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OBJECTIVE — To test if knowledge of type 2 diabetes genetic variants improves disease
prediction.

RESEARCH DESIGN AND METHODS — We tested 40 single nucleotide polymor-
phisms (SNPs) associated with diabetes in 3,471 Framingham Offspring Study subjects followed
over 34 years using pooled logistic regression models stratified by age (�50 years, diabetes
cases � 144; or �50 years, diabetes cases � 302). Models included clinical risk factors and a
40-SNP weighted genetic risk score.

RESULTS — In people �50 years of age, the clinical risk factors model C-statistic was 0.908;
the 40-SNP score increased it to 0.911 (P � 0.3; net reclassification improvement (NRI): 10.2%,
P � 0.001). In people �50 years of age, the C-statistics without and with the score were 0.883
and 0.884 (P � 0.2; NRI: 0.4%). The risk per risk allele was higher in people �50 than �50 years
of age (24 vs. 11%; P value for age interaction � 0.02).

CONCLUSIONS — Knowledge of common genetic variation appropriately reclassifies
younger people for type 2 diabetes risk beyond clinical risk factors but not older people.

Diabetes Care 34:121–125, 2011

A genetic risk score built with 18 type
2 diabetes genetic loci predicted
new diabetes cases (1), though it

did not add to common diabetes clinical
risk factors that usually appear during
adulthood (1–3). In recent years, the
number of genetic loci convincingly asso-
ciated with diabetes has doubled (4–10).

Here, we test two hypotheses: an updated
genetic risk score incorporating a larger
number of common diabetes-associated
single nucleotide polymorphisms (SNPs)
improves �8-year risk prediction of dia-
betes beyond common clinical diabetes
risk factors; and the predictive ability is
better in younger subjects in whom early

preventive strategies could delay diabetes
onset (11).

RESEARCH DESIGN AND
METHODS — We have previously de-
scribed the methods (1). We pooled data
of the Framingham Offspring Study (12)
into four time periods (exams 1 and 2, 2
to 4, 4 to 6, and 6 to 8) (3), extending
follow-up 6 years beyond our previous
report (1). We generated 11,358 person-
observations for 3,471 subjects with
available genetic data. We excluded prev-
alent diabetes at the baseline of each pe-
riod. Diabetes was defined as fasting
plasma glucose �7.0 mmol/l (�125 mg/
dl) or use of antidiabetic therapy.

We genotyped or imputed 40 autoso-
mal diabetes-SNPs reported in European-
origin populations (4–10), thus adding
23 new SNPs and excluding INS from our
previous 18-SNP analysis (1). Genotypes
were obtained from Affymetrix array data
available in the Framingham Heart Study
SNP Health Associate Resource dataset
(13) or from de novo genotyping on the
iPLEX (Sequenom) platform. Minimum
call rates were 97% for Affymetrix and
96.9% for iPLEX SNPs. All SNPs were in
Hardy-Weinberg equilibrium. Median
variance ratio for the imputed SNPs was
0.94; only for rs725210 at HNF1B, the
variance ratio was �0.3 (namely, 0.2).

We modeled the 40 SNPs by con-
structing a 40-SNP weighted genetic risk
score based on the published � coeffi-
cients (8,10) (see footnote, Table 1) and
alternatively by entering one term per
SNP in an additive model using the ex-
pected or observed number of minor al-
leles plus terms for sex or clinical
variables. A general nonadditive genetic
model was also fit for each SNP, but in-
clusion of a nonadditive term did not im-
prove the fit (P � 0.043 for all SNPs). We
also performed bootstrap resampling
with replacement to assess the degree of
statistical overestimation.

Association tests were done after age-
stratification (�50 and �50 years) and in
the sample overall. We compared the
mean genetic risk score for persons who
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Table 1—Odds ratios (ORs) and risk for incident type 2 diabetes associated with 40 individual SNPs, a weighted 40-SNP genetic risk score, and
a weighted 17-SNP genetic risk score in the Framingham Offspring Study, stratified by age (<50 years and >50 years old), in the simple clinical
variables–adjusted model†

Subjects �50 years old (n � 144 diabetes cases)

