Θ(t − ti).Θ((ti + τr) − t). Θ(X) is the heaviside function satisfying Θ(X) = 1 if
X > 0 else Θ(X) = 0 and ti is the time of the ith presynaptic neuronal spike (Vpre(t)). The
kinetic equation for S(t) involves two time constants, τR = τ̂(SI − 1), the docking time for the
neurotransmitter and τD = τ̂SI, the undocking time constant for the neurotransmitter binding.
Finally, S0(θ) is the sigmoidal function given by, S0(θ) = 0.5(1 + tanh(120(θ − 0.1))).

All the simulations were performed using fixed time step 4th order Runge-Kutta method for
differnetial equations with time step δt = 0.05 ms, on a 2GHz Intel Core Duo Mac OS X.
The source code is available from SST on request.
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2.2 Spike time response curve (STRC)
As a measure of the influence of synaptic input on the firing times of a neuron, we define the
spike time response curves (STRC's) (Acker et al. 2004; Oprisan et al. 2004)

where T0 is the intrinsic period of spiking, Tj(δt) represents the length of the jth spiking cycle
in the presence of a single perturbation at time δt. The first spiking cycle j = 1 is assumed to
start at time t = 0 and the neuron is assume to received synaptic perturbation in the first
spiking cycle at time 0 < δt < T0. The synaptic parameters are: τR: the synapse rise time, τD:
the synaptic decay time, gs: the synaptic strength and ER: the reversal potential of the
synapse. No constraint is placed on the synaptic strength (Ermentrout and Kopell 1990;
Bartoset et al. 2007). In addition we assume that the intrinsic period of spiking for the
neuron T0 is constant. We therefore ignore the important case of spike frequency adaptation
(Ermentrout et al. 2001). However, more recently Cui et al. (2009) have addressed the issue
of spike frequency adaptation using functional phase response curves. The STRC's are
obtained numerically as explained through the schematic diagram in Fig. 1(a). The neuron
firing regularly with period T0, is perturbed through an inhibitory synapse at time δt after the
neuron has fired a spike at reference time zero. The spiking time for neuron is considered to
be the time when the membrane voltage V, crosses a threshold (set to 0 mV in all the
calculations presented here). As a result of this perturbation, the neuron fires the next spike
at time t1, representing the first cycle after perturbation of length T1 ≠ T0. Depending on the
properties of the synapse, i.e., gs, τR, τD and ER; the length of subsequent cycles might
change. In Fig. 1(b-d) we show the first three STRC components Φ1, Φ2 and Φ3
respectively, color coded as function of the reversal potential of the synapse ER and the
perturbation time δt for a given value of gs = 0.15mS/cm2, τR = 0.1 ms and τD = 8ms. As can
be seen from Fig. 1(b), the first order STRC is non-zero for all perturbation times 0 < δt < T0
for the entire range of ER values, the difference being for hyperpolarizing synapses (ER ≤
Vrest), the time to next spike is delayed resulting in positive values for Φ1 whereas for
shunting synapses (Vrest < ER ≤ VT) the time to next spike is advanced resulting in negative
values for Φ1. As can be seen from Fig. 1(c), there is a significant contribution to second
order STRC for shunting synapses for all values of 0 < δt < T0, however for hyperpolarizing
synapses, Φ2 is non-zero only for δt → T0. From Fig. 1(d) we see that for shunting synapses
with reversal potential close to spiking threshold (ER ≈ VT), there is contribution to third
order STRC term for δt → T0. Higher order STRC terms are non-zero for a neuron receiving
synaptic input through a slow shunting synapse because (i) Shunting input depolarizes the
membrane potential and as a result the period of firing cycle in which the perturbation is
received is decreased (evident from the negative value for Φ1) (ii) The effect of slow
synapse then persists for a larger fraction of the period of first cycle and as a result it
modulates the length of second cycle resulting in a significant non-zero contribution to
second order STRC. These effects are clearly demonstrated through Fig. 1(a) inset, where
we depict the time series of neurons membrane potential and the synaptic variable S(t) for
the two cases ER = −55 mV (shunting) and ER = −75 mV (hyperpolarizing). It is clear from
the inset that S(t) is non-zero for the first firing cycle and as a result modulates the length of
the subsequent cycle.

For all further calculations, unless otherwise mentioned, we will suppress the dependence of
STRC on synaptic parameter's: τR, τD and ER, g and the intrinsic period of the neuron T0. For
ease of analytical calculations for synchrony between the coupled neuron's we define the
following (see Fig. 2(a)).
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(2)

(3)

where R(δt) defines the recovery time for the trajectory to generate the next spike following
synaptic perturbation at time δt and Ej(δt) is the period of jth firing cycle in presence of
single perturbation at time δt.

3 Results
3.1 Estimating period of oscillation in the presence of two consecutive synaptic stimuli

We begin by considering the simple case of a periodically firing neuron (with intrinsic
period T0) that receives a GABAA mediated inhibition through a shunting synapse in each of
its two successive firing cycles at times δt1 and δt2 as shown in Fig. 2(a). Our goal is to
determine the length of the second cycle T2(δt1, δt2) using the open loop STRC functions Φj
(j = 1,2,3…) as defined above.

