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Abstract
Acute inflammation in the lung is fundamentally important to host defence, but chronic or
excessive inflammation leads to several common respiratory diseases, including asthma and acute
respiratory distress syndrome.

The resolution of inflammation is an active process. In health, events at the onset of acute
inflammation establish biosynthetic circuits for specific chemical mediators that later serve as
agonists to orchestrate a return to tissue homeostasis. In addition to an overabundance of pro-
inflammatory stimuli, pathological inflammation can also result from defects in resolution
signalling.

The understanding of anti-inflammatory, pro-resolution molecules and their counter-regulatory
signalling pathways is providing new insights into the molecular pathophysiology of lung disease
and opportunities for the design of therapeutic strategies.

In the present review, the growing family of lipid mediators of resolution is examined, including
lipoxins, resolvins, protectins, cyclopentenones and presqualene diphosphate. Roles are uncovered
for these compounds, or their structural analogues, in regulating airway inflammation.
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Inflammation of the lungs and airways has a significant medical and economic burden in
both Europe and the USA [1]. Asthma has the highest morbidity amongst inflammatory lung
diseases and its incidence has doubled since the 1980s [2]. Asthma is characterised by
airway infiltration of eosinophils, T-cells and mast cells with excess mucus, and, in some
cases, airway remodelling with changes in smooth muscle, which together contribute to the
clinical hallmark of airflow obstruction. Acute respiratory distress syndrome (ARDS) is the
inflammatory lung disease with the highest mortality [3]. ARDS is characterised by
extensive inflammation with polymorphonuclear leukocyte (PMN) activation in the lungs
[3]. The chronic inflammation of asthma and exuberant acute inflammatory response in
ARDS represent two different ends of a spectrum of inflammatory lung disease, yet both of
these respiratory illnesses are characterised by an inability to limit inflammation.
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Inflammation is a physiological response to tissue injury, infection and allergen challenge
that evolved to limit damage from noxious agents and the spread of infectious organisms [4].
The inflammatory response is inherently protective and intimately involved in the
restoration of tissue homeostasis. Until recently, the resolution of inflammation has been an
under-represented focus of inflammation research. It is now clear that the resolution phase
of an inflammatory response is an active and orchestrated process, similar in complexity to
the onset and maintenance of inflammation [5]. In restoring tissue homeostasis, resolution
not only dampens inflammation, but also promotes immune defence mechanisms. The
process of resolution has its origins at the beginning of the inflammatory response, with the
establishment of biosynthetic circuits for later production of counter-regulatory chemical
mediators. Molecules that promote resolution are inherently different from purely anti-
inflammatory compounds, as pro-resolution molecules contribute to tissue catabasis,
returning the tissue to normal [6,7].

Five classes of naturally occurring pro-resolution molecules are reviewed in the present
study (fig. 1), in addition to their signalling pathways, role in restoring tissue homeostasis
and impact on cellular effectors of lung inflammation (table 1).

CHEMICAL MEDIATORS OF RESOLUTION
Lipoxins

Lipoxins (LXs) are lipoxygenase (LO) interaction products of arachidonic acid (C20:4)
metabolism with structures and biological properties distinct from other eicosanoids [35,36].
LXs have potent anti-inflammatory properties with cell type-specific actions on leukocytes,
endothelium, epithelia and other stromal cells (fig. 2;table 1). Of particular relevance for the
resolution of inflammation in asthma and ARDS, LXs inhibit eosinophil trafficking
[12,13,37] and PMN chemotaxis, trans-migration across post-capillary venules, generation
of superoxide anions and degranulation of azurophilic granules [6]. In addition, LXs
stimulate clearance of apoptotic PMNs by macrophages [18], block natural killer cell
cytotoxicity and tumour necrosis factor (TNF)-α release from T-cells [14,15].

