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Abstract
The present work examines the role of the complex geometry of the human vestibular
membranous labyrinth in the process of angular motion transduction by the semicircular canals. A
morphologically descriptive mathematical model was constructed to address the biomechanical
origins of temporal signal processing and directional coding in determining the inputs to the brain.
The geometrical model was developed based on shrinkage-corrected temporal bone sections using
a segmentation/data-fitting procedure. Endolymph fluid dynamics within the 3-canal labyrinth was
modeled using an asymptotic form of the Navier–Stokes equations and solved to estimate
endolymph and cupulae volume displacements. The geometrical model was manipulated to study
the role of major morphological features on directional and temporal coding. Anatomical results
show that the bony osseous canals provide reasonable estimates of the orientation of the delicate
membranous canals—the two differed by only 3.48 ± 1.89°. Biomechanical results show that the
maximal response directions are distinct from the anatomical canal planes, but can be closely
approximated by fitting a flat plane to the centerline of the canal of interest and weighting each
location along the centerline with the inverse of the cross-sectional area squared. Vector cross-
products of these maximal response directions, in turn, determine the null planes and prime
directions that transmit the direction of angular motion to the brain as three independent
directional channels associated with the nerve bundles. Finally, parameter studies indicate that
changes in canal cross-sectional area and shape only moderately affect canal temporal and
directional coding, while three-canal orientation is critical to directional coding.
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INTRODUCTION
The semicircular canals are frequently depicted as a mutually orthogonal collection of
communicating tubes that respond maximally to angular accelerations in the plane of each
canal. In this idealized view, one canal experiences peak excitation when rotated in its
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anatomical canal plane while its sister canals are oriented near their null planes and enter a
quiescent state. Consequently, any three-dimensional (3D) head rotation has traditionally
been viewed as being decomposed into vector components according to a coordinate system
defined identically by anatomical and maximal response planes. This canal-based coordinate
system would naturally extend to the central nervous system (CNS) to serve as one of the
representations of angular head movement used by the brain to encode and reconstruct
movement in 3D space.7,16,38 In fact, empirical evidence suggests that primary afferent
responses of individual end organ nerves are segregated centrally where they become
integrated with other sensory inputs for the coordination of vestibular reflexes.22,29,45

However, the details of canal directional coding are less clear, in part because anatomical
canal planes are rarely orthogonal.3,4,5,10,14,18,19 Furthermore, studies investigating the
directional sensitivities of the vestibular periphery have concluded that canal afferents
respond maximally to rotations in planes that are distinct from anatomical canal planes, with
maximal response planes deviating from anatomical planes by an average 7° in cats,17 6° in
rhesus monkeys,21,37 and 26–56° in the pigeon AC.16 From these data, one might infer that
the brain processes 3D rotational information in terms of maximal response directions.
However, rotations about the maximal response direction of one canal generally do not
silence the sister canals and therefore, the unit vectors along the maximal response
directions are not the “eigenvectors” of the labyrinth or the natural coordinates of the
system.

An alternate coordinate frame consists of three non-orthogonal vectors, or prime directions,
that represent the axes of rotation that elicit afferent responses in only one canal.31 The
existence of these directions follows deductively from directional responses of semicircular
canal afferents observed experimentally, 16,17,37 and can also be shown using a
mathematical model that predicts canal responses based on the fluid mechanics of the 3-
canal labyrinth.31 The fact that the prime directions differ, at least to some extent, from the
maximal response directions has interesting implications regarding coordinate system
transformations carried out by the brain to convert sensory signals to the appropriate
coordinates of motor outputs required for the vestibulo-ocular reflex (VOR) and
musculoskeletal control systems. Of course, direct experiments to investigate directional
coding of the afferent nerve bundles are not currently possible in humans and accordingly
the precise orientation of the maximal response directions or prime directions is not yet
known. However, since these features are determined by biomechanics it is possible to
estimate the directions directly by utilizing the 3-D anatomy of the semicircular canals. This
is one goal of the present study. To accomplish this it is necessary to first obtain a
geometrical model of the human membranous labyrinth.

A significant fraction of the literature quantifying semicircular canal gross anatomy in
humans is restricted to otic capsule anatomy, mainly because the bony regions of the
vestibular system are accessible using a variety of imaging modalities.1,26,27 Conversely, the
delicate membranous inner ear structures have been imaged in several species, but resolving
them in humans with current technology is challenging.44,48 The most detailed human
membranous labyrinth studies to date have employed histological techniques. These
investigations typically consisted of canal plane calculations, endolymph volume estimates,
or discrete measures of canal cross-sectional areas or sensory epithelia dimensions.11,12,23,25

Although valuable, none of the previous studies provided a sufficient quantitative
description of semicircular canal membranous labyrinth geometry to formulate an accurate
3D biomechanical model. Therefore, as part of the present work, we developed a method to
extract cross-sectional area/shape and planar information from the membranous and bony
labyrinths through detailed segmenting of histological sections and parameterization of the
membranous labyrinth geometry. The 3D membranous labyrinth reconstruction obtained in
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this way was subsequently used to predict endolymph flow and cupula deflection in each
semicircular canals in response to a variety of prescribed head rotations.

An additional goal of the work was to characterize the temporal processing features of the
human labyrinth system. Since Steinhausen’s groundbreaking work41 semicircular canal
dynamics have been described by the second-order differential equation for the overdamped
torsion pendulum.20,28,42,46,47,49 In these models, a single canal is represented as a perfectly
rigid toroid of uniform cross-section and the time course of the cupula is governed by two
time constants. The elastic or long time constant has been estimated from the human canal
morphology to be ~10 s.28,47 The simple second-order models also predict a short time
constant of approximately 3 ms (upper corner frequency). The weakness of the one canal
approach is that it does not account for fluid communication between canals and is unable to
describe the role of the semicircular canal geometry in responses to complex 3-D head
movements. The present work reports a new 3-D reconstruction of the human membranous
labyrinth and applies the mathematical approach of Damiano and Rabbitt14 and Rabbitt31 to
make new predictions for the temporal response dynamics and directional sensitivity of the
human semicircular canals. Histological results provide predictions of anatomical canal
planes while biomechanical model results provide estimates of maximal response planes,
prime directions, the dynamic responses of each cupula during rotations in arbitrary
directions, and the prime coordinate system in which 3D angular accelerations may be
transmitted to the human brain.