In the presence of a single perturbation at δt1 in the cycle 1, following from the definition of
STRC's we can obtain the length of second cycle as: T2(δt1) = E2(δt1) = T0 (1 + Φ2(δt1)). It
is clearly a function of single perturbation time occurring at time 0 ≤ δt1 < T0 in the first
cycle which begins at time t = 0. Similarly in the presence of a single perturbation in cycle 2
at time T0 ≤ δt2 < 2T0, again following from the definition of STRC's we have T2(δt2) = δt2
+ R(δt2) = T0(1 + Φ1(δt2)). In writing this equation we made an implicit assumption that the
default period of second cycle in the absence of the single perturbation at time δt2 is T0.
However if the synaptic input at δt2 is preceded by a synaptic perturbation in the previous
cycle at δt1, the length of the second cycle is no longer T0. Therefore, in order to correctly
determine the length of second cycle in this case, we have to compensate for the change in
the length of second cycle caused by synaptic input at time δt1. This compensation is done

by re-normalizing the synaptic perturbation time in the second cycle to  and

re-scaling the effective phase of perturbation by , using the procedure
described below and explained schematically using Fig. 2(a).

A synaptic input perturbs the trajectory of periodically firing neuron away from the stable
limit cycle attractor. In absence of any further perturbation, the trajectory will
asymptotically approach the limit cycle with a constant phase velocity, as a result the neuron
returns back to the threshold for firing at time T1 ≠ T0. In Fig. 2(a), this effect is represented
by assuming that the trajectory does not move away from the limit cycle, rather the phase
velocity of the neuron around the limit cycle is increased uniformly. Since the effect of
synaptic perturbation is now treated as changing the phase velocity of the trajectory on the
limit cycle, we can use the open loop STRC's to estimate the effective period of the cycle
receiving the synaptic perturbation. Our assumption of change in phase velocity however
implies that the intrinsic period of oscillation of the trajectory on the limit cycle is modified
and as a result the shape of STRC (plotted as a function of the time of synaptic perturbation,
see Fig. 1) which clearly depends on the intrinsic period of oscillator will change.
Depending on whether E2(δt1) > T0 or E2(δt1) < T0, the STRC will either be stretched or
compressed along the time axis. We assume that this scaling is linear and compensate for the
change in shape of STRC along the time axis by re-normalizing the effective time of
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synaptic perturbation δt2 to  using similar triangles property applied to three distinct
triangles in the phase plot depiction of the phenomenon sketched in Fig. 2(a). Triangle 1
(shown in inset of Fig. 2(a)) implies δt2 is to E2(δt1) as x is to 1. This gives x = δt2/E2(δt1).
The second triangle implies that δte is to x as T0 is to 1. Therefore we get  or as

stated above, . Thus the re-normalization of the effective perturbation time
accounts for the rescaling of the STRC along the time axis due to the change in phase
velocity of the trajectory. However the change in phase velocity of the trajectory also means
that the neuron is receiving different amount of current for a given magnitude of synaptic
perturbation. This is because the speed of the trajectory along the limit cycle depends on the
net current delivered to the neuron. This is especially true for type-I neuron models, for
which a single synaptic perturbation either delays (for inhibitory synaptic input) or advances
(excitatory synaptic input) the time to next spike (Gutkin et al. 2004; Ermentrout 1996).

Thus, in order to correctly account for the true effect of the perturbation on the original
trajectory, we also have to rescale the effective magnitude of the synaptic perturbation.
Going back to the Fig. 2(a), applying similar triangles property to triangle 3, this rescaling is
done by modifying the effective phase of synaptic perturbation by . From triangle 3 we
see that δt2 is to T0 as  is to 1. Therefore we get  or as described above

. The change in effective magnitude of synaptic perturbation will now
change the amount of time it takes for the neuron to return back to its stable limit cycle
oscillator, thereby changing the amount of recovery time. Analytical expression for the
resulting modification to recovery time was obtained by empirically fitting the recovery time
of the trajectory to the rescaled amplitude of the synaptic perturbation. We found that the
best fit in the least-squares sense, to the resulting recovery time can be obtained by rescaling
the recovery time  to . While this expression was found through
empirical fitting procedure, we have tested the generality of this modification by performing
similar calculations on a different model for type-1 neurons, the Morris-Lecar oscillator.

Thus, the re-normalization of the perturbation time and the re-scaling of the effective
magnitude of synaptic perturbation and the resulting recovery time interval, allows us to
correctly account for the effect of synaptic input at time δt1 on the length of cycle 2. The
length of cycle 2, which is now a function of δt1 and δt2, can now be written as

(4)

In order to determine the set of {δt1, δt2} for which Eq. (4) holds, we have estimated T2(δt1,
δt2) by solving Eq. (1) numerically for the situation when the neuron receives synaptic input
through GABAA mediated synapse that is shunting (with parameters: τR = 0.2 ms, τD = 8
ms, gM = 0.1 mS/cm2 and ER = −55 mV) and compared the numerically obtained result with
that determined through Eq. (4), using the values of STRC's Φ1 and Φ2. In Fig. 2(b), we
show results in the form of two dimensional plot of δt1 versus δ2, with the color representing

the percent error ; where  represents the numerically estimated period
T2(δt1, δt2) by solving Eq. (1), while  represents the length of T2(δt1, δt2) estimated
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through STRC's using Eq. (4). In Fig. 2(c), we show the results for a specific case of δt1 =
15 ms. We see that by correctly taking into account the nonlinear contributions from the
second order STRC term Φ2 through the re-normalization and re-scaling technique, the
STRC's contain all the information required to predict the length of second cycle in the
presence of two consecutive synaptic perturbations.

