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     INTRODUCTION 

  Trypanosoma cruzi , the etiological agent of Chagas disease, 
exhibits a multiclonal structure given its mainly clonal pattern 
of evolution and little genetic exchange. 1,  2  

 The variability of  T. cruzi  isolates together with the hetero-
geneity of human populations could be responsible for diverse 
clinical forms of the infection, which range from asymptomatic 
to gastrointestinal and heart involvement. They are also vari-
able in different geographic regions. 3–  5  

 Multiple studies on the above-mentioned diversity of 
 T. cruzi  strains led to their classification into two highly diver-
gent phylogenetic lineages named  T. cruzi  I (TCI) and  T. cruzi  
II (TCII). 6  Further studies described TCII as divided into five 
discrete subgroups: TCIIa–e. 7  Great efforts have also been 
made to elucidate the genetic structure of the  T. cruzi  popu-
lation and relate these data with the described parasite sub-
groups. 8,  9  In a recent meeting, an expert committee revised the 
available information about  T. cruzi  divergence, reclassified 
parasite strains by splitting them into six groups and renamed 
them as discrete typing units (DTUs) designated  T. cruzi  I to 
 T. cruzi  VI. 10  According to this proposal, TCI is now named TcI, 
whereas TCIIa is TcIV, TCIIb is TcII, TCIIc is TcIII, TCIId is 
TcV, and TCIIe is TcVI. 10  

 Genotyping studies showed that TcI (TCI) is highly domi-
nant in the sylvatic and domestic cycles of transmission from 
the Amazonas River, in Brazil, northwards. It was detected 
causing human infections in Colombia, Mexico, and Central 
America and in a few autochthonous cases in the United 
States. 11–  18  In the southern cone of South America, this group 

has been mainly associated with the sylvatic transmission, 
whereas TcII, TcV, and TcVI DTUs (included in TCII) show a 
high prevalence in the domestic cycle, causing the vast major-
ity of infections in humans and other mammalian hosts. 19–  22  

 Most typing studies have been performed by employing 
 T. cruzi  isolates obtained from blood samples or maintained 
by serial passages in cultures. Parasite composition of these 
extracts can differ from that involved in the host infection, 
because these strategies are known to lead to parasite sub-
population selection, 23  thus underestimating the original para-
site diversity of the sample. The recent introduction of new 
direct genotyping tools helps to minimize their underestima-
tion; nevertheless, the low parasitemia that characterizes the 
chronic phase of the infection remains as a limitation. 24  These 
facts highlight the relevance of developing new strategies to 
identify parasite subpopulations. 

 The trypomastigote small-surface antigen (TSSA) is expressed 
by the circulating forms of  T. cruzi  and belongs to the group 
III of the mucin superfamily (TcMUC). TSSA I and TSSA II 
antigens (cloned from TcI and TcVI parasites, respectively) 
were originally described as encoded by two alleles ( tssa  I and 
 tssa  II) that are exclusive of the previously denominated TCI 
and TCII genomes, respectively. 25  The detection of anti-TSSA 
antibodies on serum samples was proposed as an immunologi-
cal marker of parasite populations involved in  T. cruzi  infec-
tions. 25  Recently, a greater diversity of the  tssa  gene among the 
new DTUs was reported, showing a high sequence homology 
among TcII, TcV, and TcVI alleles, whereas TcIII and TcIV 
genes share features with TcI. 26  However, serologic assays that 
allow us to know whether those polymorphisms correlate with 
differential humoral immune responses are lacking. 

 The description of  T. cruzi  lineages and their distribution 
along the endemic area provide an adequate reference to ana-
lyze the involvement of parasite subpopulations in human 
disease that have not been clearly defined to date. In this 
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work, lineage typing of the parasites causing human infec-
tions in endemic countries (Argentina, Paraguay, Colombia, 
Venezuela, and Mexico) was performed by detecting antibod-
ies directed to the recombinant antigens TSSA I and TSSA II 
in Western-blotting assays (TSSA-WB). 

