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Abstract
To identify neuropsychological and psychosocial factors predictive of amnestic Mild Cognitive
Impairment (aMCI) among a group of 94 nondemented older adults, we employed a novel
nonlinear multivariate classification statistical method called Optimal Data Analysis (ODA) in a
dataset collected annually for 3 years. Performance on measures of memory and visuomotor
processing speed or symptoms of depression in year 1 predicted aMCI status by year 2.
Performance on a measure of learning at year 1 predicted aMCI status at year 3. No other
measures significantly predicted incidence of aMCI at years 2 and 3. Results support the utility of
multiple neuropsychological and psychosocial measures in the diagnosis of aMCI, and the present
model may serve as a testable hypothesis for prospective investigations of the development of
aMCI.
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INTRODUCTION
Mild Cognitive Impairment (MCI) has garnered much attention in dementia research for its
implication as a prodromal stage of Alzheimer’s disease (AD) (see Morris, 2005). Since its
establishment as an amnestic syndrome in the presence of otherwise intact cognition and
ability to execute activities of daily living (Petersen et al., 1999), this well-studied condition
has been revised to address and incorporate single-domain and multiple-domain deficits in
cognitive abilities other than memory (Peterson & Morris, 2005). The revision therefore
yielded four possible MCI conditions: single-domain amnestic, multiple-domain amnestic,
single-domain nonamnestic, and multiple-domain nonamnestic. Research suggests that
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amnestic MCI (aMCI) patients convert to AD at a rate of 16–41% per year (Gauthier et al.,
2006) as opposed to a rate of 1–2% per year in the general population (Petersen et al., 2001).
Some propose research criteria for very early AD that rely on a core diagnostic criterion of
early episodic memory impairment, supportive features such as the presence of medial
temporal lobe atrophy or abnormal cerebrospinal fluid markers, and exclusionary criteria
like depression or sudden onset of symptoms (Dubois et al., 2007). Thus, the study of aMCI
and its relationship to cognitive decline remains an important focus of neuropsychological
inquiry.

We employed a novel nonlinear multivariate classification statistical method called Optimal
Data Analysis (ODA; Yarnold & Soltysik, 2005) with the aim of identifying factors in the
prediction of aMCI. Our prior work (Jak et al., 2009), as well as the work of others (see
Twamley et al., 2006, for a review), suggests that specific performances on standardized
clinical measures of memory, such as the Wechsler Memory Scale – Revised edition (WMS-
R) Logical Memory and the California Verbal Learning Test – Second edition (CVLT-II),
are highly predictive of aMCI status within a group of premorbidly nondemented older
adults.

METHOD
Participants and Materials

All human data included in this article were obtained in compliance with regulations of the
Internal Review Board of the University of California San Diego. Ninety-four participants
were recruited by advertisements through various media sources in and around San Diego,
CA (see Table 1). These participants were enrolled in a longitudinal aging study and had
been tracked for three years. All were asked to complete an annual battery of psychosocial
measures and neuropsychological tests. Participants were assessed for, and when appropriate
diagnosed with, aMCI according to criteria delineated in Jak et al (2009). The Jak et al.
(2009) method for assigning aMCI diagnoses is based on six variables (age-scaled scores of
LMI, LMII, VRI, VRII, and CVLT Trials 1–5 Total and CVLT Long Delay Free Recall
standard scores). If participants’ performances on at least two of the memory measures fell
one or more standard deviations below their age appropriate norms (i.e., single-domain
aMCI), or if participants met criteria for a deficit in one or more cognitive domains in
addition to single-domain aMCI (i.e., multiple-domain aMCI), the participants were
classified as aMCI. Also, the participants with a deficit in one or more cognitive domains in
the absence of memory problems (i.e., nonamnestic subtypes of MCI) were excluded from
the analysis. Otherwise, participants were classified as “no MCI.” At the initial wave of the
longitudinal study, no participant qualified for a diagnosis of aMCI or AD. At the time of
this investigation, 52 participants had completed the second wave, and 35 of these also had
completed the third wave.