LXs are formed via transcellular biosynthesis with intermediates transferred in a bi-
directional manner between cells [38]. LXs can be generated via at least three distinct
pathways. One pathway involves leukocyte 5-LO-catalysed conversion of C20:4 to
leukotriene (LT)A4, which, in the vasculature, is subsequently taken up by platelets and
converted into LXA4 by 12-LO [39]. A second pathway involves the conversion of
epithelial cell-, eosinophil- or monocyte-derived C20:4 by 15-LO, producing 15(S)-
hydroperoxyeicosatetraenoic acid, which can also serve as a substrate for leukocyte 5-LO.
This reaction generates an unstable epoxytetraene intermediate that is converted to LXs by
hydrolases [35,40]. 5-LO derived LTA4 can also be converted by 15-LO to LXs. Although
these three pathways are the principal means of LX generation, additional 5-LO-independent
pathways probably exist.

Interestingly, aspirin, the lead nonsteroidal anti-inflammatory drug, inhibits prostaglandin
(PG) synthesis, but at doses much lower than the dose needed to exert its anti-inflammatory
effects [41]. This paradox was recently addressed by the identification of the aspirin-
triggered 15-epimer-LXs (ATLs) [42]. Aspirin acetylates the active site of cyclooxygenase
(COX)-2 to inhibit production of PGs, but the enzyme is still able to convert C20:4 to 15(R)-
hydroxyeicosatetranoic acid (15R-HETE). This compound can serve as a substrate for 5-LO
for further conversion to ATLs [42]. 15-epimer-LXs increase nitric oxide synthesis via
constitutive or inflammatory nitric oxide synthase, and nitric oxide decreases leukocyte–
endothelial cell interactions inhibiting leukocyte accumulation within inflamed tissues [43].
Thus, aspirin can exert anti-inflammatory effects by both inhibiting pro-inflammatory PG
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biosynthesis and promoting the formation of anti-inflammatory 15-epimer-LXs. In the
absence of aspirin, 15R-HETE can also be produced by cytochrome p450 enzymes to act as
a substrate for 15-epimer-LX transcellular biosynthesis [44,45].

LXs are metabolically inactivated by the actions of 15-hydroxyprostaglandin dehydrogenase
and PG reductase to form 13,14-dihydro-15-hydroxy-LXA4 [9,46]. LX and 15-epimer-LX
metabolism is stereospecific, with 15-epimer-LXs metabolised less efficiently, thereby
increasing the biological half-life of these ATLs approximately two-fold [46]. LX analogues
that resist inactivation have been generated [9]. These modifications enhance the biological
activity of LXs and have proved to be useful tools in the study of the biological functions of
LXs in vitro and in vivo.

LXs not only play a role directing leukocyte function towards resolution, but can also signal
the local stromal micro-environment towards resolution (table 1). Normal human bronchial
epithelial cells (NHBE) exposed to hydrochloric acid increase expression of COX-2 and the
high-affinity LXA4 receptor ALX. LXA4 promotes restitution from acid injury by increasing
basal NHBE proliferation and inhibiting pro-inflammatory events in differentiated NHBE,
such as cytokine release and PMN trans-migration [26]. Despite potent regulation of
epithelial cell and leukocyte function, LX bioactions are distinct from immunosuppressive
compounds, in that LX signalling regulates pathogen-mediated inflammation [20,47] and
promotes mucosal bacterial killing via expression of bacterial/permeability inducing protein
(BPI) in epithelial cells [22]. Thus, in addition to anti-inflammation, LXs are also host
protective.

LXA4 receptors—LXs interact with one or more specific receptors, including their own
specific receptor, a subclass of LTD4 receptors (i.e. cysteinyl (Cys)LT1), and additional
intracellular recognition sites [48,49]. The LXA4 receptor ALX is a G-protein-coupled
protein that binds LXA4 with high affinity (KD = 1.7 nM) [48]. ALX was the initial receptor
identified to bind both lipid and peptide ligands [48,50]. In PMNs, signalling by ALX
occurs, in part, via polyisoprenyl phosphate (PIPP) remodelling (vide infra) [10] and
inhibition of leukocyte-specific protein-1 phosphorylation, which is a downstream regulator
of the p38-mitogen-activated protein kinase cascade (table 2) [51].