   MATERIALS AND METHODS 

  Human specimens for  T. cruzi  lineage distribution assess-
ment in Latin America.   A total of 690 serum samples were 
analyzed by TSSA-WB. They were collected from people liv-
ing in countries of the endemic area: Mexico (82 seronega-
tive and 83 seropositive), Venezuela (53 seronegative and 103 
seropositive), Colombia (42 seronegative and 157 seroposi-
tive), Argentina (37 seronegative and 69 seropositive), and 
Paraguay (21 seronegative and 43 seropositive). Paraguayan 
samples include sera from 51 Amerindians living in palm 
tree homes of the Chaco region in contact with wild animals 
burrowing among wood piles next to their houses where 
TcI-infecting  T. infestans  have been detected and character-
ized; there is an 80% prevalence of  T. cruzi  infection in this 
region. 27  

   Conventional  T. cruzi  diagnosis in human serum sam-
ples obtained from different countries of Latin America.  
 Conventional serological tests routinely used to diagnose 
 T. cruzi  infection were run in the laboratories of origin. As 
general criteria, samples reacting in two serologic tests were 
scored as infected. 

 Two serum panels from Mexican individuals were subjected 
to homemade serologic tests. The first one was evaluated by 
enzyme-linked immunosorbent assay (ELISA) and WB with 
total epimastigote extracts (Queretaro strain) as antigen. The 
second panel was assessed with antigens of the Ninoa Mexican 
strain: intact epimastigotes were used in indirect immunoflu-
orescence (IIF) assays, and total protein extracts were used 
in ELISAs. 28,  29  Colombian samples were analyzed by IIF and 
ELISA using Dm7, MG8, and Cas 15  T. cruzi  strain antigens. 30  
In Venezuela, diagnosis was defined by the consensus results 
obtained in two laboratories. One of them carried out IIF, 
indirect hemagglutination (IHA), and ELISA, as previously 
reported. 31  The other applied two ELISAs: a commercially 
available kit (BIOSChile, Santiago, Chile   ) and a homemade 
test with antigens prepared from metacycle-like forms of the 
Y  T. cruzi  strain. 32  Sera from Paraguayan individuals were 
subjected to a homemade ELISA and an IIF test. 33  Sera 
from Argentinean people were assessed using commercial 
tests: IHA (Laboratory Polychaco, Buenos Aires, Argentina), 
ELISA (either from Wiener, Rosario, Argentina or Chagatek, 
Biomerieux, Argentina), and particle agglutination (Serodia, 
Fujirebio, Japan). 24,  34  

   Specimens from non– T. cruzi- infected patients.   We ana-
lyzed serum samples from patients not infected by  T. cruzi  but 
with cutaneous leishmaniasis ( N  = 20, from Paraguay), malaria 
( N  = 7, from Brazil), toxoplasmosis ( N  = 18, from Argentina), 
syphilis ( N  = 10, from Paraguay), idiopathic megaviscera or 
cardiopathy ( N  = 22, from Brazil), systemic lupus erythema-
tosus ( N  = 5), rheumatoid arthritis ( N  = 1), myositis ( N  = 1), 
or mixed connective tissue disease ( N  = 1). Samples from 16 
healthy individuals without epidemiological risk of  T. cruzi  
infection were also included. 

   Specimens subjected to both genotyping and immuno-
phenotyping.   Molecular and inmunological typing were per-

formed in samples from 66 patients living in Argentina, Bolivia, 
Colombia, and Paraguay. 

 For genotyping, DNA was purified from 500 μL of periph-
eral blood, as previously reported. 24  Of 66 patients, 14 were 
subjected to heart transplant; sera obtained before transplan-
tation were processed. Paraffin-embedded heart explant sam-
ples were processed to obtain DNA using the QIAmp tissue 
kit (Qiagen, Valencia, CA) as reported. 34   T. cruzi  genotyping 
was carried out by polymerase chain reaction (PCR) strate-
gies targeted to the intergenic region of spliced leader genes 
(SL-IR). Three independent reactions (SL-IR I with primers 
UTCC and TC2, SL-IRac with primers UTCC and Tcac, and 
SL-IR II with primers UTCC and TC1) allowed    classifica-
tion of  T. cruzi  into three groups: TcI, TcIII/IV, and TcII/V/VI, 
respectively. 24  Within the last group, some DTUs were identi-
fied by PCR targeted to the D7 domain of 24S α rDNA genes 
and the A-10 fragment to discriminate among TcII, TcV, and 
TcVI DTUs, as reported. 24  All sera were immunophenotyped 
by TSSA-WB as described below. 