METHODS
Surface Reconstruction of the Vestibular Labyrinth

We obtained histological slides from the right temporal bones of a 67-year old female and a
43-year old male with no ear pathology or gross anatomical irregularity (Johns Hopkins
Temporal Bone Collection, Dept. of Otolaryngology—Head and Neck Surgery). The
temporal bones had been fixed in 10% formalin, decalcified with formol nitric acid,
neutralized in 5% sodium sulfate solution, dehydrated with graded concentrations of ethanol,
and embedded in celloidin. Sections were sliced in the approximate AC plane at 24 μm.
Each tenth section had been stained. The stained sections were scanned to obtain digitized
slices with a 12.6 microns/pixel in-plane resolution. Global registration was initially
achieved using the tissue block periphery. Inter-slice micro-registration was performed
manually to minimize jump discontinuities in canal centerlines over the 2–3 canals
appearing in previous and subsequent sections. We identified the membranous labyrinth in
each section, traced the endolymph-wetted surface, and stacked the outlines to form a wire-
frame reconstruction of the endolymphatic space. Figure 1 shows sample temporal bone
slices with the membranous labyrinth segmented as a series of closed contours (solid black
curves: a, canals; b, utricular vestibule). The wire-frame (Fig. 1c) shows the complete set of
segmented contours for one labyrinth. To reconstruct a parameterized model from the
segmented contours, the membranous labyrinth was subdivided into five anatomical
segments: horizontal canal (HC), anterior canal (AC), posterior canal (PC), common crus
(CC) and utricle (U). For each segment, curved centerlines were calculated from the traced
contours. This was done by computing the centroid of each traced contour, lacing the
centroids together, and smoothing the resulting 3D space-curve with a cubic spline
algorithm (Igor Pro, WaveMetrics). The centerlines for the HC, AC, PC, CC and U were
connected at the natural bifurcation points to form a series of continuous closed curves as
illustrated in Fig. 2. These curves defined the local tangent direction of endolymph fluid
displacement along the membranous labyrinth lumen. Center points were calculated at even
intervals along each centerline.
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The curved centerlines were used to compute the local tangent (t), normal (n1) and binormal
(n2) unit vectors illustrated in Fig. 3; the tangent vector was calculated directly from the
centerline, the normal vector was the second derivative of the tangent and the binormal
vector was the result of the cross product of the preceding two vectors. The tangent, normal
and binormal vectors of each center point defined basis vectors of a local coordinate system
that was used for curve fitting of a series of elliptical tubes to the membranous labyrinth
surface. For this, a local subset of data points was selected by cutting a ~500-μm thick slice
perpendicular to the tangent vector. The selected surface data were projected into the
normal-binormal plane (e.g. subtracting d1 and d2 in Fig. 3) and a closed contour was fitted
to the projected data using least squares. The choice of the best contour shape to represent
the canal cross-section was determined by fitting a Fourier series, an ellipse and a circle to

the projected data. A 10-term Fourier series, , was applied to
obtain the best-fit parameters rn (n = 0…) and φn to describe the canal cross-sectional
contour. When N = 1, the formula simplifies to the equation of an ellipse with semimajor (a)
and semiminor (b) axes defined as a = 2(r0 + r1) and b = 2(r0 − r1). Sample raw data,
projected data, and elliptical (black curve) and 10-term Fourier series (gray curve) fits are

shown in Fig. 4 to illustrate the technique. The cross-sectional area, , was
evaluated for the circular area, elliptical area, and 10-term Fourier area. In one region we did
not have a sufficient number of points to fit the shape (e.g. lateral-most portion of the HC).
In this case, a cross-sectional ellipse was estimated by interpolating between adjacent cross-
sections where the data were adequate.

As quantified in the Results, the cross-sectional shape was well approximated by an ellipse.
This allowed us to reconstruct the labyrinth based on the local major axis, minor axis, and
orientation of the membranous duct cross-sectional area as functions of centerline position
along each segment of the labyrinth. The result was a parameterized reconstruction
consisting of a series of ellipses from which duct crosssectional areas and eccentricities are
readily calculable. Since the methods also generated higher Fourier coefficients at each
cross-section, a more accurate and bumpier surface could be rendered, but such visual detail
was not needed to meet the aims of the present study.