The demographic information, genetic measures (apolipoprotein E genotype), psychosocial
measures, and neuropsychological tests that comprised the battery included: age, education,
gender, apolipoprotein E genotype, the Logical Memory (LM) subtest and the Visual
Reproduction (VR) subtest from the Wechsler Memory Scale–Revised edition (WMS-R),
the California Verbal Learning Test–Second edition (CVLT-II), the Dementia Rating Scale
(DRS), the Digit Span and Block Design subtests from the Wechsler Adult Intelligence
Scale–Revised edition (WAIS-R), Trials A and B, the Draw-A-Clock test, the Boston
Naming Test (BNT), Verbal Fluency, Category Fluency, Color-Word Interference, Tower
Test, Sorting Test, and Trail-Making Test from the Delis-Kaplan Executive Functions
System (D-KEFS), the 48-card version of the Wisconsin Card Sorting Test (WCST), the
American National Adult Reading Test (ANART), the Independent Living Scale (ILS), and
the Geriatric Depression Scale (GDS). In addition, the participants were asked to submit to a
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cheek buccal swabbing to determine their APOE allele genotype (see Saunders, Strittmatter,
& Schmechel, 1993). In the ODA statistical analyses, all of the above measures collected at
the first wave were used as the independent variables to predict the occurrence of aMCI at
the second wave. Furthermore, the measures assessed at the first and second waves were
examined to predict the occurrence of aMCI at the third wave. The dependent variable was
the diagnosis of aMCI at the second and third waves, respectively.

Analysis Strategy
Optimal Data Analysis (ODA) was used to explore whether there were any demographic
(including APOE genotype), psychosocial, or neuropsychological factors that predicted
diagnosis of aMCI in the second and third waves. The specific variables included in the
analysis are listed in the Appendix. ODA was performed by the Windows-based computer
analysis software (Yarnold & Soltysik, 2005). This nonlinear multivariate classification
method provides a hierarchical classification tree model in which cases are categorized into
each group of a dichotomous dependent variable (“aMCI” or “no MCI” in the current study)
by pathways branched by independent variables or “nodes.” An advantage of ODA is that
there are no necessary assumptions such as multivariate normality, additivity, equality of
group sizes, number of variables, or multicollinearity (see Yarnold, Soltysik, & Bennett,
1997, for details).

ODA refers to an independent variable as an attribute and a dependent variable as a class
variable (Soltysik & Yarnold, 1993; Yarnold & Soltysik, 2005). The class variable must be
categorical (either dichotomous or multicategorical), whereas attributes may have any scale
of measurement. ODA first sets the best categorical borderline for each attribute, called
cutpoint or decision rule, which classifies cases with the maximum percentage accuracy
(percentage accuracy in classification or PAC) into each category of a class variable. ODA
uses a special index, called effect strength for sensitivity (ESS), to indicate the percentage of
how many cases belonging to a group are correctly classified. In other words, higher ESS
indicates that an obtained cutpoint achieves higher PACs in classifying cases into each
category. Next, ODA employs a leave-one-out (LOO) validity approach to evaluate the
stability of classification performance. This entails repeatedly analyzing classification
performance and checking its consistency across subsamples every time one observation is
occasionally excluded. Finally, to evaluate the significance level of classification
performance, Fisher’s exact probability test is used.

An attribute that shows the highest ESS, LOO stability, and significant p-value is considered
the strongest attribute, which is entered as the top node of the hierarchical tree model
(Soltysik & Yarnold, 1993; Yarnold & Soltysik, 2005). Once the top attribute is selected, the
same procedure is performed again within a subsample classified by the top attribute.
Consequently, the model gradually builds a tree of several nodes branched out from the top
attribute. If there is no significant attribute, the classification performance is stopped. To
finalize the classification tree model, the significance levels of all attributes are retested by a
sequentially rejecting Sidak Bonferroni-type multiple comparisons procedure. The purposes
of this procedure are to control Type I error rate per comparison and maximize statistical
power. If any significance levels are beyond p-value per comparison, these attributes are
pruned from the model.

Lastly, it should be noted that, in spite of its unique approach being different from traditional
classification methods, the indices used by ODA are compatible with traditional
classification method indices, such as the goodness-of-fit index, effect size, and significance
level. Therefore, models produced by ODA may be tested according to these parameters.
For example, the goodness-of-fit index is comparable to overall classification accuracy, the
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effect sizes can be calculated by ESS or overall effect strength in ODA, and the significance
level is tested by Fisher’s exact probability test.