Let us now consider two special cases commonly considered in the analysis of neuronal
network synchrony using STRC's: (a) Φ2(δt) = 0 and (b) non-zero Φ2(δt) for δt → T0; as in
the case of hyperpolarizing synapse with slow decay time (Fig. 1(b)). For the first case, Eq.
(4) simply reduces to T2(δt1, δt2) = T0 (1 + Φ1(δt2)), where the period in second cycle in not
affected by perturbation in the first cycle and is completely determined through the first
order STRC term Φ1. In the second case, linearization of Eq. (4) results in

(5)

As stated above, Eq. (5) results from first order correction from Φ2 to the length of second
cycle in presence of two consecutive synaptic perturbations. Under the assumption that the
second order resetting dies out, which is mostly likely in the situation that Φ2(δt) ≈ 0 unless
δt → T0, the approximation in the form given in Eq. (5) has been used in Oprisan and
Canavier (2001) to determine the effect of second order STRC component on stability of 1:1
synchronous state in a ring of pulse coupled oscillators; in Oprisan et al. (2004) to determine
phase resetting and phase locking in a hybrid circuit of one model neuron and one biological
neuron and also recently in Maran and Canavier (2008) to predict 1:1 and 2:2 synchrony in
mutually coupled network of interneurons with synapse that is hyperpolarizing. We
emphasize that in the works cited above the application of Eq. (5) which we obtain as
linearization of Eq. (4) for the situation of only two consecutive pulses, is successfully
applied to the situation when the two neurons are locked in stable 1:1 synchrony, i.e.,
periodic perturbation such that the trajectory of a perturbed neuron always returns to its limit
cycle before the occurrence of the subsequent perturbation. If the above approximation is
applied to the case considered in this section, i.e., two consecutive pulses only, it is able to
predict the length of second cycle for hyperpolarizing synapse (see Fig. 3(a)), however,

there is a significant prediction error as quantified through  when Eq. (5)
is used to obtain an estimate  for T2 (δt1, δt2) when the neuron receives two successive
perturbations through a shunting synapse (see Fig. 3(b)), in which case the second order
resetting is significantly non-zero and the trajectory fails to return to the limit cycle before
the application of the second synaptic perturbation. If we assume that indeed the second
order resetting is complete before the arrival of second pulse at time δt2, the effective period
of second cycle would be

(6)

As shown in Fig. 3(c), this assumption breaks down for the case of shunting synapse. We
thus see that while Eq. (4) correctly predicts the length of second cycle T2(δt1, δt2) for a
neuron receiving two successive synaptic perturbations through a shunting synapse, both Eq.
(5) which results from linearization of Eqs. (4) and (6) which results from the assumption
that second order resetting is complete before the arrival of second synaptic perturbation,
fail to capture the non-linear contribution from the higher order STRC term in determining
T2(δt1, δt2). We emphasize that the expression for the predicted value of T2(δt1, δt2) through
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Eq. (4) is only dependent on STRCs estimated for a given synapse type without any explicit
assumption on the strength of synaptic input to the neuron and is valid both in the regime of
weak and strong coupling and for slow and fast synaptic dynamics.

3.2 Estimating period of oscillation in the presence of three consecutive synaptic stimuli
We can now generalize our approach to consider the situation when the neuron receives
synaptic inputs in 3 consecutive firing cycles: δt1 in cycle 1; δt2 in cycle 2 and δt3 in cycle 3.
This is an important case to consider in order to derive a return map for 1:1 synchrony
between two mutually coupled interneurons through GABAA synapse that is shunting; since
we know from Fig. 1(b–d); the first 3 STRC components are non-zero for shunting
inhibition. We first determine the length of third cycle Ẽ3(δt1, δt2), when the neuron receives
two synaptic inputs at times δt1 and δt2. Since Φ3(δt) ≈ 0 (see Fig. 1(d)), following Eq. (5)

we can approximate . In Fig. 4(a), the percent error

 between the empirically estimated  using STRC's and those

obtained through numerical simulations  is color coded as function of δt1 and δt2. Now,
following from Eq. (4), the length of 3rd cycle in the presence of three consecutive synaptic
inputs can be written as: ; where

 and . Note the addition of the term T0Φ3(δt1), which
determines the contribution of the first spike to the third cycle. First order linear correction
to T3(δt1, δt2, δt3) through Φ3 is justified by our consideration of T2(δt1, δt2) with first order
linear correction through Φ2 in Eq. (5). As we showed earlier first order linear correction
term through Φ2 when it satisfies the condition Φ2(δt) ≈ 0 unless δt → T0 provides a good
approximation for estimating T2(δt1, δt2), in situation when Φ3 ≈ 0 except when δt → 0, the
contribution to T3(δt1, δt2, δt3) from the third order correction term can also be
approximated through a first order linear correction. We therefore have