Since the reconstruction was based on histological sections, additional steps were necessary
to approximate the location of the 3D membranous labyrinth in the head. Several previous
studies have quantified the spatial relationships of the semicircular canals as defined by the
bony labyrinth.5,9,40,43 Della Santina et al.15 used reconstructions of multiplanar CT scans
to determine the 3-D planar equations for the bony canals and the distance of each canal
center from Reid’s stereotactic reference planes. We used these published data for the bony
canals to orient our delicate membranous labyrinth within the head. For this, we first
reconstructed the bony labyrinth, using the same approach with histological sections as used
for the membranous labyrinth. Once the reconstruction was complete, the bony canal plane
locations were determined by fitting flat planes to the centerlines by least squares. We then
registered our bony labyrinth reconstructions with the Della Santina et al. CT population
average results. The membranous labyrinths were moved along in the process, translated and
rotated along with the bony labyrinth. Since the planar relationships of the specific bony
labyrinths used here differed slightly from the average findings of Della Santina et al., the
final registration with respect to Reid’s planes was not exact, but was within the range
expected given intersubject variability. The final surface reconstruction described six
membranous duct segments (n = HC, AC, PC, CC, UA (utricle, anterior) and UP (utricle,
posterior)) with a series of ellipses centered along curved centerlines, sn. With the
morphological boundaries of the labyrinth clearly defined, we were able to characterize
endolymph and cupula responses to angular accelerations with the modeling approach
developed by Rabbitt,31 with equations summarized in modified form in the Appendix.
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3-Canal Mathematical Model
Models of the vestibular semicircular canals have traditionally been based on analysis of
toroidal ducts of constant cross-sectional area.20,42,46,47, More thorough modeling
approaches have been developed by Oman,30 Damiano and Rabbitt14 and Rabbitt31 using
non-uniform canal geometries or considering the fluid communication between multiple
canals and should be consulted as the foundations of the present work. Briefly, the present
model considers the membranous labyrinth as a rigid structure filled with endolymph and
fixed firmly to the temporal bone. During head rotations, the labyrinth moves with the skull
as endolymph lags behind and the fluid motions relative to the duct wall are directly
transmitted to the cupula. We assumed that endolymph is a viscous incompressible fluid
undergoing unsteady flow. Motion of fluid exhibiting these properties is described by the
Navier– Stokes equations. Oman et al.30 and Damiano and Rabbitt14 derived an
approximate solution to these equations for endolymph flow in a single toroidal canal loop.
This approach was extended to the 3-canal system by separating the labyrinth into six short
segments corresponding to the HC, AC, PC, CC, UA and UP, each of which are represented
by a second-order differential equation relating head acceleration to endolymph volume
displacement, a pressure gradient, and the physical properties of the endolymph. The
equations were linked together by pressure continuity and conservation of fluid volume at
each of the bifurcation points. The cupula was modeled as a biphasic material consisting of a
fluid and solid phase. A thorough description of the mathematical model, including all
equations and numerical values for physical constants, is presented in the Appendix.

RESULTS
The segmentation/data-fitting process detailed above was applied to generate two
membranous labyrinth surface reconstructions for input into the biomechanical model.
Figure 2 shows raw segmentations of the two labyrinths and Fig. 5 illustrates one
reconstruction oriented in a model of the head. The dimensions of the labyrinth were
determined directly from the parameterized tubes comprising the reconstructions. The cross-
sectional area was parameterized using a 10-term Fourier series, but from a practical point of
view the shape was well approximated by an ellipse. Fitting the cross-sectional data with
ellipses resulted in an enclosed cross-sectional area that differed from the 10-term Fourier
area by an average of 0.2% (S.D. 0.3; Max. 0.9, Min. 0.001). Fitting cross-sectional data
with circles resulted in an average error of 2.9% (S.D. 1.4; Max. 5.3; Min. 0.5). Therefore,
the elliptical and circular approximations provided very good quantitative estimates of cross-
sectional area. The area functions of the membranous ducts, showing cross-sectional areas
as functions of the position, are presented in Fig. 6 for both labyrinths (not corrected for
fixation shrinkage). Results for each membranous duct are shown around the complete loop,
extending from the crista, along the canal, along the crus and/or utricle, and returning to the
crista. Also displayed are the areas of the bony canals, which are an order of magnitude
larger than those of the membranous canals.

To validate that the area values calculated from surface reconstructions were typical,
comparable labyrinth dimensions reported in previous anatomical studies are reproduced in
the figure.11,12,23 In the most extensive previous study, Curthoys et al. reported the areas of
the horizontal membranous duct (shown as asterisks in Fig. 6) at the cupula, the ampulla-
canal duct junction, the canal duct, the canal duct–utricle junction and the widest region of
the utricle.11 Measurements of the posterior canals made by Igarashi (solid circle, Fig. 6)
and the bony and membranous regions of the anterior and posterior canals by Curthoys et al.
(solid square, Fig. 6) are also shown.12,23 Area values calculated from our reconstructions
are in reasonable agreement with these previous reports, at least at the limited number of
locations previously reported. Canal eccentricities were also calculated from the ellipses as
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. For labyrinth 1, average eccentricities (mean ± SD) of the PC, AC and HC
were 0.74 ± 0.15, 0.76 ± 0.15, and 0.78 ± 0.10, respectively. The eccentricities for labyrinth
2 were comparable to labyrinth 1, with values of 0.72 ± 0.15, 0.72 ± 0.14 and 0.73 ± 0.14,
respectively. These eccentricities increase the viscous drag by approximately 1.4 relative to
the a circular tube of identical cross-sectional area (see λ, Appendix).

In any histology-derived representation of anatomical structures, tissue shrinkage, induced
by fixation, is a challenge. In some previous reports these artifacts were corrected for by
calculating a shrinkage factor determined from pre-fixation measurements of fresh tissue.
While Curthoys et al. reported that shrinkage of the human membranous labyrinth was
negligible, with no statistical significance between the dimensions of processed and fresh
material,12 other studies estimated circumferential tissue shrinkage ranging from 9 to 10%.
24,39 Ghanem et al.19 emphasized that shrinkage was not uniform in their studies, but varied
from one region of the labyrinth to another. The labyrinth surface reconstructions presented
in this report were derived from histological sections that undoubtedly underwent
comparable shrinkage, and since labyrinth morphology is a key parameter in the present
model, it was considered worthwhile to determine the degree to which changes in the cross-
section of the canals affect the predictions of the model and, presumably, the biomechanical
properties of the labyrinth. In order to quantify to what extent shrinkage of the labyrinth
alters the biomechanics, simulations were carried out on the geometries after they had been
processed in one of three ways. Group A reconstructions were those in which it was
assumed that no shrinkage had occurred, and therefore the reconstructions were left
unchanged.12 Group B reconstructions were resized to account for an estimated 9.2%
uniform cross-sectional area shrinkage of the original tissue.24 Group C reconstructions
were adjusted to correct for non-uniform shrinkage of the cross-sectional area of the
labyrinth, ranging from an estimated 4% shrinkage of the HC, 16% of the AC (and
presumably the PC), 13% of each ampulla, and 33% for the utricle.19 The size adjustments
were made by independently resizing each ellipse by the appropriate shrinkage factor—an
adjustment that is far more significant than the same scale change in the length of individual
duct segments. The responses of the HC cupula during sinusoidal head movements in the
HC canal plane are shown as Bode plots in Fig. 7.