RESULTS
There were 8 participants categorized as aMCI (5 single-domain) at the second wave, and 5
categorized as aMCI at the third wave (2 single-domain). Three cases from the second wave
and one case from the third wave were dropped in accordance with the pairwise deletion
method, because these cases had missing data on measures that were significant in the model
(i.e., WMS-R LMII % retention, D-KEFS Trail-Making Number Sequencing scaled score,
Geriatric Depression Scale score, and WMS-R LMI MOANS age standard score). Figures
1a and 1b summarize the ODA hierarchical classification tree model of baseline data to
predict the occurrence of aMCI at the second wave of the longitudinal study. Forty-nine
participants entered into the model as the result of a pairwise deletion method, and overall
classification accuracy was 93.88% (p < .001) with an overall effect strength of 79.85%.
These values indicate that our model was strongly predictive (see Table 2; for the method to
evaluate effect strength, see Yarnold & Soltysik, 2005). Figure 1 depicts that the
classification tree model predicted the development of aMCI with 87.5% accuracy; the
participants were highly likely to develop aMCI at the second wave if their memory
retention rate on WMS-R LM Delayed Recall versus Immediate Recall was lower than or
equal to 78.5% at the first wave, and if they had a scaled score of less than or equal to 14.5
on D-KEFS Trail-Making Number Sequencing scale at the first wave. On the other hand, if
the participants scored higher than 78.5% of their memory retention rate on WMS-R LMII at
the first wave, aMCI was less likely to occur at the second wave with 94.74% accuracy. In
addition, even if the memory retention rate was lower than or equal to 78.5% on WMS-R
LMII at the first wave, a higher score than 14.5 on the D-KEFS Trail-Making Number
Sequencing scale at the first wave predicted the low likelihood of the occurrence of aMCI at
the second wave with 100% accuracy.

It was also found that the occurrence of aMCI at the second wave was predicted with the
same classification accuracy if the Geriatric Depression Scale (GDS) score was used as the
second predictor (see Figure 1b). In this case, the first attribute was still memory retention
rate on WMS-R LMII, such that a higher score than 78.5% of their memory retention rate
predicted a low likelihood of developing aMCI at the second wave with 94.74% accuracy.
On the other hand, if memory retention rate was lower than 78.5%, GDS alternatively
predicted the likelihood of developing aMCI in the following way: A participant was less
likely to develop aMCI at the second wave if their GDS score was less than or equal to 2.5;
otherwise, a participant was likely to develop aMCI at the second wave. Note that both
Figures 1a and 1b predicted the occurrence of aMCI with the same accuracy of classification
performance.

The predictors of the development of aMCI two years later were also examined by ODA.
The ODA hierarchical classification tree model for this prediction is more parsimonious
with greater classification accuracy than the first model (see Figure 1c). If participants had a
score lower than 8.5 as a Mayo’s Older American Normative Scales (MOANS) age standard
score on WMS-R LMI at the first wave, they were diagnosed as aMCI at the third wave;
otherwise, participants did not qualify for aMCI at the third wave. Note that both prediction
endpoints were predicted with 100.00% accuracy. In other words, the overall classification
accuracy was 100.00% (p < .001), and the overall effect strength was also 100.00%, which
means that the model perfectly predicted the occurrence of aMCI two years later (see Table
3).
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DISCUSSION
We employed a novel nonlinear multivariate classification statistical method called Optimal
Data Analysis to identify possible predictive factors of developing aMCI in a dataset of
neuropsychological and psychosocial measures collected annually for three years from 94
originally nondemented participants. With this method we found that story learning or
retention, visuomotor processing speed, and depression were predictive of aMCI one to two
years later. No other neuropsychological or psychosocial factors predicted development of
aMCI.

Two statistical classification methods have been widely utilized in the literature to conduct
exploratory classification analyses: logistic regression analysis (LRA) and discriminant
function analysis (DFA). However, these methods assume linearity, where the variability of
human behavior is forcefully fit into a mathematical approximation. Specifically, LRA
assumes a linear relationship between independent variables and the log odds of a dependent
variable, whereas DFA assumes linear combinations of independent variables (i.e.,
discriminant functions, see Agresti, 2007 and Stevens, 2002). However, the linearity
assumption presumes that all observed data should be the same in terms of (1) the set of
independent variables, (2) the direction of influence (i.e., positively or negatively
predictive), and (3) the coefficient values (or weight) of each independent variable (Yarnold,
Soltysik, & Bennett, 1997). If these characteristics are not present, the classification
accuracy level is constrained or biased (Soltysik & Yarnold, 1993; Yarnold & Soltysik,
2005). In addition to these assumptions, LRA and DFA assume (1) no gross outliers, (2) low
multicollinearity of independent variables, (3) the inclusion of independent variables that are
all conceptually relevant to a dependent variable, (4) equal and adequate group size, and (5)
normality (Agresti, 2007; Jaccard, 2001; Menard, 1995; Peduzzi, Concato, Kemper,
Holford, & Feinstein, 1996; Tabachnick & Fidell, 1989).