   Expression and purification of TSSA antigens.   A fragment of 
 tssa I gene ( GGATCC GTTACAGCGAATGGTGGGTCTAC
TAGTTCTACCCCACCTGGTAAGGACAAGAAAA
CAGCTGCAGGGGGAACTCCATCTCCATCGGG
AGCTTCTTCAGGTGAAGCAGAAGCCTCCTCA
AAATC GAATTC ) from the Dm28c strain (TCI, now TcI) 
or  tssa II gene ( GGATCC GTTACAGCGAATGGTGGGTC
TAC TAG T T C TAC C C CAC C T T C T G G TAC G G A A
AATAAACCAGCTACAGGGGAAGCTCCATCTC
AACCGGGGGCTTCTTCAGGTGAAGCAGAAG
CCTCCTCAAAAATCACTAGT GAATTC)  from the CL 
Brener strain (TCII, presently TcVI) was cloned into 
pGEX-2T plasmid (BamHI/EcoRI sites are underlined; GE 
Healthcare). 25  Their encoded peptides, namely glutathione 
S-transferase-TSSA I (GST-TSSA I) and GST-TSSA II, were 
produced in  Escherichia coli  and purified by using GSTrap 
columns (GE Healthcare). 25  Recombinant GST was also puri-
fied to detect sera background reactivity. 

   Western blotting with TSSA antigens (TSSA-WB).   GST, 
GST-TSSA I, and GST-TSSA II proteins were separated 
by    sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) and transferred to    polyvinylidene fluoride 
(PVDF) membranes (Hybond P; GE Healthcare). Diluted 
sera (1:100) were adsorbed to nitrocellulose-immobilized 
GST overnight at 4°C and then incubated for 2 hours at room 
temperature on membranes containing the three separated 
antigens. Rabbit anti-total human immunoglobulin G (IgG; 
γ-specific) conjugated to horseradish peroxidase (DAKO, 
Denmark) was used. Hydrogen peroxide and 3,3′-diamin-
obenzidine (Sigma) were used for the chromogenic visualiza-
tion of antigen–antibody specific interaction. Figure 1 shows 
examples of TSSA I, II and I-II recognition patterns obtained 
in WB assays by using  T. cruzi  patients serum samples. 

   Statistical analysis.   Statistical comparisons were performed 
by the χ 2  or Fisher exact tests. Reliability between immuno-
phenotyping and genotyping methods was also determined by 
the Cohen’s κ coefficient. 

   Ethics statement.   This study was conducted in accordance 
with the Declaration of Helsinki, under approval of the local 
ethical committees of the participating institutions from the 
different countries as well as of the Ethics Review Committee 
of the World Health Organization. All patients provided writ-
ten informed consent for sample collection and analysis. 
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    RESULTS 

  Evaluation of non– T. cruzi -infected human serum sam-
ples by TSSA-WB.   The reactivity to the recombinant TSSA 
antigens of 101 samples from patients suffering different 
pathologies (cutaneous leishmaniasis, toxoplasmosis, autoim-
mune diseases, idiopathic megaviscera or cardiopathy, or syph-
ilis) and healthy individuals was analyzed by TSSA-WB. Only 
one malaria patient showed reactivity against TSSA II. 

    T.cruzi  lineage identification by immunophenotyping and 
genotyping.   To check the ability of TSSA-WB to identify 
 T. cruzi  lineages, we performed a comparative study using 
genotyping markers as a reference ( Table 1 ). Of 66 samples 
analyzed, 31 yielded positive PCR results. Among the latter, 
17 showed fully coincident genotyping and immunopheno-
typing determinations. A partial coincidence was observed 
for two patients: one serum showed mixed TSSA reactivity 
when genetic markers identified only TcI, whereas the other 
one recognized TSSA II but was genotyped as a mixed infec-
tion. However, 12 samples did not render concordant results; 
3 of these samples were genotyped as TcI but were reactive to 
TSSA II, 7 samples did not recognize any of the TSSA anti-
gens, and the remaining 2 samples did not display conclusive 
results in TSSA-WB ( Table 1 ). 