ALX mediates annexin-1 anti-inflammatory signals—Glucocorticoids are potent
anti-inflammatory molecules that play a major role in resolving inflammation by inhibiting
the production of pro-inflammatory mediators [58,59] and decreasing the expression of
leukocyte adhesion molecules [60]. Dexamethasone also promotes monocyte and T-cell
emigration out of inflamed tissues [61,62]. Glucocorticoids act via cognate receptors within
the cell cytoplasm that, upon ligand binding, move to the nucleus to regulate transcription
[63]. Of interest for asthma therapy, corticosteroids induce expression of ALX [64] and
annexin-1, which can also interact with ALX to initiate anti-inflammatory signals [65].

Annexin-1 is a potent anti-inflammatory molecule that is abundantly expressed by PMNs
[66]. Most of the annexin-1 is within the cytoplasm. Upon PMN activation and adhesion to
inflamed vascular endothelium, annexin-1 is rapidly externalised [67], leading to cell
detachment from inflamed blood vessels [68] and decreased PMN recruitment. The addition
of antisera to annexin-1 in a model of acute inflammation results in the persistence of PMNs
in the inflammatory exudates [69]. In annexin-1 knockout mice, PMNs are more easily
activated [28,69]. Some of the anti-inflammatory effects of annexin-1 and its N-terminal
peptide, Ac2-26, are mediated by direct interactions with ALX, but at a lower affinity (KD =
900 nM) than LXA4 [70].
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Role of LXs in lung disease—LXs are generated in the lung during a range of
respiratory illnesses [71]. Of interest is the fact that a low biosynthetic capacity for LXs is
associated with severe airway inflammation. Aspirin-exacerbated respiratory disease is a
more severe and protracted form of asthma and, in whole blood, these asthmatic individuals
have a decreased ability to produce LXs compared with aspirin-tolerant asthmatics [72]. In
addition, lower levels of LXA4 are present in supernatants of induced sputum in severe,
compared with mild, asthma [73]. Moreover, individuals with severe asthma have a reduced
capacity, in whole blood, to convert C20:4 to 15-LO-catalysed products, including both 15-
HETE and LXA4 [74]. In sharp contrast to this decrement in 15-LO activity, 5-LO-derived
products, including 5-HETE, LTB4 and CysLTs, are all increased in severe asthma [74]. The
forced expiratory volume in one second percent predicted values and circulating levels of
LXA4 and CysLTs are correlated, suggesting a link between biosynthetic capacity for these
bioactive lipid mediators and airflow obstruction in asthma. Thus, decrements in LX
generation and increases in LT production in severe asthma create an imbalance that
maintains the persistent airway inflammation and airflow obstruction typical of this
condition.

Reduced levels of LXs have also been found in the airways of some patients suffering from
cystic fibrosis [75]. Because similar results have been obtained with chronic bronchitis,
altered LX formation in the airway may represent a more generalised consequence of
chronic PMN-enriched airway inflammation [76]. In support of the notion that LXs might
provide a viable therapeutic strategy in the treatment of respiratory inflammation, mice
treated with a stable LXA4 mimetic have reduced airway inflammation, and transgenic mice
for human ALX coupled to a component of the CD11b promoter have reduced leukocyte
infiltration in murine models of allergic airway inflammation and acute lung injury (ALI)
[37,77].