To provide context to interpret the Bode plots and the relative importance of canal
mechanics, semicircular canal afferent responses to sinusoidal rotations are also shown in
Fig. 7 for 4 species (symbols). Afferent modulation is shown in the form of Gain: spikes/
second modulation per degree/second of sinusoidal angular head velocity, and phase: peak
discharge relative to peak angular velocity stimulus. Solid symbols show responses of mid-
band “velocity coding” afferents—units that are have regular spontaneous discharge
characteristics in mammals. These afferent units have frequency dependent gain and phase
that look similar to the mechanical input. In contrast, open symbols show responses of high-
gain/acceleration coding afferents, units that have irregular spontaneous discharging
characteristics in mammals. It is clear that only a subset of semicircular canal afferents
directly reflect the mechanical volume displacement input and, even among these, there are
quite large inter-afferent changes in sensitivity (gain) between units. The broad inter-afferent
diversity is believed to arise primarily from hair-cell/afferent adaptation operators that are
superimposed on top of the mechanical signal processing.32

The diverse afferent responses provide context to interpret the relatively small changes in
gain and phase arising from changes in cross-sectional areas and shape of the ducts. This is
exemplified by the biomechanical curves in Fig. 7 giving results for the three different
shrinkage corrections. For uniform increases in duct diameter (Group B, Fig. 7), the gain
increases and the bandwidth expands slightly relative to the control Group A case. This is in
accordance with the predictions of several single canal models that have been reported
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previously.13,14,30 A more complex alteration of duct size (Group C, Fig. 7), in which the
canals, the utricle, and the ampullae were resized with different shrinkage factors, similarly
resulted in predictions of an increase in gain and bandwidth. However, the differences were
relatively small, and given the ability of animals to adapt centrally it is unlikely that these
differences would have any physiological implication. These findings indicate that size
distortions of the reconstructions due to shrinkage of the original tissue have only a
relatively small effect on the predictions in the model, and therefore, all subsequent
calculations reported here were for Group A geometries. The consequences of shrinkage on
the predictions of labyrinth directional sensitivities are addressed below.

In many previous studies of semicircular canal geometry, it was assumed that the bony and
membranous canals planes were identical and therefore, points selected along the
circumference of the bony canals were assumed to provide an accurate measure of the
membranous planes.3 One objective of the present study was to determine how well bony
and membranous canal planes correspond, and therefore, whether bony canal measures
derived from medical imaging could be used to adequately define the membranous canal
orientations.1,15,26,27 In the present work, canal planes were defined by first, selecting
center points extending from the ampulla to the utricle or CC, and minimizing the squared
distance between a flat plane and the data points. Unit vectors perpendicular to each plane
were determined, and the dot products formed to quantify the angles separating canal planes.
The planes of the delicate membranous canals were found to differ from those of the bony
canals only by an average of 3.48 ± 1.89°. These results indicate that the bony and
membranous canal planes are indeed closely aligned and that the membranous labyrinth
canal planes in humans may be approximated using the bony labyrinth as a guide. In
addition, as is evident in Fig. 5, none of the canals form a perfect plane, nor are they
orthogonal to one other. The non-orthogonality of human canals has long been
acknowledged5,12 and that finding is reinforced here. Figure 8 illustrates the planar
relationships of the bony and membranous canals for the two labyrinths, as well as average
values recorded in the literature for the bony labyrinth.5,15 The results reveal slight
intersubject differences in the bony canal spatial relationships. In labyrinth 1, HC–AC, HC–
PC and AC–PC planes are nearly orthogonal with angles of 95.5°, 88.9° and 90.5°,
respectively. These findings compare favorably with those of Della Santina et al., who
concluded that the angles between bony canals were 90.6° ± 6.2° for the HC–AC, 90.4° ±
4.9°for the HC–PC, and 94.0° ± 4.0° for the AC–PC.15 In contrast, the bony canal planes of
labyrinth 2 range from 78.8° to 90.6°. Blanks et al. reported similar canal non-orthogonality,
though restricted to the HC–AC planes, where the angle formed between the canals was
111.76 ± 7.55°.5 The results for the two labyrinths reflect a relatively large degree of
intersubject variability that exists in anatomical canal orientations, with angles ranging from
approximately 80°–100°.15

Experimental descriptions of afferent responses have routinely indicated that anatomical
canal planes and maximal response planes differ.16,17,21,31,37 One might ask whether these
deviations are due to central nervous system modulations of canal responses via the efferent
system, or whether they are entirely a result of the mechanics of the labyrinth. We applied
our threecanal model to this question by determining the maximal response direction (the
axis perpendicular to maximal response planes) of each canal for rotations of 1 Hz. The
maximal response direction is defined in Fig. 9a as the vector (n̂max). Rotations about this
direction elicit a maximal response in a canal afferent. Circular bubbles represent the three-
dimensional responses of each canal as described by the cosine rule. According to this
principle, the cupula volume displacement gain is equal to the cosine of the angle between
the maximal response direction and the axis of rotation. The plane perpendicular to the
maximal response direction is the maximal response plane. This plane also describes the null
plane of the canal, which has been used in previous studies to compute maximal response
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directions.16,17,37 All vectors perpendicular to the maximal response direction fall in the null
plane and represent axes of rotation that minimize the response in a given canal. Theoretical
considerations indicate that rotations in this “null plane” probably do not completely zero
the response, but rather reduce the response by approximately three orders of magnitude and
result in a “null” for all practical purposes.31 The maximal response directions for the HC,
AC and PC are shown in Fig. 9b–d as the long axes of the double bubbles that describe the
cosine rule. Null planes are represented by black squares.