(7)

In Fig. 4(b), we show the error between the empirically estimated  obtained from Eq. (6)
above, and the numerically determined length of third cycle  by solving Eq. (1) through

the color coded percent error  plot for the specific case of δt3 = 5
ms. We again see that through the procedure of re-normalization and re-scaling STRC's
contain all the information necessary to predict the length of third cycle T3(δt1, δt2, δt3)
resulting from synaptic perturbations in three consecutive firing cycles.

3.3 Return map for 1:1 synchrony between coupled interneurons
We are now in the position to derive the discrete map for 1:1 phase locked state (1:1
synchrony) between two unidirectionally coupled interneurons interacting through a
shunting synapse in the UCI network as shown in Fig. 5(a). In absence of an external
synaptic drive, neuron A fires with intrinsic period  in response to current input . Let
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neuron B receive input current , where H represents the percent
heterogeneity. For H ≠ 0, neuron B fires with intrinsic period . When the two
neuron are locked in 1:1 synchrony we have from Fig. 5(b) and Eq. (7)

(8)

where  is the time of nth spike for neuron X,  and the function's RX and , X =

{A, B} are given through STRC estimates  obtained for neuron's A and B
which are dependent on their intrinsic firing rates  and  respectively. Since neuron B,
does not receive any external perturbation, we have for neuron B, . The discrete
map for the evolution of δn can then be obtained as:

(9)

Equation (9) represents a 3-dimensional nonlinear discrete map for the evolution of
variables: {δn,αn,βn} given by:

(10)

The steady state solution to above equation can be obtained by solving for the fixed point δ*
defined by δn+1 = αn+1 = βn+1 = δn = αn = βn = δ*. We then obtain , where F(δ*) is
given by

(11)

In the limit of Φ2 ≈ 0 and Φ3 = 0,  corresponding to the well-
known equation for the solution to the fixed point of discrete map for 1:1 synchrony
between two neurons coupled through a hyperpolarizing synapse (Talathi et al. 2008).
Stability of the fixed point δ* can be determined through linear stability analysis for discrete
dynamical systems (Strogatz 2001), by calculating the eigenvalues λj (j = 1…3) of the
Jacobian matrix for Eq. (9). Stability implies |λj| < 1.

In order to determine whether Eq. (10) can predict 1:1 phase locked states for the UCI
network considered above, we consider the specific case of neurons A and B coupled
through a slow shunting synapse with parameters: ER = −55 mV, τR = 0.1 ms, and τD = 8
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ms. Neuron A receives fixed dc current , such that fires with intrinsic period  ms.
We solve Eq. (11), for different values of H, thereby modulating , to determine the set of
values for gs, which will result in stable fixed point solution for Eq. (11). The solution is
obtained by estimating STRC's for each value of gs and then determining whether there is a
fixed point solution to Eq. (11). In Fig. 5(c), we present the results of this calculation. For a
given value of H, the curve in black gives the lower and upper bounds on the strength of
coupling for shunting synapse gs, for which a unique stable solution to Eq. (11) exists.
Stability of the fixed point solution to Eq. (11) is determined by calculating the eigenvalues
of the Jacobian matrix for the discrete map in Eq. (10). For example with H = 50, the range
of values for gs for which a unique stable solution exists for Eq. (11) is 0.09 < gs < 0.21.
This region of 1:1 synchronous locking is analogous to the classic Arnold tongue (Kurths et
al. 2001; Talathi et al. 2008), obtained for synchrony between two coupled nonlinear
oscillators. Arnold tongue provides a two dimensional visualization of this dependence, as a
bounded domain of region in the heterogeneity (H)-coupling strength (g) plane, where 1:1
synchrony between the two oscillators exist. For zero strength of coupling, the two
heterogeneous oscillators are oscillating at their intrinsic frequencies, that differ from each
other for heterogeneity H ≠ 0. As a result the width of synchrony at zero coupling is zero.
As the strength of coupling increases, the range of heterogeneity over which the two coupled
oscillators can synchronize increases, resulting in a tongue shaped two dimensional domain.
In Fig. 5(c), the general feature of the Arnold tongue is represented as the region bounded by
two black curves obtained through STRC by solving for fixed point of Eq. (10). In Fig. 5(c),
shown in blue is a similar bound on the range of heterogeneity leading to synchronous
oscillations between the two coupled neurons, obtained by numerically solving Eq. (1) for
the evolution of the dynamics of the coupled neuron network. This curve is obtained by
fixing the firing period of neuron A,  and varying the firing period of neuron B, by

changing  and determining the strength of synaptic coupling gs that results in .
As can be seen from Fig. 5(c), the results match to those obtained through STRC
calculations for fixed point of Eq. (10). In Fig. 5(d), we present similar calculation for the
two neurons coupled through a fast shunting synapse with parameters: ER = − 55 mV, τD = 2
ms, and τR = 0.1 ms.