PGs and LTs—Like LXs, PGs and LTs are also enzymatically derived from C20:4 and
serve as potent lipid mediators [78]. They perform crucial functions in normal physiology
and play important roles early in acute inflammation. At the onset of inflammation, C20:4 is
metabolised by COXs to PGs, such as PGD2, PGE2, PGF2α, PGI2 and thromboxane A2, that
are well known to have potent biological effects on inflammatory cells and lung tissues. In
addition to the well-described roles of PGs in promoting inflammatory responses, recent
studies have also highlighted a role for COX-2-derived PGs serving anti-inflammatory and
anti-fibrotic roles in the resolution of inflammation [77,79,80]. In a model of acute resolving
pleural inflammation, COX-2 levels transiently increased early (2 h) and late (48 h) after the
onset of inflammation to generate COX-2-derived PGD2 and 15deoxyΔ12–14PGJ2 (15d-
PGJ2) [79]. COX-2-derived PGE2 can also resolve allergic pleural inflammation [79,80] and
TNF-initiated PMN activation in exudates [81]. Of interest, COX-2 derived PGD2 and PGE2
can induce 15-LO expression to promote LX biosynthesis [81]. In a model of spontaneously
resolving ALI, selective COX-2 inhibition or deficiency results in prolonged inflammation,
in part, by decreasing production of PGE2 and pro-resolving mediators, including LXA4 and
15-epimer-LXA4 [77,79]. In addition to PGs, LTs also carry pro-phlogistic properties
important for leukocytes and respiratory tissues [82]. Metabolism of C20:4 by 5-LO leads to
the formation of LTs. LTA4 is an unstable, yet pivotal intermediate that can be converted to
LTB4 by LTA4 hydrolase, LTC4 by LTC4 synthase or to LXs by 12- or 15-LO [6]. In
particular, LTB4 is a potent PMN chemoattractant and secretagogue, and LTC4 and LTD4
are potent bronchoconstrictors [82]. Of interest, LTB4 can be important for host defence,
promoting PMN phagocytosis of pathogenic bacteria and antiviral mechanisms [83,84].
These same properties are not shared by CysLTs, as mice deficient in the multidrug
resistance protein 1, which is involved in cellular extrusion of LTC4, are resistant to
Streptococcus pneumoniae-induced pneumonia [85], and a CysLT1-receptor selective
antagonist provides a survival advantage in animal models of sepsis [86].
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Cyclopentenones
The COX-derived intermediate PGG2 can be converted by PGD2 synthase to PGD2, which
displays pro-inflammatory and provocative actions on leukocytes and airway tissues [87].
However, PGD2 is further dehydrated to produce PGs of the J series, including Δ12–14-PGJ2
(PGJ2) and 15d-PGJ2. It has been proposed that the induction of COX-2 during resolution of
inflammation is necessary for the formation of cyclopentenone PGs (cyPGs) that can
transduce counter-regulatory effects via activation of peroxisome proliferator-activated
receptor (PPAR)-γ (table 2) [54,79]. For example, the cyclopentenone 15d-PGJ2 inhibits the
expression of vascular cell adhesion molecule (CD106) and intercellular adhesion molecule
(CD54) on human umbilical vein endothelial cells [88]. The actions of 15d-PGJ2 contrast to
those of LXs in that they inhibit, rather than augment, macrophage activity while having
little effect on PMNs (table 1) [89]. In addition, pharmacological concentrations of 15d-
PGJ2 can dampen lymphocyte proliferation and interleukin (IL)-2 production [90,91]. These
cell type-specific actions are highlighted by the evidence that 15d-PGJ2 blocks monocyte
adhesion to human aortic vessels while having no effect on PMN. 15d-PGJ2 also inhibits CC
chemokine ligand (CCL)2 (monocyte chemoattractant protein-1) expression on endothelial
cells, but not CCL8 (IL-8) [27].

Role of cyclopentenones in lung disease—Cyclopentenones can promote resolution
of ALI. 15d-PGJ2 protects mice from ALI by activating PPAR-γ and the transcription factor
Nrf2 (nuclear factor erythroid 2-related factor 2) that in turn transduces a number of genes to
protect against oxidative damage [92,93]. 15d-PGJ2 can serve as a ligand for PPAR-α and
PPAR-γ, and display protective actions in a murine model of allergic airway inflammation
[94].

Resolvins
Resolvins (resolution phase interaction products) are omega-3 fatty acid derived anti-
inflammatory lipids that were originally identified in spontaneously resolving exudates
[95,96]. Resolvins are organised into different series, depending upon the origin of the lipid.
Resolvins of the D series (e.g. RvD1) are derived from docosahexaenoic acid (DHA; C22:6)
and resolvins of the E series (e.g. RvE1) are derived from eicosapentaenoic acid (EPA;
C20:5) [6].