Model without genetic
information

Model using 40
individual SNPs

Model using 40-SNP
weighted risk score

Model using prior 17-SNP
weighted risk score

Men (vs. women) 0.45 (0.30–0.68) 0.43 (0.28–0.67) 0.46 (0.30–0.70) 0.46 (0.30–0.70)
Family history of diabetes vs. not 2.26 (1.55–3.30) 2.22 (1.49–3.29) 2.20 (1.50–3.22) 2.18 (1.49–3.19)
BMI (kg/m2) 1.10 (1.06–1.14) 1.11 (1.07–1.15) 1.11 (1.07–1.15) 1.11 (1.08–1.15)
Fasting plasma glucose (mg/dl) 1.14 (1.11–1.16) 1.13 (1.11–1.16) 1.13 (1.11–1.16) 1.13 (1.11–1.16)
Systolic blood pressure (mmHg) 1.02 (1.01–1.03) 1.03 (1.01–1.04) 1.02 (1.01–1.03) 1.02 (1.01–1.03)
HDL cholesterol (mg/dl) 0.96 (0.95–0.98) 0.96 (0.95–0.98) 0.96 (0.95–0.98) 0.96 (0.95–0.98)
Fasting triglycerides (mg/dl) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.02) 1.00 (1.00–1.00)
Genetic risk score — — 1.24 (1.13–1.36) 1.39 (1.22–1.59)
C-statistic (95% CI) 0.908 (0.884–0.932) 0.920 (0.898–0.941) 0.911 (0.887–0.935) 0.909 (0.884–0.933)
P value for difference in C-statistic 0.02 0.3 0.89
Calibration �2 (P value) 4.37 (0.8) 6.60 (0.6) 9.78 (0.28)
NRI (%) 11.4 10.2 7.5
P value 0.002 0.001 0.01

Subjects �50 years old (n � 302 diabetes cases)

Model without genetic
information

Model using 40
individual SNPs

Model using 40-SNP
weighted risk score

Model using prior 17-SNP
weighted risk score

Men (vs. women) 1.03 (0.76–1.38) 1.04 (0.76–1.41) 1.05 (0.78–1.41) 1.05 (0.78–1.41)
Family history of diabetes vs. not 2.09 (1.54–2.85) 2.18 (1.58–3.00) 2.11 (1.55–2.88) 2.12 (1.56–2.88)
BMI (kg/m2) 1.08 (1.05–1.11) 1.09 (1.06–1.12) 1.09 (1.06–1.12) 1.09 (1.06–1.12)
Fasting plasma glucose (mg/dl) 1.14 (1.13–1.16) 1.14 (1.12–1.16) 1.14 (1.12–1.16) 1.14 (1.12–1.16)
Systolic blood pressure (mmHg) 1.01 (1.00–1.02) 1.01 (1.00–1.02) 1.01 (1.01–1.02) 1.01 (1.01–1.02)
HDL cholesterol (mg/dl) 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.98 (0.97–0.99)
Fasting triglycerides (mg/dl) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)
Genetic risk score — — 1.11 (1.03–1.19) 1.13 (1.02–1.25)
C-statistic (95% CI) 0.883 (0.863–0.903) 0.888 (0.869–0.908) 0.884 (0.865–0.904) 0.884 (0.865–0.904)
P value for difference in C-statistic 0.02 0.2 0.18
Calibration �2 (P value) 10.97 (0.2) 15.01 (0.06) 8.46 (0.39)
NRI (%) 5.7 0.4 0.02%
P value 0.001 0.7 0.98

Data are OR (95% CI) unless otherwise indicated. Data in bold represent statistical significance. †The simple clinical variables–adjusted model included sex, family
history of diabetes (self-report that one or both parents had diabetes), BMI, fasting glucose level, systolic blood pressure, HDL cholesterol, and fasting triglycerides
levels (3). No age adjustment was done in the age-stratified models.
To evaluate the individual contribution of each SNP, we entered one term per SNP (total 40 terms plus terms for sex or clinical variables) in the logistic regression
models.
We constructed a weighted genetic risk score using 40 SNPs currently associated with type 2 diabetes and a weighted genetic risk score using 17 SNPs that we used
in our previous report (1). rs689 at INS on chromosome 11, previously included in our 18-SNP genetic risk score (1), was not replicated in posterior meta-analyses
and is therefore not included in the current 17-SNP or 40-SNP analyses. Moreover, rs5945326 at DUSP9 on chromosome X (10) is not included in the analysis
because there are no available genotyping or imputation data for this SNP in the Framingham Offspring Study.
For the construction of the weighted risk scores, we counted risk alleles (0, 1, 2) for each genotyped SNP—or its dosage when imputed—(actual distribution ranging
from 28 to 53) and multiplied each SNP genotype by its published � coefficient for diabetes risk (10). We added up the product of that multiplication at each SNP,
divided the sum by twice the sum of the � coefficients, and multiplied the result by the number of SNPs.
ORs, 95% CIs, and C-statistics for the 144 cases of diabetes in 6,763 person-observations in subjects �50 years old and for the 302 cases of diabetes in 4,595
person-observations in subjects �50 years old were calculated using pooled logistic regression with generalized estimating equations. Mean age at diabetes onset was
49.30 years for subjects �50 years old at baseline and 66.07 years for subjects �50 years old at baseline. We took 50 years as the age cutoff point because of the low
incidence rate of diabetes in younger subjects when lower values were chosen. Sensitivity analyses using a cutoff age of 45 years (84 cases in 5,095 person-
observations) showed a lower NRI in younger subjects (3.59%; P � 0.2), though this result should be taken with caution because of the low number of cases.
For NRI evaluation, we established three risk categories (low, intermediate, and high). The percentages of low, medium, and high risk of diabetes are based on the
distribution of the cumulative incidence of diabetes across our population, in which cumulative incidence was low for a predicted risk �2%, intermediate for
predicted risks �2% and �8%, and high when predicted risk was �8% (this assumption is an a priori requirement for the NRI calculation) (15). NRI is better if
more people who develop diabetes are reclassified as higher risk when the genotype score is added to the model, and more people who remain free of diabetes are
classified as lower risk when the score is added. The NRI is penalized for misreclassification; for instance, if many people who develop diabetes are classified as lower
risk by adding the genetic risk score to the model.
Data for the sex-adjusted model in age-stratified analyses are shown in supplementary Table A3. Complete data for the population overall are shown in supple-
mentary Table A4.
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did develop diabetes with those who did
not using mixed-effects linear models to
account for family relatedness. Likewise,
we used generalized estimating equations
in pooled logistic-regression models (14)
to test associations of the genetic risk
scores with diabetes onset in sex- and
simple clinical diabetes risk factors–
adjusted models, which included sex,
family history of diabetes (self-report that
any parent had diabetes), BMI, fasting
glucose and triglyceride levels, systolic
blood pressure, and HDL cholesterol (3).