In contrast to the linear classification methods, a hierarchical classification tree analysis
(CTA) is a nonlinear approach (Yarnold & Soltysik, 2005; Yarnold, Soltysik, & Martin,
1994). The major methods of CTA include classification and regression tree models (e.g.,
CART; see Breiman, Friedman, Olshen, & Stone, 1984) and Optimal Data Analysis (ODA;
Soltysik & Yarnold, 1993; Yarnold & Soltysik, 2005). These nonlinear methods show some
advantages over the linear methods, especially for exploratory analyses. First, CTA
theoretically provides a better classification accuracy level than the linear methods, because
CTA constructs a hierarchical tree model in which a different set of independent variables
with different directions and/or weights are suggested across different partitions of a given
sample (i.e., no requirement of forcefully fitting variance into a mathematical estimation).
This also means that CTA (1) is less sensitive to gross outliers and (2) detects an interaction
effect automatically, without having to create a cross-product variable, which occur in linear
classification methods (Bremner & Taplin, 2002; Fox, 2000; Sonquist & Morgan, 1964).

Furthermore, CTA repeatedly analyzes the overall effect size of each independent variable
and enters only the best variable(s) into a model (Breiman et al., 1984; Soltysik & Yarnold,
1993; Yarnold & Soltysik, 2005), whereas the linear methods compute the partial effect size
of each predictor simultaneously to fit all predictors into an overall model. CTA’s unique
approach enables (1) selection of a set of independent variables that are all statistically
relevant, (2) the ability to ignore a multicollinearity of independent variables, (3)
minimization of a loss of observed data by using a pairwise deletion method (rather than a
listwise deletion method), and (4) examination of as many independent variables as needed.

Finally, group size is an issue for LRA and DFA because unequal group size can diminish
statistical power. In contrast, regardless of group size, CTA maximizes statistical power by
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using cross-validation (for CART; Breiman et al., 1984) or a sequentially rejective Sidak
Bonferroni-type multiple comparisons procedure (for ODA; Soltysik & Yarnold, 1993;
Yarnold & Soltysik, 2005). These procedures determine the size of a CTA model. Thus,
CTA does not necessarily assume equality or adequacy of group size to maximize statistical
power.

Therefore, CTA (e.g., CART and ODA) is conceptually advantageous over LRA and DFA.
But, what is the difference between CART and ODA? CART relies on the least squares and
maximum likelihood estimation to evaluate “impurity,” an index that indicates the
heterogeneity of given categories (e.g., the Gini index, the towing index, the deviance of
nodes; see Breiman et al., 1984; Clark & Pregibon, 1992; Bremner & Taplin, 2002), whereas
ODA employs percentage accuracy in classification (PAC) and Fisher’s exact probability
test. In other words, CART uses parametric tests as classification criteria for a given sample
(i.e., the normality and linearity are assumed within a category). However, ODA does not
require the assumptions of normality and linearity. Thus, Yarnold et al. (1997) believe that
the nonlinear methods using the least squares/maximum likelihood (e.g., CART) “fail to
maximize classification accuracy explicitly for the training sample” (p. 1452), compared to
ODA, if the assumptions of normality and linearity are seriously violated within a training
sample.

Previous studies revealed that ODA yielded better classification performance accuracy on
predicting cardiac death (Yarnold, Soltysik, & Martin, 1994) and mortality of patients with
cardiopulmonary resuscitation (Yarnold, Soltysik, Lefevre, & Martin, 1998) than LRA. For
these and the reasons detailed above, ODA was selected in the present study to achieve our
goal – exploring neuropsychological and other predictors of aMCI.