Resolvins are generated in human whole blood with enzymatic conversion of DHA to 17S-
hydroxy-containing D-series resolvins. Generation of these compounds is markedly
increased in the presence of aspirin [95,96]. Endothelial cells grown under hypoxic
conditions and treated with aspirin convert DHA into 17R-hydroxy-DHA by aspirin
acetylated COX-2 to give rise to the 17R-Resolvin D series. 17R-hydroxy-DHA is also a
substrate for human PMN in the formation of two sets of di- and tri-hydroxy products.
Enzymatic oxygenation of 17R-hydroxy-DHA at carbon 7 leads to aspirin-triggered RvD1
(AT-RvD1) and AT-RvD2. When 17R-hydroxy-DHA is oxygenated at carbon 4, AT-RvD3
and AT-RvD4 are generated [6]. In vitro, endothelial cells and brain-derived microglial cells
treated with aspirin convert EPA to 18R-hydroxyeicosapentaenoic acid (18R-HEPE) and
15R-HEPE. Both 18R- and 15R-HEPE can be rapidly converted by activated PMN to a
5(6)-epoxide-containing molecule, which is then converted to the bioactive 5,12,18R-
trihydroxyeicosapentaenoic acid (RvE1) [95].

Resolvins of both the D and E series exert potent anti-inflammatory properties, such as
inhibiting PMN migration and shortening the resolution phase of acute inflammation [97]
(table 1). The first receptor for RvE1 was identified as ChemR23 [31]. ChemR23 is
expressed on monocytes, macrophages and dendritic cells (DCs). Treatment with RvE1
inhibits inflammatory colitis, DC migration and IL-12 production, and attenuates nuclear
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factor-κB activation (table 2) [30,31]. Intriguingly, ChemR23 was originally discovered as a
receptor for a chemotactic protein found in inflammatory exudates called Chemerin [98].
Recently, a second receptor for RvE1 was identified, namely the LTB4 receptor BLT1,
which is expressed on PMNs, eosinophils, monocytes and T-cells [99,100].

Of interest, mice have been developed that are transgenic for an omega-3 fatty acid
desaturase thereby producing more omega-3 fatty acids from omega-6 fatty acids [101].
These transgenic animals are protected from colitis in a model of gastrointestinal
inflammation [102]. This protective effect was not secondary to a decrease in the pro-
inflammatory lipids PGE2 and LTB4. Rather, levels of resolvins were significantly increased
[102]. Omega-3 fatty acids are concentrated in fish oils and diets rich in omega-3 fatty acids
can protect against asthma, cystic fibrosis, heart disease and cancer [103–105]. These newly
identified omega-3 resolvins provide a potential molecular rationale for these beneficial
effects.

Resolvins in lung disease—Airway epithelial cells in cystic fibrosis and asthma display
abnormalities in fatty acid metabolism with low levels of omega-3 fatty acids [106]. Enteric
feeding of supplements enriched with omega-3 fatty acids improves clinical outcomes in
ARDS, including time to liberation from mechanical ventilation and discharge from the
intensive care unit [107]. Generation of resolvins has not yet been reported in ARDS or
other respiratory illnesses. Little is known about the role of resolvins in lung disease, but as
resolvins have been shown to exert anti-inflammatory effects in models of peritonitis and
renal ischaemia–perfusion injury [29,97], it is likely that resolvins would also be lung
protective and promote the resolution of airway injury and inflammation.

Neuroprotectin D1/protectin D1
Protectin (P)D1 is 10R,17S-docosatriene that is generated from DHA in a 15-LO-catalysed
reaction [108,109]. In acute, spontaneously resolving murine peritonitis, new indices of
resolution have been defined, including ψmax, (the maximal number of PMNs present), tmax,
(the time when ψmax occurs) and Ri, (the resolution interval (tmax to t50) for PMN numbers
to reach half the ψmax) [97]. Using this approach, PD1 was increased in the resolution
exudates and had the most potent reduction in Ri when compared with LXs, 15-epimer-LXs
and E-series resolvins [97]. This docosatriene was subsequently named neuroprotectin D1/
protectin D1 after identification of its generation by glial cells in the brain where DHA is
abundantly found and its protection against ischaemic brain injury and Alzheimer’s disease
[108,110,111]. PD1 also modulates macrophage and structural cell responses to protect
against renal and hepatic injury (table 1) [29,112].