We evaluated model discrimination
using C-statistics and net reclassifica-
tion improvement (NRI) (15) (see foot-
note, Table 1). A two-tailed P value
�0.05 indicated statistical significance.
The institutional review board at Boston
University approved the study, and all
participants gave written informed
consent.

RESULTS — Mean age was 36 � 9
years at the first exam; nearly half the sub-
jects were men, and BMI increased over
follow-up (supplementary Table A1 in the
online appendix available at http://care.
diabetesjournals.org/cgi/content/full/
dc10-1265/DC1). Over 11,358 person-
observations we diagnosed 446 cases of
diabetes. Few individual SNPs were signif-
icantly associated with diabetes in our
sample, but for most SNPs the effects
were in the same direction as in the orig-
inal reports and of expected effect sizes
(1.05–1.3) (supplementary Table A2). In-
dividuals who developed diabetes had
higher genetic risk scores than those who
did not (20.4 vs. 19.7; P � 1.7 	 10
10).

The 40-SNP genetic risk score signif-
icantly reclassified subjects �50 years of
age in the simple clinical variables model
(NRI: 10.2%; P � 0.001), although it did
not improve model discrimination (P �
0.3) (Table 1). In subjects �50 years, the
40-SNP score neither improved model
discrimination (P � 0.2) nor risk reclas-
sification (NRI: 0.4%; P � 0.7). The rela-
tive risk per risk allele was higher in
subjects �50 years of age (24%) than in
those �50 years of age (11%) (P � 0.02
for age-interaction effect). Results for the
sex-adjusted model are shown in supple-
mentary Table A3.

We also tested a weighted genetic risk
score constructed with the originally
modeled 17 SNPs (1), whereby fewer
subjects were appropriately reclassified
for diabetes risk (Table 1).

In the population overall, the 40-SNP
genetic risk score marginally improved

risk prediction (C-statistics: 0.903 and
0.906, without and with the score; P �
0.04), whereas the 17-SNP score did not
(P � 0.11) (supplementary Table A4). In
the whole population, NRI with the score
was lower than in subjects �50 years of
age (at most, 1.8%).

The individual incorporation of 40
SNPs improved model discrimination be-
yond the 40-SNP score (C-statistics:
0.908 and 0.920 without and with indi-
vidual SNPs; P � 0.02), but after boot-
strap resampling, median C-statistic
values dropped to 0.905 and 0.907, re-
spectively, thus lowering optimism about
the effect of modeling individual SNPs.

CONCLUSIONS — We found that
40 SNPs selected based on the latest ge-
netic association data improved diabetes
risk reclassification after accounting for
common diabetes clinical risk predictive
factors.

The 40 SNPs contributing individu-
ally had the highest discrimination abil-
ity, but this model was probably overfit.
The increased prediction performance of
40 as opposed to 17 SNPs appeared to be
due to additional, more comprehensively
modeled genetic information rather than
to longer follow-up or greater number of
diabetes cases as compared to our earlier
report.

Limitations include that the Framing-
ham Offspring Study subjects are mostly
white and of European ancestry. Al-
though we did not find sufficient evi-
dence for departure from an additive
model, we cannot definitely rule out that
other nonadditive models are operating.
We only analyzed common genetic vari-
ants; eventual incorporation of rare vari-
ants might enhance prediction. Lastly,
criticism has been raised on the somewhat
arbitrary assumptions needed to estimate
NRI.

In summary, diabetes risk prediction
improved with 40 diabetes-associated
SNPs, especially in people �50 years of
age. More subjects were appropriately re-
classified for diabetes risk. Genetic pre-
diction could be useful in younger
people. Nonetheless, the clinical useful-
ness of common genetic variants for dia-
betes risk prediction should be further
confirmed in other samples and in ran-
domized controlled trials.
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