Our findings suggest that lower, and not necessarily impaired, performances on measures of
story learning and memory, visuomotor processing speed, and depressive symptoms are
predictive of subsequent memory decline in a normal population. These findings, at first
glance, appear to be in accord with prior studies that have reported the utility of either
delayed recall (Albert, Moss, Tanzi, & Jones, 2001; Arnaiz & Almkvist, 2003; Bäckman et
al., 2005; Twamley et al., 2006) or learning measures (Grober & Kawas, 1997; Rabin et al.,
2009) in providing strong diagnostic sensitivity for aMCI. However, it is important to note
that the results showed that relatively lower scores on either WMS-R LM Delayed Recall,
D-KEFS Trail-Making Number Sequencing scale, or Geriatric Depression Scale alone did
not provide good predictive value of the occurrence of aMCI at follow-up visits, whereas the
predictive power improved significantly when Delayed Recall and either D-KEFS Trail-
Making Number Sequencing or depression scores were taken into account. Our model
suggests that consideration of additional cognitive features beyond memory buttresses the
prediction of progression to aMCI.

Studies of aMCI have relied almost exclusively on delayed recall or retention measures in
rendering the diagnosis (Arnaiz & Almkvist, 2003). Our findings, however, suggest that the
diagnosis of aMCI may be aided by the incorporation of other cognitive and psychosocial
functioning measurement strategies. A number of studies have specifically shown the
sensitivity of Trail-Making test procedures (Chen et al., 2001), as well as depressive features
(Teng, Lu, & Cummings, 2007) in the years preceding a diagnosis of Alzheimer’s disease.
As Jak and colleagues (2009) have pointed out, the use of comprehensive
neuropsychological assessment when diagnosing MCI subtypes will help to improve the
stability and reliability of diagnosis, as will the use of multiple measurements within a
cognitive domain, such as episodic memory. These results may suggest that the conventional
practice of relying solely on the use of a delayed recall or retention measure, or rating scale
summaries of a single delayed recall measure, may lead to more false positive errors (i.e.,
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misdiagnosing healthy individuals as aMCI; Saxton et al., 2009) than using a procedure
based on multiple measures.

Of particular note is the fact that apolipoprotein E (APOE) genotype and gender were not
predictive of aMCI in our sample. The APOE genotype, more specifically possession of the
epsilon 4 allele, has been associated with earlier age of onset of Alzheimer’s disease (Corder
et al., 1993) and with impairments in aMCI (Ramakers et al., 2008). However, it was not
identified as a significant predictive factor in our model. Our results suggest that
neurocognitive and possibly psychological factors may be more predictive of aMCI than the
APOE genotype. In regard to gender, some studies have identified a gender difference in
MCI incidence (e.g., Das et al., 2007), although others have not (e.g., Panza et al., 2005).
Our results suggest gender is not a factor in the incidence of aMCI, at least when
considering neurocognitive and psychosocial factors, supporting the refutation of gender as
a risk factor for aMCI.

Limitations of the present study include potential sources of sampling error, such as
demographic factors that may be not be generalizable to the population as a whole. Our
study group’s age range was particularly circumscribed (mean = 77.23, SD = 7.30), and our
group had a relatively high level of education (mean = 15.87, SD =2.49). Our
neuropsychological and psychosocial variables were also limited to the battery incorporated
for our longitudinal study and may not have addressed factors that could have had an impact
on development of aMCI (e.g., neurovascular factors). It is also unknown how many of our
aMCI-diagnosed participants will progress to AD. The size of our study sample was not a
limitation because ODA as a statistical approach is not limited by traditional sample size
power considerations. A final limitation is that our results may be viewed as “circular” given
that we examined performances on the same memory measures utilized one or two years
later in the diagnosis of aMCI. We do not regard this possibility as reflecting criterion
contamination given that we investigated performances on memory measures that were not
used in the diagnosis of aMCI at the time that aMCI was diagnosed. In other words, even
though the same tests of memory may have been used in the diagnosis of aMCI, the actual
test score performances entered into our predictive model were from a different time than
diagnosis (i.e., one or two years prior to diagnosis). In addition, the Jak et al. (2009) method
for assigning aMCI diagnoses were based on six variables (age-scaled scores of LMI, LMII,
VRI, VRII, and CVLT Trials 1–5 Total and CVLT Long Delay Free Recall standard scores),
whereas our predictive models considered a total of 26 memory variables (see Appendix),
six of which overlapped with the assignment method of Jak et al. (2009), although, again,
the use of these six test score performances antedated the diagnosis of aMCI – which was
based on different test scores from these same tests – by one to two years. As a final remedy
to inspect for the possibility of criterion contamination, we again performed ODA analyses
excluding those six memory measures used in the Jak et al. (2009) aMCI classification
method. The resulting model trees were identical.