We note that the Arnold tongue showed in Fig. 5(c) and d are skewed to the right; i.e., H >
0, which suggests that shunting inhibition tends to promote 1:1 synchrony at higher
frequencies of the driver neuron. Recently Talathi et al. (2008) have demonstrated the
mechanism for phase locked state of 1:1 synchrony to exhibit identical synchrony (zero
phase lag), which is essential for the generation of synchronous oscillations in a larger
network of neurons. It is therefore very likely that through the mechanism of spike timing
dependent plasticity (Talathi et al. 2008), the two neurons may lock in identical synchrony
(phase locked with zero phase difference) at frequencies in the gamma range. This may
result in the generation of gamma oscillations in larger network of interneurons interacting
through shunting inhibition as has been demonstrated through simulation studies of realistic
networks of neurons (Bartoset et al. 2007). In the next section we test this idea by using the
discrete map in Eq. (10) to determining the conditions under which shunting inhibition
between the two unidirectionally coupled interneurons can result in inphase synchrony.

3.4 Inphase synchrony with shunting inhibition
In order to determine whether shunting can result in in-phase synchrony, we analyze the
discrete map in Eq. (10) to determine the condition for the existence and stability of fixed
point δ* = 0 which represents the state of in-phase synchronous oscillations by the two
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heterogeneously firing interneurons in the UCI network. From Eq. (10) we have δn = αn = βn
= δ* = 0, resulting in

(12)

In Fig. 6(a), the red circles represent the solution to Eq. (12) in the two dimensional gs-H
plane for the two neurons coupled through a slow-shunting synapse. We see that the solution
to fixed point equation for inphase synchrony lies outside the domain for 1:1 synchrony
between coupled neurons, suggesting that inphase synchrony is not possible between
coupled neurons interacting through slow-shunting synapse. In Fig. 6(b), we show a similar
curve represented by red circles for the two neurons coupled through fast-shunting synapse.
We see that there exist set of points within the domain for 1:1 synchrony between coupled
neurons. However for the coupled neurons to exhibit inphase synchrony, not only should
these points be inside the Arnold's tongue but they should also represent stable fixed point
solutions to Eq. (10). The stability of these fixed points can be determined through linear
stability analysis methodology discussed in Section 3.3, resulting in the following condition:

(13)

In Fig. 6(c) we plot S, calculated at points representing the solution to Eq. (12) (red circles
in Fig. 6(b)) for the fast-shunting synapse, as function of gS and H. We see that S < 0 for all
these points, thus Eq. (13) is not satisfied for any pair of gS-H values, a necessity for the
existence of stable inphase solution to the discrete map in Eq. (10). Thus, even for the
neuron pair, interacting through a fast-shunting synapse in the UCI network, stable inphase
synchronous solution does not exist.

In Fig. 7(a) we demonstrate a possible mechanism for the network considered above to
exhibit inphase synchrony. We plot δn; defined through:

as function of H for the specific case of a fast shunting shunting synapse with coupling
strength gs = 0.15 mS/cm2. When the two neurons are locked in 1:1 synchrony, δn → δ*,
corresponding to the solution of discrete map in Eq. (10) with δn = 0 representing inphase
synchrony. Shown in black are the results from numerical simulations, and shown in red is
the stable solution to the discrete map in Eq. (10). If we introduces synaptic delay τs = δ*,
for a given level of heterogeneity H, we can induce inphase synchrony between the coupled
neurons as shown in Fig. 7(b). We see that with τs = 12 ms, corresponding to the stable fixed
point δ* for H = 20%, we obtain δn = 0 representing the state of inphase synchronous
oscillations by the two heterogeneously firing neurons.

In conclusion, for a pair of heterogeneously firing interneurons coupled through a shunting
synapse, the two conditions that need to be satisfied for observing inphase synchrony are (i)
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the strength of coupling should be such that the coupled oscillators are within the Arnold
tongue and (ii) there exists synaptic delay such that the system exhibit's inphase synchrony
within the Arnold tongue.

3.5 Synchrony in a feedforward network of inhibitory neurons
In this section, we consider a feed-forward network of 3 heterogeneously firing neurons
coupled through a shunting synapse, and demonstrate the utility for the discrete map in
determining conditions underwhich this simple network can exhibit inphase synchrony. The
network is carefully designed such that each pair of interacting neurons is locally within the