      Measure of agreement between genotyping and immuno-
phenotyping results was assessed by the Cohen’s κ coefficient 
(inconclusive and negative results were excluded from the 
analysis). As seen in  Table 1 , genotyping and immunopheno-
typing data were highly concordant ( P  < 0.0001). 

 Of the 35 samples non-reactive by genotyping methods, 
26 recognized TSSA II, and 3 reacted with both TSSA I and 
TSSA II. Two sera did not render conclusive results, and four 
samples were not reactive in the immunophenotyping assay 
(data not shown). 

   TSSA-WB and conventional serology reactivity of serum 
samples.   TSSA-WB and tests routinely used for  T. cruzi  diag-
nosis (conventional serology [CS]) were assayed in samples 
from individuals living in Mexico, Colombia, Venezuela, 
Paraguay, and Argentina. 

 When co-reactivity between TSSA-WB and CS was assessed, 
co-positivity and co-negativity values were 61.6% and 85.2%, 
respectively. Parameters detailed for each country in  Table 2  
show higher co-reactivity between samples from Argentina 
and Paraguay than for patients from Mexico and Colombia/
Venezuela. 

         T.cruzi  immunophenotyping in patients from Latin 
American countries.   A comparative analysis among different 
countries was done based on TSSA-WB and CS co-positive 
serum samples.  Table 3  shows details of recombinant TSSA 
antigens recognition. 

      Similar proportions of Mexican patients were found to 
recognize solely TSSA I, TSSA II, or both (mixed infections) 
( Table 3 ). Among Colombian samples, single TSSA II and 
mixed reactivity showed high frequencies (41 and 36 of 93 
patients, respectively), whereas a small prevalence of exclusive 
TSSA I reactivity was detected (16/93). In Venezuela, around 
one-half of the samples contained antibodies to TSSA II 
(19/41 cases), but additionally, TSSA I antibodies were devel-
oped (14/41); 8 of the 41 samples showed mixed reactivity. 

  Table  1 
  Lineage identification by immunophenotyping and genotyping assays  

Immunophenotyping

Genotyping

TCI TCII TCI + TCII

TSSA I 3 0 0
TSSA II 3 13 * 1
TSSA I–II 1 0 1 † 
Inconclusive 2 0 0
Negative 5 2 0
Total 14 15 2

  In some cases, DTUs among TCII infections were identified by genotyping.  P  < 0.0001 
(κ coefficient).  

  *   Four patients with TcV, one patient with TcVI, and one patient with TcII and/or TcVI 
bloodstream parasites.  

  †   One patient with TcI and TcV mixed infection.  

  Table  3 
   T. cruzi  immunophenotyping in patients from Latin America  

Sample origin

TSSA reactivity

TotalI II I–II

Mexico 10 (33%) 11 (37%) 9 (30%) 30
Colombia 16 (17%) 41 (44%) 36 (39%) 93
Venezuela 14 (34%) 19 (46%) 8 (19%) 41
Argentina 0 (0%) 66 (99%) 1 (1%) 67
Paraguay 0 (0%) 39 (98%) 1 (2%) 40
Total 40 176 55 271

  Samples co-positive by TSSA-WB and CS were considered. Data represent the lineage 
distribution analysis for countries, with comparisons between TSSA reactivity (I vs. II; II 
vs. I–II; I vs. I–II) being performed with the χ 2  or Fisher exact tests. Overall difference was 
 P  < 0.00001 (χ 2  test   , degrees of freedom (df) = 8). Comparisons of TSSA reactivity between 
southern countries (Argentina and Paraguay) were not significant. Comparisons of TSSA 
reactivity among northern countries (Mexico, Venezuela, and Colombia) remained insig-
nificant except for TSSA I vs. TSSA I–II reactivity between Venezuela and Colombia ( P  < 
0.025; χ 2  test, df = 1). Comparison for lineage distribution on dividing into northern (Mexico, 
Venezuela, and Colombia) and southern (Paraguay and Argentina) countries: overall differ-
ence  P  < 0.00001 (χ 2 , df = 2); TSSA I vs. TSSA II:  P  < 0.0001 (χ 2 , df = 1); TSSA II vs. TSSA I–II: 
 P  < 0.0001 (χ 2 , df = 1). Comparisons of TSSA I vs. TSSA I/II reactivity were not significant.  