In conclusion, our results have interesting implications for models of the aMCI construct
and provide some comparative value to the various definitional schemes recently proposed
(see Petersen & Morris, 2005; Dubois et al. 2007, Jak et al. 2009). Some of the advantages
of ODA as a statistical approach are that it yields specific cutpoints and a decision tree
model that can be cross-validated and empirically tested in future prospective studies. Future
research is needed to investigate whether these performance cutpoints in this age range are
indeed predictors of aMCI and ultimately of progression to dementia.
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APPENDIX
List of attributes analyzed by ODA

1. age as of test date

2. gender

3. handedness

4. examiner

5. education (yrs)

6. ethnicity
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7. subject referral

8. ANART VIQ

9. ANART errors

10. WAIS-R digit span forward

11. WAIS-R digit span backwards

12. WAIS-R digit span scaled score

13. WAIS-R digit span MOANS

14. WISC-R block design raw

15. WISC-R block design T score

16. WISC-R block design broken configuration

17. WISC-R block design over time

18. DRS total

19. DRS total T score

20. DRS attention

21. DRS attention T score

22. DRS initiation/perseveration

23. DRS initiation/perseveration T score

24. DRS supermarket items

25. DRS supermarket items T score

26. DRS construction

27. DRS construction T score

28. DRS conceptualization

29. DRS conceptualization T score

30. DRS memory

31. DRS memory T score

32. ADRC form (1 or 2)

33. Boston Naming Test total correct

34. Boston Naming Test total correct T score

35. Boston Naming Test total correct MOANS scaled score

36. BNT spontaneous correct (total)

37. BNT stimulus cues given (total)

38. BNT stimulus cues correct (total)

39. BNT phonemic cues given (total)

40. BNT phonemic cues correct (total)

41. WCST-48 number of categories
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42. WCST-48 categories T score

43. WCST-48 nonperseverative errors

44. WCST-48 nonperseverative errors T score

45. WCST-48 perseverative errors

46. WCST-48 perseverative errors T score

47. WCST-48 set losses

48. WCST-48 total errors

49. Trails A

50. Trails A T score

51. Trails A MOANS

52. Trails A no. of errors

53. Trails B

54. Trails B T score

55. Trails B MOANS

56. Trails B no. of errors

57. draw a clock command

58. draw a clock copy

59. verbal fluency version (standard/alternate)

60. letter fluency (f)

61. letter fluency (a)

62. letter fluency (s)

63. letter fluency total raw

64. D-KEFS verbal fluency scaled score

65. letter fluency total T score

66. category fluency (animals) raw

67. D-KEFS category fluency scaled score

68. category fluency (animals) T score

69. D-KEFS color-word interference inhibition scaled score

70. D-KEFS color-word interference inhibition/switch scaled score

71. D-KEFS tower total achievement scaled score

72. D-KEFS sorting test confirmed correct sorts scaled score

73. D-KEFS sorting test sort recognition description scaled score

74. D-KEFS trail-making visual scanning scaled score

75. D-KEFS trail-making number sequencing scaled score

76. D-KEFS trail-making letter sequencing scaled score
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77. D-KEFS trail-making number-letter switch scaled score

78. D-KEFS trail-making motor sequencing scaled score

79. WMS-R LMI

80. WMS-R LMI age scaled score

81. WMS-R LMI MOANS age scaled score

82. WMS-R LMII

83. WMS-R LMII age scaled score

84. WMS-R LMII MOANS age scaled score

85. WMS-R LMII % retention

86. WMS-R LMII % retention MOANS age scaled score

87. WMS-R LM recognition %

88. WMS-R LM recognition discrimination percentage

89. WMS-R LM response bias

90. WMS-R VRI

91. WMS-R VRI age scaled score

92. WMS-R VRI MOANS age scaled score

93. WMS-R VRII

94. WMS-R VRII age scaled score

95. WMS-R VRII MOANS age scaled score

96. WMS VRII % retention

97. WMS VRII % retention MOANS age scaled score

98. WMS VRII recognition

99. WMS-R VR recognition discrimination percentage

100.WMS-R VR response bias

101.ILS managing money raw

102.ILS managing money T score

103.ILS managing money problem-solving

104.ILS managing money information

105.ILS health and safety raw

106.ILS health and safety T score

107.ILS health and safety problem-solving

108.ILS health and safety information

109.Geriatric Depression Scale score

110.Geriatric Depression Scale rating

111.CVLT-II
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112.CVLT-II list A trials 1–5 total T score