Arnold tongue for 1:1 synchrony, for example,  μA/cm2 and  μA/cm2

resulting heterogeneity HAB = 35% and for synaptic strength gs = 0.15 mS/cm2, the pair
oscillates within the Arnold tongue for 1:1 synchrony (see Fig. 5(c)). Thus locally each pair
0–1, 1–2 and 2–0 are within the domain for 1:1 synchrony. As can be seen from Fig. 8(a),
even though locally each pair of neurons in the network is within their respective Arnold
tongue, the network does not exhibit synchrony when the synaptic delay .
This is because, the neurons are not necessarily phase locked in inphase synchrony. The lag
δ* between the firing times of the two neuron phase locked in 1:1 synchrony for a given
level of heterogeneity H can be determined using the discrete map in Eq. (9). In Fig. 8(b),
we introduce the synaptic delays, derived from the solution to the discrete map in Eq. (9),
for a given pair of heterogeneously coupled neurons in the network. By choosing 
ms, corresponding to the solution to Eq. (9) for the isolated pair of coupled neurons 0 and 1,
through the mechanism discussed in last section, neuron 1 can fire inphase with neuron 0.
Similar analysis for the pair of neurons 0 and 2 result in  ms. In isolation, neuron 2
will now be entrained to fire inphase with neuron 0. However in the network considered,
neuron 2 also receives synaptic input from neuron 1. If we choose,  ms, neuron
2 will receive synaptic input from the two distinct neurons 0 and 1 at the same time, as
neuron 1 is already entrained to fire inphase with neuron 0. As can be seen from Fig. 8(b),
the 3 neurons are now firing in inphase synchrony. Thus using discrete map and pair wise
analysis of the coupled neurons in the network we were able to determine the conditions
under which the feed-forward network of 3 heterogeneously firing neurons can exhibit
synchronous oscillations. Similar analysis can be carried out for a larger feed-forward
network (N > 3) to determine whether it can exhibit synchronous oscillations.

4 Discussion
In this work we have presented a general mathematical framework to analyze patterns of
synchrony in a simple feed-forward network of heterogeneously firing neurons interacting
through a shunting synapse. Our work is motivated from the recent experimental findings by
Bartoset et al. (2007), demonstrating the ability for a realistic interneuronal network to
exhibit robust gamma-band synchrony through shunting synapse in the presence of
heterogeneity. Our work is an extension of the theoretical analysis by Jeong and Gutkin
(2007) in that we consider the more general case of two neurons coupled through a strong
shunting synapse in the presence of heterogeneity. By considering a more simpler situation
of uni-directionally coupled neurons, we demonstrate that the results of Jeong and Gutkin
pretty much hold true even in the presence of strong-shunting synapse with heterogeneity. In
absence of delays in the synaptic transmission, both slow and fast shunting fail to exhibit
inphase synchrony between unidirectionally coupled interneurons. The applicability of our
methodology as presented in this paper to study patterns of synchrony emerging in a more
realistic neuronal network such as considered by Bartoset et al. (2007) remains a topic of
future investigation.
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The mathematical framework presented in this work is based on the technique of phase
reduction which is commonly employed in the study of pulse coupled oscillators (Winfree
2001; Murray 1993). The technique involves determining the phase response curve (PRC)
for an oscillator that quantifies how the oscillator responds to a perturbation through a
pulsatile input. The PRC for a neuron receiving synaptic perturbations is measured in terms
of time rather than phase (Acker et al. 2004) and is referred to as the spike time response
curve (STRC). The STRC's provide a natural experimental framework to study the
perturbation effects of synaptic inputs on the firing times of a neuron without the
requirement of a detailed biophysical model to mimic the neuronal dynamics. We want to
emphasize this point by noting that experimental neuroscientists interested in network
synchrony do not necessarily know all the ion channels that comprise a neuronal membrane.
However it is relatively easy to stimulate a neuron and measure the response time of the
neuronal firing and thereby create an experimental log of the effect of synaptic perturbation
on a regularly spiking neuron. Once STRC's are determined as described above in the open
loop setting, the framework we presented in this work can be used to analyze local
synchrony between coupled neurons and in the special case of feed-forward network of
inhibitory neurons, make predictions about network synchrony.

We began by demonstrating that STRC's are in general a function of synaptic parameters
and for a given level of synaptic strength and synaptic kinetics, the effect of synaptic input
varies depending on the form of synaptic inhibition, i.e., hyperpolarizing vs. shunting. For
hyperpolarizing synapse, the dominant effect of synaptic perturbation is on the firing cycle
that receives the perturbation. However for shunting inhibition, the perturbation effect
persists beyond the cycle in which the neuron receives the synaptic perturbation. We found
that the analytical technique of re-normalization and re-scaling allowed us to correctly
account for the contributions from the higher order STRC terms to the instantaneous firing
period of a neuron receiving synaptic input in multiple successive firing cycles. The main
advantage of this technique is that it does not require the neuron to approach its intrinsic
period of oscillation before receiving the next synaptic perturbation. As a result this
technique allowed us to approximate the network dynamics of two heterogeneously firing
neurons coupled through a shunting synapse through a discrete map that has the ability to
predict the stability of patterns of synchrony in the network. The discrete map also allowed
us to determine the conditions under which a larger feed-forward network of
heterogeneously firing interneurons can exhibit inphase synchrony. Although in this work
we restrict our analysis to the study of feedforward networks, the analytical framework we
developed here is equally applicable to study patterns of synchrony generated by a pair of
mutually coupled neurons (Talathi et al. 2009). Discrete map analysis for mutually coupled
neurons is in particular more challenging. For a given level of heterogeneity, one has to
determine STRC's for both neurons in the coupled network (each neuron firing with its own
intrinsic period) in order to obtain a discrete map similar to Eq. (10). However once the
STRC's are known, one can follow the methodology presented in this work to determine a
nonlinear discrete map, stability of the fixed point solution of which can then predict the
existence of 1:1 synchronous states (Talathi et al. 2009).