  Table  2 
  TSSA-WB and CS co-reactivity of samples from Latin American 

patients  

Sample origin

TSSA I/TSSA II vs. CS

Co-positivity (%) Co-negativity (%)

Mexico 36.1 78.0
Colombia 62.0 63.4
Venezuela 42.7 82.0
Argentina 97.1 100.0
Paraguay 93.0 71.4

  Co-positivity = 100 × (frequency of TSSA-WB reactive samples/frequency of CS positive 
samples). Co-negativity = 100 × (frequency of TSSA-WB unreactive samples/frequency of 
CS negative samples).    Figure  1.    Examples of TSSA I, TSSA II, and TSSA I–II recogni-

tion patterns obtained in Western blot assays ( A ,  B , and  C , respec-
tively). GST, recombinant TSSA I, and TSSA II (lanes 1, 2, and 3, 
respectively) were loaded in SDS-PAGE gels and transferred to PVDF 
membranes to perform TSSA-WB with patients sera. Representation 
of molecular weight pattern is depicted at the left. GST = glutathione 
S-transferase; TSSA = trypomastigote small-surface antigen.    
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 All TSSA-WB positive samples from Argentina ( N  = 67) 
showed reactivity to TSSA II; one of them also recog-
nized TSSA I (mixed infection). All reactive samples from 
Paraguayan people showed anti-TSSA II antibodies in single 
(39/40) or mixed (1/40) infections. 

 We compared the prevalence of human infections caused 
by the previously denominated TCI, TCII, or both based on 
TSSA-WB data among the countries under study. The over-
all statistical analysis showed significant differences in  T. cruzi  
lineage distribution ( P  < 0.00001). For further analysis, we 
made paired comparisons of peptide recognition (TSSA I ver-
sus TSSA II; TSSA II versus TSSA I–II; TSSA I versus TSSA 
I–II) between countries within the north (Mexico, Colombia, 
and Venezuela) and south (Argentina and Paraguay) of Latin 
America. No differences were found, except for that Colombia 
and Venezuela ( Table 3 ) related to single TSSA I and mixed 
reactivity ( P  < 0.025). 

 Then, we made pair-wise comparisons of the TSSA-WB 
results of serum samples from one country in the north and 
one in the south of Latin America. Overall differences for 
the distribution of TSSA I, TSSA II, and TSSA I–II reactivi-
ties were highly significant ( P  < 0.00001) ( Table 3 ). Moreover, 
differences were significant for TSSA I versus TSSA II and 
TSSA II versus TSSA I–II reactivities ( P  < 0.0001) ( Table 3 ). 
However, TSSA I versus TSSA I–II comparisons did not ren-
der significant differences, probably because of the absence 
of reactivity to only TSSA I and the very low number of 
samples recognizing both antigens in the southern countries. 

   Immunophenotyping to assess  T. cruzi  lineage distribu-
tion in Latin American regions.   The results described above 
about the distribution of parasite groups in different coun-
tries prompted us to perform a global comparative analysis 
based on TSSA I and TSSA II markers. For this purpose, we 
defined three areas: Southern region (south of South America; 
Argentina and Paraguay), Northern region (north of South 
America; Colombia and Venezuela), and Mexico.  Figure   2  

shows    a graphic representation of TSSA-WB data within each 
of these regions. In line with data presented in  Table 3 , lineage 
prevalence analysis indicates significant differences in the 
Southern region versus Northern region and Southern region 
versus Mexico. However, no differences were found between 
Mexico and the Northern region ( P  < 0.44). Comparisons with 
combined data from the Northern region and Mexico ver-
sus the results from the Southern region also indicate a dif-
ferential distribution of  T. cruzi  parasite lineages between the 
southern and northern areas of Latin America. The compari-
son of the distribution of TSSA I and mixed infection cases 
remained non-significant, probably because of the low num-
ber of samples from Argentina and Paraguay falling into these 
categories. 