Since the canals are curved, bifurcate, and smoothly transition to the utricular vestibule and
CC, it was not clear at the outset what mathematical approach should be used to define
anatomical canal planes. When the anatomical canal planes were found by simply fitting a
flat plane to the centerlines of the HC, AC and PC canals, we found they differed from the
maximal response directions by an average of 2.27 ± 1.79°, 15.8 ± 2.08°, and 1.34 ± 0.558°
for the HC, AC, and PC, respectively. The difference between the anatomical and maximal
response planes disappeared when the anatomical plane was determined using only the long
and slender portion of the membranous duct. Specifically, the anatomical and maximal
response vectors were nearly identical when we weighted the anatomical centerline data
with the inverse of the cross-sectional area squared (1/A2) when finding the anatomical plane
by least squares (e.g., Fig. 11). Thus, differences between anatomical canal planes and
maximal response planes recorded experimentally may be due solely to biomechanics and
the method that was used to define the anatomical canal plane. One prominent feature of the
predicted maximal response directions is non-orthogonality; therefore, movement about a
maximal response direction typically stimulates multiple canals simultaneously. These
results indicate that maximal response directions are not the coordinate frame used by the
afferents to separate 3D rotational motion into three distinct components. Rather, a canal-
based coordinate system defined by prime directions (n̂′)leads to large gain responses in one
canal at a time. These prime directions, n̂′, are defined by the intersections of null planes of
the sister canals as illustrated in Fig. 10. For instance, the prime direction of the posterior
canal falls in the null planes of the HC and AC such that rotation about the prime direction
does not stimulate the HC or AC. The model predicts that the prime directions are non-
orthogonal vectors that are distinct from both maximal response directions and anatomical
plane normal vectors. Figure 11 illustrates the weighted anatomical canal planes (weighted
by inverse cross-sectional area squared), the maximal response directions, and the prime
directions for a representative labyrinth. As described above, small changes in cross-
sectional area, such as those that occur as a result of shrinkage correction, have a modest
effect on the response dynamics of the three-canal system. Therefore, it is natural to assume
that this would also alter the directional sensitivities of the canals. Interestingly, the canal
maximal response and prime directions changed little with shrinkage correction, differing
from the no-shrinkage case (Group A) by no more than 2° in any direction. Thus, even when
tissue shrinkage or errors in cross-sectional area are considered, directional coding is
robustly preserved and is primarily determined by the orientation of the slender portion of
each canal in three dimensional space.

The properties of prime directions are further illustrated in the Bode plots of Fig. 12. The
graphs show the gain and phase of each canal cupula as the head is rotated in the anatomical
plane, in the maximal response plane, or about the prime direction of the HC. The model
predicts for rotations in the anatomical plane that all three canals are stimulated, and that the
HC response has the highest gain of the three for a broad range of rotation frequencies. The
same trend is apparent during rotations in the maximal response plane. In this case, the HC
is maximally stimulated, but the sister canals also exhibit significant activation levels. Only
for rotations in the prime direction do large responses in the HC occur while the gain
approaches zero for the AC and PC. In fact, the HC gain is approximately 100 times larger
than those of the other canals within the physiological range of head rotations (0.01–10Hz)
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when rotating about its prime direction. It is interesting to note that the maximal response
and prime directions are modestly frequency dependent. This is why the minimum response
of the AC and PC occur as specific frequencies in Fig. 12c, but the frequency effect is weak
and is unlikely to have physiological significance.

DISCUSSION
The morphological and biomechanical modeling procedures detailed in this work have been
used to investigate three potential coordinate frames used by the semicircular canals to
represent angular motion in 3D space. The first frame defined by anatomical planes has been
speculated previously to be consistent with the planes of maximum sensitivity of the canals.
Although there was a correspondence between anatomical planes and biomechanical
maximal response planes, the two were distinct. On average, present theoretical results for
humans are consistent with differences found experimentally in other species such as the 6°
and 7° differences in cats and monkeys, respectively.17,37 Present results further indicate
that the differences between anatomical planes and maximal afferent responses previously
observed experimentally are primarily due to the fact that regions of small cross-sectional
area dominate the biomechanical sensitivity. The non-planar geometry of the semicircular
canals, and the way in which fluid movements in one canal lead to concomitant fluid
displacements in the other canals, contribute to a lesser degree.

Rotations about maximal response directions closely follow the cosine rule, with cupula gain
proportional to the cosine of the angle of tilt away from the maximal direction. Afferent
responses are minimized for head rotations about vectors perpendicular to the maximal
response direction (i.e., the null plane). The maximal response directions of the canals are
not orthogonal. The model demonstrates that as maximal responses are elicited in one canal,
sister canals might also continue to exhibit fairly large biomechanical responses and
associated afferent discharge. Thus, maximal response directions generally do not
decompose accelerations into independent vectorial components. Rotations about prime
directions, defined by the intersection of the null planes from the sister canals, are distinct
from maximal response directions in that rotations in prime directions activate one canal

only. Using the prime directions, any angular acceleration of the head, , can be represented

in terms of the scalar components of acceleration for each canal ( ) and the prime

directions as . In general, use of the maximal response directions
would require additional matrix operations rather than a simple vector sum. An exception, of
course, is the special case when the maximal response directions are mutually orthogonal—
in this case they are identical to the prime directions.

Once the maximal response directions are known, it is straightforward to find the prime
directions by forming the vector cross product between the maximal response directions of
the sister canals. Therefore, afferent responses are the gold standard for finding the maximal
response and prime directions. Unfortunately, afferent neurons cannot currently be recorded
in humans. One approach to circumvent afferent recordings is to use labyrinthine anatomy to
estimate the directions. Although it is routine to use CT data to locate the bony canal in
humans, it is not yet technically possible to image the delicate membranous labyrinth in
vivo. The present findings simplify the challenge by showing that the membranous ducts are
very closely aligned with the osseous canals, therefore allowing us to use CT data to locate
the bony canals and to imply the membranous duct anatomical planes. The membranous
duct anatomical planes, however, still do not determine the maximal response directions
directly. Present results also simplify this challenge in showing that the maximal response
directions can be estimated directly from a single canal morphology by fitting a flat plane to
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the canal using the inverse of the local cross-sectional area squared (1/A2) as the weight. In
the absence of knowing the actual area, Fig. 6 provides estimates that can be used in the
weighting. With this we have a method to estimate maximal response directions and prime
directions in humans, at least in the mid-frequency band where the response is dominated by
viscous drag in the slender region of the membranous duct. The 1/A2 weighting requirement
is not surprising since the viscous damping coefficient is proportional to 1/A2 and dominates
the response in the mid-frequency band (see Appendix Eq. (3)). Because of this, directional
sensitivities are dominated by the orientation of the slender regions of the ducts in 3D space.