Role in lung disease—During asthma exacerbations, PD1 and its biosynthetic
intermediate 17S-hydroxy-DHA are present in exhaled breath condensates, but are
significantly reduced compared with amounts in exhaled breath condensates from healthy
subjects [113]. In addition, PD1 is also present in inflamed murine lung homogenates. When
exogenous PD1 is administered to allergen-sensitised mice prior to aerosol allergen
challenge, PD1 significantly blocks leukocyte infiltration and airway hyperresponsiveness.
When administered after allergic airway inflammation has been established, PD1 also
accelerates the clearance of eosinophils. Thus, PD1 has intriguing properties that suggest
exciting new therapeutic strategies for the treatment of asthma.

Polyisoprenyl phosphates
Many inflammatory diseases of the airways are associated with an abundance of PMNs,
including ARDS, pneumonia and severe asthma [3,114,115]. Tissue-infiltrating PMNs can
cause extensive damage to the surrounding tissue and perpetuate inflammation via the
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inadvertent release of noxious products, such as superoxide anions and proteases [4]. It is
important that natural mechanisms exist to control PMN activation. PIPPs serve unique roles
as “stop” signals for PMN. PIPPs are present in PMN membranes. Activation of PMNs
initiates PIPP remodelling with presqualene diphosphate (PSDP) converted rapidly into its
monophosphate form presqualene monophosphate (PSMP) [34]. PSDP, but not PSMP,
dramatically reduces PMN release of superoxide anion generation (table 1) [10,34].

Several regulatory sites of action have been uncovered for PIPPs. PSDP inhibits plant,
microbial and mammalian phospholipase (PL)D (table 2) [34,116]. This enzyme converts
phosphatidylcholine to phosphatidic acid (PA) [117], which carries important intracellular
signals in PMN that lead to a wide range of functional responses, including actin
remodelling, granule release and activation of nicotinamide adenine dinucleotide phosphate-
oxidase. Phosphatidylinisitol 3-kinase (PI3K) activity is important for early cell activation
[118], and PSDP has recently been identified as a regulator of PI3K [57]. LTB4 stimulates a
rapid decrease in PMN PSDP levels and increase in PI3K activity. PSDP interacts with
p110γ-PI3K as it deactivates, and in vitro, PSDP displays concentration-dependent
inhibition of recombinant p110γ-PI3K. PSDP structural mimetics have been prepared and
can inhibit PLD, PI3K, PMN responses and lung inflammation in vivo [57,116].

PSMP does not share PSDP’s potent inhibitory properties. Upon PMN activation, PSDP is
converted to PSMP by PA phosphatase domain containing 2 [119]. Functionally
characterised as a phosphatase, this enzyme converts PSDP and farnesyl diphosphate to their
monophosphates, and so was recently renamed polyisoprenyl diphosphate phosphatase
(PDP)-1 (fig. 3). Expressed in PMNs and numerous human tissues, PDP-1 is a member of
the lipid phosphatase/phosphotransferase (LPT) family [120]. There are five sub-groups of
LPTs, including lipid phosphate phosphatases, sphingosine-1-phosphate (S1P) phosphatases,
sphingomyelin synthases, lipid phosphatase-related proteins/plasticity-related genes and a
group without any previously assigned function, which was called candidate sphingomyelin
synthases type 2 (CSS2). PDP-1 is a member of the CSS2 family of LPTs [119].

In addition to PMNs, PDP-1 is also highly expressed in major immune organs (lung, spleen,
thymus, liver and gut). This suggests that PDP-1 could play important roles in regulating
cells not only of the myeloid lineage but also structural cells, macrophages, DCs and
lymphocytes. S1P has recently been shown to play a crucial role in controlling the egress of
lymphocytes from the thymus, lymph nodes and spleen [121]. S1P is metabolised by S1P
phosphatases, suggesting that LPTs are likely to play many important roles in controlling
immune responses.