      DISCUSSION 

 Given the relevance of  T. cruzi  persistence as responsible 
for the pathogenesis of the infection, parasite variability may 
be a key factor determining the clinical outcome of Chagas 
disease. 34,  35  Then, the distribution of  T. cruzi  genotypes may 
explain the regional variations in the manifestations of the 
chronic infection. 

 The immunological marker used along this work allows the 
classification of  T. cruzi  in two main groups, TCI and TCII. 6,  25  
Recently, TCII was reclassified into five DTUs (TcII to TcVI) 
based on genetic markers. 10  In this new context, no conflict 
arises when interpreting TSSA I recognition as related to TcI 
infections. However, for the other DTUs, we can assert that 
TSSA II-WB recognizes TcVI infections, because the TSSA 
II peptide was cloned from CL Brener (TcVI). As expected, 
TSSA II is also recognized by antibodies raised in mice 
infected with other TcVI strains (RA and Cvd) and in humans 
harboring TcVI bloodstream parasites ( Table 1 ). 36  Moreover, 
we also detected TSSA II-specific antibodies in serum samples 
from patients with TcII and TcV infections ( Table 1 ) as well as 
in samples from mice infected with TcII (Br strain). 36  These 
experimental data are in agreement with those data pub-
lished by Bhattacharyya and others, 26  who showed the poten-
tial use of TSSA II to detect TcII, TcV, and TcVI based on the 
analysis of the sequences of the antigenic region. 26  However, 
Bhattacharyya and others 26  suggest the incapability of TSSA 
II to recognize TcIII and TcIV DTUs, mainly associated with 
non-human infections, and a possible cross-reaction with 
TSSA I based on their predicted aminoacid sequence. 26,  37,  38  
Unfortunately, the absence of serological assays impedes the 
confirmation of these speculations. Proper studies must be 
carried out to verify them. 

 Herein, we immunocharacterized, for the first time, the 
 T. cruzi  infection of Mexican, Colombian, and Venezuelan 
people through TSSA markers. These antigens have already 
been used in an ELISA assay to analyze serum samples of 
patients from the southern cone of South America. 25  Because 
we applied a WB-based assay that improves the detection of 
anti-TSSA I antibodies in the human infection, patients from 
the south of South America were also included. 

 We tested serum samples from patients undergoing other 
infectious or non-infectious illnesses (malaria, leishmania-
sis, syphilis, and megasyndromes autoimmune disorders) and 
samples obtained from healthy individuals. The recognition 
of TSSA antigens only in one patient with malaria shows the 
specificity of TSSA-WB, even when assaying samples from 

  Figure  2.    Prevalence of  T. cruzi  lineages in human infection in 
Latin America based on TSSA I and TSSA II reactivity: Southern 
region (Argentina and Paraguay), Northern region (Colombia and 
Venezuela), and Mexico. Overall difference is  P  < 0.00001 (χ 2  test, 
degrees of freedom (df) = 4   ). Overall comparison between Southern 
and Northern region is  P  < 0.00001 (χ 2  test, df = 2). Comparison between 
Southern region and Mexico for TSSA I and TSSA II reactivities is  P  < 
0.00001 (Fisher exact test, df = 1). Overall comparison between North-
ern region and Mexico is  P  < 0.44 (χ 2  test, df = 2). Overall comparison 
between Northern region and Mexico vs. Southern region is  P  < 0.00001 
(χ 2  test, df = 2).    
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patients infected with  Leishmania  spp., which frequently 
causes cross-reactivity in serological tests. 39,  40  

 A good concordance between immunophenotyping and 
direct genotyping was observed. Full concordance was 
obtained in 17 of 31 samples ( Table 1 ). Partially coincident 
determinations may be because of variations in parasitic 
load, differential parasite tissue tropism, and/or the vari-
ability proper of human populations, among others, which 
also account for the lack of concordance for three patients 
( Table 1 ). Positive TSSA-WB results of negative genotyped 
samples show the usefulness of this immunological tool to char-
acterize  T. cruzi  populations during indeterminate or chronic 
human infections when low parasitemia makes direct genotyp-
ing difficult. In those cases, although laboratory amplification 
of parasites is an alternative to obtaining enough DNA, it is 
detrimental for assessing the original complexity of the infect-
ing parasite population. Moreover, the immunological charac-
terization is also independent of parasite tissue tropism. 