113.CVLT-II long delay free recall T score

114.Overall Abilities

115.Overall Attention

116.Overall Language

117.Overall Visuospatial Skills

118.Overall Executive Functions

119.Overall Memory

120.Overall Living Skills

121.APOE epsilon 4 positive

Note. All attributes listed above were collected at the first wave and the second wave, and
each attribute at each wave was individually analyzed by ODA. Class variables were the
diagnosis of aMCI at the second wave or the third wave.
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Fig. 1.
Fig. 1a – 1c. (a) The Optimal Data Analysis (ODA) Hierarchical Tree Model 1 for
predicting no MCI versus aMCI one year later based on neuropsychological and
psychosocial variables (N = 49); (b) Classification performance summary of Optimal Data
Analysis prediction of aMCI one year later (N = 49); (c) Classification performance
summary of Optimal Data Analysis prediction of aMCI two years later (N = 34).
Note. Ellipses represent nodes, arrow lines represent branches, and rectangles represent
prediction endpoints. Numbers under each ellipse (node) indicate Fisher’s exact p value for
each node. Numbers next to arrows indicate the cutpoint for classifying cases into the
categories (No MCI or aMCI) for each node. Finally, fractions and percentages below each
prediction endpoint indicate the absolute number or percentage of the cases correctly
classified.
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Table 1

Demographic data for participants

Demographic information Mean Standard Deviation

N 94

Age 77.23 7.303

Gender (M/F) 39/51

Education 15.87 2.487

ANART VIQ 119.50 5.780

DRS Total 139.30 4.268

APOE (E4/Non-E4/Unknown) 24/60/10
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Table 2

Classification performance summary of Optimal Data Analysis prediction of MCI one year later (N = 49)

Performance Index Performance Parameter

Overall classification accuracy 46/49 (93.88%)

Sensitivity (No MCI) 39/41 (95.12%)

Sensitivity (aMCI) 7/8 (87.50%)

Effect strength for sensitivity 82.62%

Predictive value (No MCI) 39/40 (97.50%)

Predictive value (aMCI) 7/9 (77.78%)

Effect strength for predictive value 75.28%

Effect strength overall 78.95%

Cross-Classification Table (p < .001)

Respondents’ Actual Status Respondents’ Predicted Status

No MCI aMCI

No MCI 39 2

aMCI 1 7

Note. This classification performance was exactly replicated, regardless of whether the second attribute was (1) D-KEFS Trail-Making Number
Sequencing scaled score or (2) Geriatric Depression Scale score. Overall classification accuracy is the percentage of the cases classified correctly.
Sensitivity is the percentage of how many cases were correctly classified among cases that actually belong to a given category. Predictive value is
the percentage of how many cases were correctly classified among cases that were predicted as a given category. Higher percentage indicates
greater classification performance. Effect strength overall is the mean of effect strength for sensitivity and effect strength for predictive value.
According to Yarnold & Soltysik (2005), the effect strength is strong (75% < ES < 90%).
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Table 3

Classification performance summary of Optimal Data Analysis prediction of MCI one year later (N = 34)

Performance Index Performance Parameter

Overall classification accuracy 34/34 (100.00%)

Sensitivity (No MCI) 29/29 (100.00%)

Sensitivity (aMCI) 5/5 (100.00%)

Effect strength for sensitivity 100.00%

Predictive value (No MCI) 29/29 (100.00%)

Predictive value (aMCI) 5/5 (100.00%)

Effect strength for predictive value 100.00%

Effect strength overall 100.00%

Cross-Classification Table (p < .001)

Respondents’ Actual Status Respondents’ Predicted Status

No MCI aMCI

No MCI 29 0

aMCI 0 5

Note. Overall classification accuracy is the percentage of the cases classified correctly. Sensitivity is the percentage of how many cases were
correctly classified among cases that actually belong to a given category. Predictive value is the percentage of how many cases were correctly
classified among cases that were predicted as a given category. Higher percentage indicates greater classification performance. Effect strength
overall is the mean of effect strength for sensitivity and effect strength for predictive value. According to Yarnold & Soltysik (2005), the effect
strength is very strong (95% < ES).
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