The sensation of rotational head acceleration in 3D space is essential for the maintenance of
balance, posture, and eye stabilization. The present work is consistent with the hypothesis
that the brain receives from the semicircular canals movements coded in prime directions for
integration with other sensory signals centrally. The significance of prime directions
becomes apparent when considering the function of the VOR. The six extraocular muscles
of each eye exhibit patterned responses to stimulation of individual canals.8 Single canal
activation is analogous to a rotation about the prime direction of that canal without input
from the contralateral labyrinth. In cats, stimulation of a canal nerve leads to the agonist-
antagonist contraction of muscle pairs and the movement of eyes along pulling directions.8
It appears, in cats, that the ocular muscles do not align with the prime directions of the
labyrinth and, therefore, it is likely that the VOR uses neural convergence to convert
vestibular directions to ocular coordinates. Work in rhesus monkey suggests a
correspondence between prime direction orientations and the on-directions of extraocular
muscles.21 This finding lends support to the assertion that prime directions are an important
storage form of vestibular inputs within the central nervous system.

The role of semicircular canal biomechanics in determining temporal features of afferent
responses is much less profound than its role in directional coding. Afferent responses,
summarized in Fig. 7 for a variety of species, show dramatic inter-afferent differences in the
frequency-dependent gain and phase (within individual animals) that can not be explained
on the basis of biomechanics.32 Only the velocity-sensitive afferents (regularly discharging
units in mammals) show temporal response properties that directly reflect the endolymph
volume displacement and cupula deflection. The difference between the mechanical input
and neural responses is primarily due to afferent/hair-cell adaptation. 32 Inter-afferent
variations in the magnitude and time-course of adaptation to maintained hair bundle
displacements are very large and vastly overwhelm differences in mechanical inputs caused
by inter-subject variations in gross labyrinth morphology. There are also large differences in
gain between individual afferent units that are not due to mechanical differences but instead,
correlate with synaptic structure and contacts. Hence, neural signal processing is a very
important factor shaping the temporal response dynamics of afferents, while 3-canal
biomechanics is dominant in determining directional sensitivities and coding.

An important component of the current report was the approach used to reconstruct the
morphology of the membranous labyrinth. The process was sufficient for the present aims,
but was not without shortcomings. Since the histological sections were obtained from an
archival material bank (Johns Hopkins Temporal Bone Library) and were not oriented in the
head prior to sectioning, the precise orientation of the labyrinth relative to Reid’s system
was not known. Instead, to orient the canals in the head, the rigid bony duct surrounding the
delicate membranous labyrinth was aligned with the population average reported by Della
Santina et al. using least squares15. Stacking of individual sections based on the histological
block edges and labyrinth centerlines also was not precise and no doubt introduced some
skewing of the reconstructions. Nevertheless, the orientations of the individual bony canals
were very similar to the average reported by Della Satnina et al. and fell well within their
population range. These facts indicate that the reconstructions were representative of
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individuals within the normal population and appropriate to investigate general
biomechanical principles governing temporal and directional coding by the semicircular
canals. True subject-specific models, if needed in the future, would be facilitated by an
imaging modality capable of resolving the fine membranous labyrinth.

This work has described anatomical reconstruction and biomechanical modeling of the
human vestibular labyrinth for the characterization of semicircular canal temporal response
dynamics and directional sensitivities. Results show that directional sensitivity to angular
movement is exquisitely dependent upon the 3-canal morphology, and that afferent temporal
responses are partially determined by canal mechanics. The approach may have application
to predict canal responses to any dysfunction of the canals that has a mechanical basis. For
instance, a model of the common disorder benign paroxysmal positional vertigo (BPPV) has
been developed based on this approach.36 We hope that this work may encourage further
investigation into the way 3D motion is represented centrally, a vital element in our
understanding of CNS processing of multidimensional head and body movements.
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APPENDIX
The fluid filled labyrinth was modeled using the approach of Damiano and Rabbitt14

adjusted to the three-dimensional geometry of the human labyrinth. The endolymph was
modeled as a Newtonian fluid undergoing low Reynolds number, low Stokes number, small
displacement laminar flow. Inertial forcing due to acceleration of the head is introduced
using a Galilean transformation. A slender body asymptotic expansion14 or, alternatively a
control volume approach,34 reduces the Navier–Stokes equations to an ordinary differential
equation acting along the curved centerline of each duct segment. Following the notation of
Rabbitt31, for each short segment n of the labyrinth (n = HC, PC, AC, CC, UA, or UP), the
volume displacement of the endolymph (Q) during head movements are represented by:

(1)

Parameters mn, cn and kn are proportional to the equivalent mass, damping and stiffness of
the endolymph (or cupula depending on location in the canal, as will be discussed later),
respectively, and can be estimated from endolymph density (ρ), viscosity (μ), shear stress (γ)
and cross-sectional area function A(s) according to the following expressions:
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(2)

(3)

(4)

The independent variable sn defines a curved coordinate running along the centerline of the
canal segment. Integration limits are along the length (ln) of the duct segment (n). The term
λ is a dimensionless number that relates the viscous drag to the flow rate based on the cross-
sectional shape and frequency of excitation.14,30 For low Reynolds number, low Stokes
number flow, the velocity distribution in an elliptical cross-section is

, where (x,y) are cross-sectional coordinates with origin at the center,
(a,b) are the major and minor radii, and ΔP/Δℓ is the pressure gradient. This results in a

viscous drag factor , where the elliptical eccentricity . The
parameter λ reduces to 8π for a circular cross-section and is easily extended to higher
frequencies (Stokes number >1) by making λ a frequency-dependent complex-valued
parameter following Damiano.14