While the methodology that we present in this work enables one to carefully design neuronal
networks that can exhibit complete synchrony, the question remains whether such an
artificial construction of a neuronal network has any biological relevance. In particular is
there a biological mechanism for altering the effective delay in signal propagation between
coupled neurons? One particularly relevant pathophysiological scenario that leads to a
hypersynchrony of brain networks is the mossy fiber sprouting, which triggers a synaptic
reorganization in the dentate gyrus of patients and animal models of temporal lobe epilepsy
(Dudek and Shao 2004). The axons of the dentate gyrus excitatory granule cells, develop
collaterals that grow into the dentate gyrus molecular layer. A commonly acceptable
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hypothesis for seizure generation in patients with temporal lobe epilepsy is that the mossy
fiber sprouting trigger hypersynchrony by forming recurrent excitatory connections between
the granule cells. It may well be that the modification in the axonal fibers synapsing onto the
granule cell bodies may alter the effective delay in the propagation of recurrent excitatory
signal and by the mechanisms we propose in this work, trigger a hypersynchronous brain
state that eventually leads to the generation of a spontaneous epileptic seizure. More recently
there has been a growing interest in controlling the geometry of cell cultures in
multielectrode array systems to utilize specially constructed neuronal circuits for various
computational tasks such as logic operations (Wolf and Geisel 2008). In the same spirit one
can envision the construction of a specialized neuronal circuitry that is tuned to oscillate in
synchrony. Such a neuronal circuitry can then be utilized to understand the mechanisms and
function of neural synchrony in computation such as the binding problem (Sejnowski 1986).
More over different pharmacological drugs can be devised to alter the effective delay in
synaptic propagation to break the network synchrony and there by provide an effective
control over runaway hypersynchronous brain states that trigger epileptic seizures.

In conclusion, we found that in the feed-forward network of interneurons coupled through a
strong shunting synapse, synaptic delays play a critical role in the generation of synchronous
oscillations. Another important criteria for the observation of synchrony in a large feed-
forward network is the the requirement for local pair of interneurons to be within the
Arnold's tongue for 1:1 synchrony. The ability for the framework developed here in
determining the synchronizability of a realistic interneuronal network in the presence of
heterogeneity as those considered by Bartos et.al., remains a topic of future investigation.
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Fig. 1.
(a) Schematic diagram for STRC calculations. The neuron firing with intrinsic period T0 =
31 ms receives a single synaptic perturbation at time δt. as a result subsequent firing cycles
are affected. Depending on the type of synapse and the synaptic kinetics, the effect of
perturbation can persist for multiple firing cycles, resulting in Tj(δt) ≠ T0 (j = 1,2,3…). Inset
to Fig. 1(a) (below the schematic diagram) we show the actual time series for membrane
potential of a neuron receiving a single synaptic perturbation through a shunting synapse (ER
= −55 mV) and hyperpolarizing synapse (ER = −75 mV) respectively. We see that the
shunting synapse shortens the effective period of the firing cycle in which the perturbation is
received, such that there is still significant non-zero synaptic contribution (the red trace
showing S(t)) which affects the subsequent firing cycle. However for hyperpolarizing
synapse, the perturbation prolongs the length of first cycle such that synaptic contribution is
essentially zero in the following cycle. (b) First order STRC Φ1 is color coded as function of
the reversal potential of the inhibitory synapse and the perturbation time. (c) Second order
STRC Φ2 is color coded as function of the reversal potential of the inhibitory synapse and
the perturbation time. (d) The third order STRC Φ3 is color coded as function of the reversal
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potential of the inhibitory synapse and the perturbation time. Inset of Fig. 1(b–d) show the
STRC's calculated for two specific cases corresponding to a hyperpolarizing synapse (ER =
−75 mV, shown in black) and a shunting synapse (ER = −55 mV, shown in green). The
synaptic parameters are gs = 0.15 mS/cm2, τR = 0.1 ms, τD = 8 ms. The resting potential of
the neuron is Vrest = −65 mV (IDC = 0) and the threshold to spiking is VT ≈ −55mV
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Fig. 2.
(a) Schematic diagram of the re-normalization and the re-scaling procedure to determine the
length of second cycle T2(δt1, δt2) (adapted from Talathi et al. (2009)). Red dashed lines
represents the effective spike times after the neuron receives two consecutive synaptic
perturbations. Black dotted lines represent the change in the firing cycle caused by synaptic
input in the first firing cycle. Shown in black dashed line is the unperturbed firing cycle for
the neuron. To the right (inset to Fig. 2(a)) we shown three distinct triangles that can be
extracted from Fig. 2(a), which are used to determine the re-normalized effective synaptic
perturbation time δte and the re-scaled amplitude of the phase of synaptic perturbation αe (b)
The percent error δE2 between the numerically estimated value  and the analytically
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estimated value  through Eq. (4) for the second cycle T2(δt1, δt2) is color coded as
function of the synaptic perturbation times δt1 and δt2. (c) The numerically estimated period