PSDP in lung disease—During an experimental model of lung injury and inflammation
from acid aspiration, a reciprocal relationship was present in vivo for lung PSDP and PI3K
activity [57]. A new diphosphonate PSDP structural mimetic was developed to resist
phosphatase-based inactivation, and this PSDP analogue blocks human PMN activation by
LTB4 and murine lung PI3K activity and inflammation. These findings indicate that PSDP is
an endogenous PI3K inhibitor, and suggest that in inflammatory diseases characterised by
excessive PMN activation, PIPPs can serve as structural templates for an anti-PMN
therapeutic strategy to limit tissue injury associated with ARDS.

CELLULAR EVENTS IN RESOLUTION
Apoptosis and phagocytosis

During an inflammatory response, there is a substantial increase in the number of immune
cells that accumulate in a tissue. In addition to blocking further leukocyte recruitment,
leukocytes already present can either exit the inflamed tissue via draining lymphatics or
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undergo programmed cell death for nonphlogistic clearance by phagocytes [122]. Apoptosis
and resolution of inflammation are intrinsically linked, as impairment of either apoptosis or
clearance of apoptotic cells leads to chronic inflammation and auto-immunity [123].
Similarly, enhancement of apoptosis can accelerate resolution of an inflammatory response
[124]. LXs promote phagocytosis of apoptotic PMNs by macrophages [18]. This process
further modulates the inflammatory milieu by releasing anti-inflammatory transforming
growth factor-β that can convert naïve precursors to regulatory T-cells [125]. After ingestion
of apopotic cells, macrophages also release counter-regulatory lipid mediators, including
PGE2, PGF1-α and LXs [126,127].

Egress of leukocytes during resolution
At the start of an inflammatory response, cells are recruited to an inflammatory focus by
specific chemoattractants that orchestrate the recruitment of leukocyte subsets, beginning
with PMNs, followed by eosinophils, monocytes/macrophages and lymphocytes [128,129].
Regulated chemokine production is essential for the normal, physiological migration of
leukocytes and for the recruitment of leukocytes during an inflammatory response [130].
Altered chemokine production is often a feature of chronic inflammation, with increased
leukocyte recruitment and retention within involved tissues [131]. Inflammatory
microenvironments modulate egress of leukocytes by specific chemokine receptor
expression, e.g. T-cells can utilise CC chemokine receptor 7 to exit via afferent lymphatics
[132,133]. Similarly, PMN can be cleared from inflamed tissue by increasing expression of
the chemokine receptor CXCR4 to return to bone marrow in a stromal-derived factor-1-
directed manner [134]. Pro-resolving lipid mediators are potent regulators of chemokine
expression [33]. Modifications of tissue stroma with select chemokines can retain specific
leukocytes and compromise resolution [135,136].

As inflammation resolves, chemokines need to be removed from the microenvironment to
halt further leukocyte recruitment. Towards this end, the “silent” chemokine receptor D6
plays an important role in scavenging inflammatory, but not constitutive chemokines [137].
D6 knockout mice fail to resolve acute inflammatory responses, suggesting that D6 has
important roles in resolution [138]. Infiltrating leukocytes can also upregulate select
chemokine receptors as they undergo apoptosis, in order to sequester chemokines and so
prevent further leukocyte recruitment [33]. LXs are potent stimuli for increased clearance of
apoptotic PMNs, but little is known regarding the impact of LXs or pro-resolution lipids on
leukocyte egress [18].

Resolution of inflammation and host defence
Resolution of inflammation differs from immunosuppression, partly by the promotion of
host defence. Of interest, LXs enhance mucosal host defence by controlling pathogen-
induced inflammatory responses [20,47] and inducing BPI expression [22]. BPI is a 55 kDa
protein released from PMN and epithelial mucosa. BPI disrupts the inner and outer lipid
membranes of Gram-negative bacteria, enhances phagocytosis of bacteria and sequesters
lipopolysaccharides [139]. Exposure of epithelial cells to LXA4 or ATL upregulates BPI and
increases gastrointestinal epithelial killing of salmonella [22]. LXA4 and RvE1 also protect
rabbits from Porphyromonas gingivalis-induced periodontal disease, demonstrating that pro-
resolution molecules enhance, rather than impair, host defence in vivo [140].