The right hand side of Eq. (1) includes a pressure gradient, ΔP = Pn(ln) − Pn(0), relating the
pressures on either end of the labyrinth segment, and inertial forcing fn, due to angular
acceleration of the head. The inertial forcing was calculated as

(5)

where R⃗ is a vector extending from the stereotactic head-fixed coordinate system origin to

the centerline of the segment of interest. Angular acceleration ( ) is presented as a vector
resolved in the head-fixed coordinate frame (Fig. A.1). It is calculated from angular

acceleration relative to the ground-fixed inertial frame ( ) by applying the time
dependent orthonormal rotation matrix, N, relating the head-fixed frame to the ground-fixed
frame using:

(6)

Equations (1)–(6) were employed to compute the endolymph fluid displacements and
resultant pressure gradients in a single canal or other labyrinth component. Comparable
equations have been used to describe the dynamic responses of a single the HC14,30 and a 3-
canal labyrinth.31,35 In the single-canal models the pressure gradient, ΔP, corresponded to
transcupular pressure. In the current work, pressure gradients and volume displacements
apply to six individual duct segments, the HC, AC, PC, CC, UA and UP. Equations for the
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segments were coupled together to form a coupled 3-canal model. This was accomplished
by identifying three bifurcation points (Fig. A.1) where the labyrinth segments naturally
connect to one another and applying conservation of fluid volume and pressure continuity to
create a matrix equation governing whole labyrinth endolymph (e) fluid mechanics:

(7)

The mass, Me, damping Ce, and stiffness Ke are matrices are

(8)

(9)

and

(10)

The diagonal elements are the addition of the segments forming a closed loop around the
respective canal; e.g. MHC = mHC + mUP + mUA, MPC = mPC + mCC + mUP and, MAC = mAC
+ mCC + mUA. In the present work we have selected the local coordinate systems such that
mHC, mUP, mUA, mPC, mCC and mAC are all positive. This simplifies the sign convention and
clarifies the sign of each element in the matrix (but differs from previous work31,36). Each
element in the above matrices was calculated from Eqs. (2)–(4). The pressure across the
three cupulae is

(11)

and inertial forcing becomes

(12)
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The vector Q ⃗e contains the volume displacements of the endolymph at the HC, AC and PC
cupulae:

(13)

The preceding equations provide a method of relating endolymph volume displacements to
prescribed head angular accelerations. In order to characterize the effect of these fluid
displacements on cupula movement, it is necessary to develop a model for the cupula. The
cupula has often been modeled as an elastic or viscoelastic material impermeable to
endolymph.46,30,33 These models neglect the intrinsic porosity of the cupula’s
mucopolysaccharide matrix, resulting in a 1:1 relationship between endolymph and cupula
displacement. In this model, we represent cupula porosity by assuming that the structure is
composed of a fluid and a solid phase. The solid portion responds to pressure gradients
according to the Equation

(14)

in which Mc, Cc, and Kc are diagonal matrices corresponding to the equivalent mass,
stiffness and viscosity of each cupula. For these calculations, the upper limit of integration is
cupula thickness, hc. Inertial forcing, F⃗c, is calculated from Eq. (5), where ρ refers to the
total density of the solid and fluid phase components of the cupula. The pressure gradient,
ΔP⃗, is the interaction force, where

(15)

The constant Γ is related to Darcy’s constant (Da), a term used to describe fluid flow
through a porous medium, the cupula solid phase volume fraction (ψ), and the cross-
sectional area of the cupula (Ac) by

(16)

The equations governing endolymph and cupula responses were combined to produce the
following differential equation describing the entire system:

(17)

Note, the forcing vector F⃗ has units of pressure and the displacement Q ⃗ has units of volume.
The effective mass, stiffness and damping matrices are
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(18)

(19)

and

(20)

respectively, where the matrix Γ = ΓI.

The inertial forcing vector is condensed to

(21)

and endolymph and cupula volume displacements are simply

(22)

Thus any three-dimensional head movement may be described in terms of cupula volume
displacements in the three canals. The physical parameter values used in these equations are
listed in Table A.1.

The mass, damping and stiffness matrix elements were computed using the geometry and
the physical parameters listed in Table A.1. For labyrinth 1, the effective mass matrix (g/
cm4) was

the damping matrix (dyn)s/cm5) was
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(24)

and the stiffness matrix (dyn/cm5) was

(25)

The pressure forcing vector (dyn/cm2) was determined from

(26)

where  and  are the projected components of head angular acceleration (rad/s2) in
the prime directions n′HC = [−0.064, 0.042, −0.997], n′AC = [0.702, 0.699, −0.136] and n′PC
= [0.857, −0.557, −0.103], respectively.
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FIGURE 1.
Segmentation of the human labyrinth. Two representative histological sections (a, b) are
shown with the membranous labyrinth outline in black and labeled. Segmented sections
were stacked to form the three-dimensional outline of the endolymphatic space (c).
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FIGURE 2.
Labyrinth centerlines. The segmented endolymphatic space is shown for the two labyrinths
(a, b) with the centerlines for the canals (HC, AC, PC) and the CC indicated. The utricular
vestibule centerline was incorporated into that of the HC.14 Center points (symbols) were
calculated at even intervals along the curved centerline of each canal and used to define
local coordinate systems aligned tangent to the canal centerline.
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FIGURE 3.
Slice selection. For each point along the centerline of a canal, a local coordinate system
composed of tangent, normal and binormal vectors (t̂, n̂1 and n̂2, respectively) was
calculated directly from the centerline, s. A ~500 μm-thick slice was cut transverse to the
canal as follows. If p̂c is a vector extending from the origin of the global coordinate system
to the center point, and p̂n (n = 1,2,…) are vectors from the global system origin to the data
points comprising the endolymphatic space, then dn, the distance between a data point and a
plane centered at the center point and perpendicular to the tangent vector (white plane) is