 (shown in black) and the analytically estimated period  for a given value of first
perturbation time δt1 = 15 ms is plotted as function of the second synaptic perturbation time.
The synaptic parameters are gs = 0.15 mS/cm2, τR = 0.1 ms, τD = 8 ms and ER = −55 mV.
The intrinsic period T0 = 31 ms
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Fig. 3.
(a) Color coded percent error δE2 between the numerically estimated period  and the
analytically determined period  through Eq. (5) for a neuron receiving two consecutive
synaptic inputs through a hyperpolarizing synapse with parameters ER = −80 mV, gs = 0.15
mS/cm2, τR = 0.1 ms, and τD = 8 ms. (b) Color coded percent error δE2 determine through
Eq. (5) for the neuron receiving two synaptic inputs through a shunting synapse with
synaptic parameters gs = 0.15 mS/cm2, τR =0.1 ms, τD = 8 ms and ER = −55 mV. (c) Color
coded percent error δE2 determine through Eq. (6) for the neuron receiving two synaptic
inputs through a shunting synapse with synaptic parameters gs = 0.15 mS/cm2, τR = 0.1 ms,
τD = 8 ms and ER = −55 mV.) The inset in each of the Fig. 3(a–c) shows the plot of T2(δt1,
δt2) as a function of second perturbation time δt2 for a fixed value for the time of first
synaptic perturbation at δt1 = 15 ms. Numerical estimate is shown in black and the
analytically determined period is shown in red
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Fig. 4.

(a) Color coded percent error δẼ3 between the predicted value  and the numerically

estimated value  for the length of third cycle Ẽ3 in the presence of two consecutive

synaptic inputs at times δt1 and δt2 respectively. The inset shows the variation in Ẽ3 ( 

shown in black and ) shown in red) as a function of δt2 for δt1 = 15 ms. (b) Color coded
percent error δE3 between the predicted value  and the numerically estimated value  for
the length of third cycle T3 in the presence of three consecutive synaptic inputs at times δt1,
δt2 and δt3 = 5 ms respectively. The inset shows the variation in T3(δt1, δt2, δt3) (  shown
in black and ) shown in red) as a function of δt2 for δt1 = 15 ms and δt3 = 15 ms. The
synaptic parameters are gs = 0.15 mS/cm2, τR = 0.1 ms, τD = 8 ms and ER = −55 mV
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Fig. 5.
(a) Schematic diagram of the unidirectionally coupled pair of interneurons A and B. Also
shown is the variation in the intrinsic firing frequency of the neuron as function of percent

heterogeneity H, defined as  where IDC is the input current to the neuron. (b)
Schematic diagram of spike times for neurons A and B, when they are phase locked in 1:1
synchrony. (c) Arnold tongue representing the domain for 1:1 synchrony in the UCI network
in the two-dimensional gs − H plane, is shown in black (determined through stable fixed
point solutions to Eq. (9)) and shown in blue (computed through numerical simulations).
The synaptic parameters are τR = 0.1 ms, τD = 8 ms and ER = −55 mV, representing a slow
shunting synapse. (d) Arnold tongue for the UCI network interacting through a fast shunting
synapse with synaptic parameters τR = 0.1 ms, τD = 2 ms and ER = −55 mV
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Fig. 6.
(a) Arnold tongue for the UCI network with slow shunting synapse. (b) Arnold tongue for
the UCI network with fast shunting synapse. The red dotted circles in a-b represent points
that satisfy Eq. (11) corresponding to fixed point solution δ* = 0 for the discrete map in Eq.
(9). (c) The red circles represent values for the function S in Eq. (12), calculated at points
that represent the solution to Eq. (11) for the UCI network with fast shunting synapse
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Fig. 7.
The time lag δn between spike times of the two neurons in the UCI network coupled through
a fast shunting synapse (a) without synaptic delay and (b) with synaptic delay τs = 12 ms.
The small dotted circles correspond to the situation when the two neurons are not phase
locked in 1:1 synchrony representing the state of asynchronous oscillations between the two
neurons. The black bold circles correspond to the value of δn obtained numerically in the
region within the Arnold tongue when the two neurons are phase locked in 1:1 synchrony.
The red circles represent the solution to Eq. (10) corresponding to the stable fixed point's of
the discrete map in Eq. (9)
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Fig. 8.
(a) Feed-forward network of three heterogeneously firing interneurons coupled through a
slow shunting synapse in absence of any synaptic delay. (b) Feed-forward network of three
heterogeneously firing interneurons coupled through a slow shunting synapse with synaptic
delay . The membrane potential of neuron 0,1 and 2 is shown in colors black,
red and green respectively. The mean membrane potential is shown in blue trace. The

constant input current values are  μA/cm2,  μA/cm2,  μA/cm2.
The synaptic delay determined from the fixed point solution to the discrete map in Eq. (11)
are  ms and  ms. The synaptic parameters are: gs = 0.15 mS/cm2, τR = 0.1
ms, τD = 8 ms and ER = −55 mV
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