 TSSA-WB findings obtained in human serum samples 
from different countries were analyzed in combination with 
the serological diagnosis of the infection. Although high co-
reactivity arises from the comparisons of both approaches for 
Argentinean and Paraguayan patients ( Table 2 ), lower agree-
ment was detected for patients from Mexico and the north of 
South America (Colombia and Venezuela) ( Table 2 ). This phe-
nomenon may be caused by the use of the recombinant TSSA 
antigens obtained from parasites isolated in the south of South 
America, to a dissimilar immunogenicity of TSSA I and TSSA 
II that was already reported for other mammalian species as 
well as the variable features of the human populations under 
study. 25  In addition, the use of individual recombinant antigens 
in serologic tests is known to reduce their sensitivity. 

 In the southern cone of South America, TcII, TcV, and TcVI 
are proposed as the main parasite groups circulating in the 
domiciliary cycle of transmission; TcI was observed in sylvatic 
areas, where TcIII and TcIV are confined. 19–  22,  24,  41  However, in 
the north of South America, Central America, and Mexico, 
currently available data show a clear dominance of TcI in both 
transmission cycles. 11–  18  

 Our results from Argentinean and Paraguayan patients 
indicate almost exclusive anti-TCII reactivity, even in the par-
ticular situation of the Amerindians in the Chaco Region of 
Paraguay where the detection of TcI may be expected because 
of the lack of barrier between the sylvatic and domestic areas. 
 T. cruzi  I was only observed in a few cases of mixed infec-
tion, which coincides with the results that Di Noia and others 25  
report. These findings and those communicated for humans, 
dogs, and vectors confirm the predominance of TcII, TcV, and 
TcVI in the domestic cycle, whereas TcI is more closely related 
to sylvatic mammals. 19,  22,  41–  45  

 In northern countries, TSSA-WB delineates a distribution 
pattern that coincides only partially with previous descriptions 
based on molecular and biochemical markers. Interestingly, 
we observed single and mixed infections in patients from 
Venezuela where only single infections had been described for 
human and dog populations. 11,  46  In Colombia, a high propor-
tion of samples showed single TSSA II and mixed TSSA I–II 
recognition, thus contrasting with previous data that describe 
single TcI as the main genotype both in vectors and mam-
mals. 13,  17,  18,  47–  50  Finally, similar proportions of single and mixed 
(TSSA I–II) infections were observed in patients from Mexico, 
where genotyping reports describe TcI as the unique para-

site DTU involved in human infections. 14,  51  Indeed, our find-
ings point, for the first time, to the involvement of TcII/V/VI 
parasites in human Chagas disease in Mexico. 

 Despite the reported dominance of TcI, few cases of TcII, 
TcIV, TcV, and TcVI infections in humans, dogs, primates, and 
vectors have been recently found in Venezuela, Colombia, 
Guatemala, and the Brazilian Amazonia; most of those found 
were detected using modified typing strategies. 11,  17,  46,  52–  54  The 
introduction of new procedures shows the emergence of dif-
ferent  T. cruzi  populations in the human infection in this 
region. Our results obtained using a strategy not dependent 
on parasitemia, culture isolation, or tissue tropism are in line 
with this new picture for the geographical distribution of 
 T. cruzi  lineages. 

 The comparative analysis of the results among the defined 
regions—south of South America (Paraguay and Argentina), 
north of South America (Venezuela and Colombia), and 
Mexico—showed statistically significant differences in the dis-
tribution of TCI (TcI) and TCII (TcII, TcV, and TcVI) between 
the first region and the other two regions. Moreover, TCII 
(TcII, TcV, and TcVI) is preferentially associated with human 
infections in the southern cone, whereas both parasite groups 
are widely distributed in the north of Latin America. 

 A proper description of  T. cruzi  geographic distribution 
will help link the parasite genotype with clinical features in 
humans and evaluate new prophylactic and therapeutic strate-
gies necessary to succeed in controlling the infection. 

 Received March 24, 2010. Accepted for publication September 5, 
2010. 
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