given by the equation: . To designate slice thickness, only points of dn < dmax are
selected, corresponding to points falling between the white and shaded planes. In the
specific case of 500-μm slices, dmax is set to 250 μm (e.g., the point of distance d1 would be
selected as part of the slice while the point of distance d2 would not).
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FIGURE 4.
Data fitting. A 10-term Fourier series, an ellipse (2-term Fourier series) and a circle (1-term
Fourier series) were fitted to the selected slice of data points (Fig. 3) at each center point
using least squares. The resulting fitted contours lie in the normal (n̂1) − (n̂s)plane and
define the cross-sectional area perpendicular to the centerline tangent vector (a). The 10-
term Fourier series curve (b, gray contour) closely reproduced details of the canal cross-
sectional shape, but overall the shape and cross-sectional area were well represented by an
ellipse (b, black contour; also see Results).
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FIGURE 5.
Orthographic views of the human membranous labyrinth. The reconstruction is presented
with +x as posterior, +y as right lateral, and +z as superior (note direction of y). Labyrinths
were reconstructed relative to histological block coordinates and placed within the head by
minimizing the difference between the bony canals in the histological data and the average
bony canals localized previously using CT data (Della Santina et al. 2005).
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FIGURE 6.
Cross-sectional area functions. Bony canal (black) and membranous duct (gray) cross-
sectional area functions are shown each canal duct are shown for the HC (a), AC (b) and PC
(c). Solid curves are for labyrinth 1 and dashed curves are for labyrinth 2. The membranous
ducts are defined to extend from the cupula, along the canal, down the CC and/or utricle,
and back to the cupula. Comparable membranous labyrinth measures by Igarashi23,
Curthoys et al.12 and Curthoys et al.11 are designated by a solid circle, a solid square, and an
asterisk, respectively. Also shown is an enlarged view of the labyrinth (d), which
emphasizes the order of magnitude difference between the areas of the bony (white filled
ellipses) and membranous canals (gray filled ellipses).
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FIGURE 7.
Frequency response. Model predictions for the volume displacement of the cupula (A–C) are
shown along with semicircular canal neural afferent gain and phase (fish: Boyle and
Highstein6; chinchilla: Baird et al.2; pigeon: Dickman et al.16; rhesus monkey: Haque et al.
21). Note that the biomechanical predictions correspond reasonably well with some afferents
(e.g., solid symbols, low-gain and regular units), while other afferents have phase and gain
enhancements due to hair-cell afferent signal processing. The effect of shrinkage (compare
A, B and C) on mechanical responses, although significant, is quite small relative to non-
mechanical factors influencing gain, phase and the temporal signal transmitted to the brain
(Rabbitt et al.32).
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FIGURE 8.
Anatomical canal planes. Orthographic views of canal plane normal vectors for the bony
canals of the two labyrinths (B1, B2) and the membranous ducts of each labyrinth (M1,
M2). It is notable that the bony canals and membranous ducts aligned quite well in the
present study. Results are displayed along with previous results for the bony canals by
Blanks et al. and Della Santina et al.5,15 The stereotactic reference frames defined by Reid’s
planes are shown with respect to the human head. Below each is a view of labyrinth from
the same vantage point.
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FIGURE 9.
Maximal response directions. For any sinusoidal head rotation, the gain of the cupular
volume displacement is proportional to the cosine of the angle (θ) between the axis of
rotation and the maximal response directions (nmax) as illustrated by the vector from the
origin to the surface of a circle (a). The three-dimensional cosine rule takes the form of a
spherical bubble, shown here for the HC (b), AC (c), and PC (d). The vector nmin (a)
represents an axis of rotation for which minimal response is elicited. A “null plane” is
defined by a group of such vectors, and are illustrated as black squares for the HC (b), AC
(c), and PC (d).
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FIGURE 10.
Prime directions. Prime directions are defined as the axis of rotation that nulls the responses
of two sister canals while maintaining a large response in only one canal. They are defined
by the intersection of the null planes of sister canals. The prime direction (dumbbell) of the
posterior canal is illustrated here as the intersection of the HC and AC null planes
(rectangles).
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FIGURE 11.
Canal coordinate systems. Semicircular canals have three natural coordinate systems:
anatomical canal planes, maximal response directions and prime directions. The three
directions are illustrated for an example labyrinth. Anatomical canal planes were determined
by fitting a plane to the canal center line data and weighting the fit with the inverse of the
local duct cross-sectional area squared. Maximal response directions denote the direction of
rotation that elicits the maximal cupular volume displacement, and prime directions denote
the direction of rotation that nulls the responses of the sister canals. There is a weak
frequency dependence on the prime and maximal response directions (shown here at 0.3
Hz).
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FIGURE 12.
Sensitivity for rotations in three key planes. Bode plots quantify cupula responses for
sinusoidal rotations in the anatomical canal plane (a), about the maximal response direction
(b), and about the prime direction (c) of the HC (see Fig. 11). Although all three rotations
result in very similar gain and phase of the HC cupula, only rotation about the prime
direction (c) results in large gain responses in the HC and simultaneous “inactivation” of the
AC and PC.
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FIGURE 13.
FIGURE A.1. Model labyrinth geometry. The human membranous labyrinth has 3 natural
bifurcation points (1–3) where the six labyrinthine segments join. The three-dimensional
motion of each segment was specified by time-dependent angular acceleration in the
ground-fixed intertial frame and resolved into the moving head-fixed system. This
introduces a Galilean transformation and an inertial force that appears in the Navier–Stokes
equations. Poiseuille flow and slender body approximations were assumed to further reduce
the equations to a set of coupled ordinary equations (Damiano and Rabbitt14). Equations for
six segments were coupled together at the bifurcations by conservation of mass and pressure
continuity.
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TABLE A.1

Model parameter values.

Parameter Value Units

ρe 1.0 g cm−3

μe 8.5 × 10−3 dyn s−1 cm−1

γe 0 dyn cm−2

ρc 1.0 g cm−3

μc 0 dyn s−1 cm−1

γc 3.7 dyn cm−2

Γ 2.0 × 106 dyn s−1 cm−5

Ac ≈ 1.2× 10−2 cm2 (see Fig. 6)

hc cm
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