Therapeutic implications
Many of the current therapeutic targets of inflammatory diseases focus on blocking the
initiating or amplifying mediators of inflammation. While this strategy has been beneficial
in some clinical conditions, there remain substantial unmet clinical needs for common
inflammatory lung diseases, including asthma and ARDS. Rather than blocking early or
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select pro-inflammatory mediators, an alternative therapeutic strategy might emphasise
mimetics of LXs, cyPGs, resolvins, protectins, PSDP or other natural counter-regulatory
molecules that accelerate resolution of inflammation. Metabolically stable analogues of
some of these compounds have been developed and display potent in vivo protective actions
in several model systems [116,141].

Of interest, anti-inflammatory therapies can impact the formation or actions of pro-
resolution compounds. For example, aspirin promotes formation of 15-epimer-LXs and
resolvins [17,96]. Because of concerns for precipitating asthma, this agent is rarely used,
despite its potential therapeutic benefits [142]. Glucorcorticoids are commonly used to
control asthma and, in addition to increasing the ALX ligand annexin-1 (vida supra), can
increase PMN expression of the ALX receptors [64]. Moreover, some anti-inflammatory
experimental agents, including a 5-LO-interacting protein (FLAP) inhibitor (BayX-1005),
can both decrease LT and increase LX formation in vivo [143].

CONCLUSION
The resolution of inflammation is an integral part of the physiological response to tissue
injury and infection. Elucidation of resolution mechanisms has led to its recognition as a
fundamental homeostatic process. In health, establishment of resolution signalling pathways
is initiated early, at the very start of acute inflammatory responses. The kinetics for the
formation of pro-resolving mediators is highly regulated and linked to cellular trafficking
events in inflammation. Discovery of endogenous chemical agonists for resolution and their
signalling pathways provides opportunities for the development of new therapeutic
strategies and to gain further insights into the pathophysiology of chronic and severe
inflammatory lung diseases, such as asthma and acute respiratory distress syndrome. A
better understanding of the mechanisms of resolution in airway inflammation may provide
new treatment options for the excess morbidity and mortality associated with these and other
common respiratory conditions.
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FIGURE 1.
Classes of endogenous anti-inflammatory lipids. Representative members of five classes of
endogenous anti-inflammatory lipids are shown: a) lipoxins, lipoxin A4; b) resolvins,
resolvin E1; c) protectins, protectin D1; d) cyclopentenones, 15deoxyΔ12–14prostaglandin
J2; and e) polyisoprenyl phosphates, presqualene diphosphate.
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FIGURE 2.
Cell-type specific counter-regulatory actions of some lipid mediators. Endogenous autacoids
display cell type-specific actions to promote inflammation. Lipoxins (LXs) engage specific
receptors (e.g. ALX) to inhibit polymorphonuclear leukocyte (PMN) transmigration through
endothelial and epithelial cells, and can inhibit pro-inflammatory responses of innate
immune effectors, including PMNs, T-cells, eosinophils and natural killer (NK) cells.
Clearance of apoptotic PMN is also enhanced by LXs. Of interest, these compounds increase
mucosal epithelial cell expression of bactericidal/permeability increasing protein (BPI) to
protect against pathogens. Resolvins (e.g. resolvin E (RvE)1) and protectins (e.g. protectin D
(PD)1) also display cell type-specific counter-regulatory responses to promote resolution.
CCR: CC chemokine receptor; TNF: tumour necrosis factor; IL: interleukin.
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FIGURE 3.
a) Illustration and b) time course of presqualene diphosphate (PSDP) remodelling in human
polymorphonuclear leukocytes (PMNs). PSDP is an intracellular counter-regulatory
molecule present in nanomolar quantities in freshly isolated PMNs. Activation by
inflammatory stimuli (··········) results in the rapid and transient conversion of PSDP (red) to
presqualene monophosphate (PSMP; blue) concurrent with functional responses, such as
superoxide anion (O2

−) generation. PSDP remodelling is mediated by polyisoprenyl
diphosphate phosphatase-1 (PDP-1). The pool of PSDP is restored within a few minutes as
the cells deactivate. c) Chemical structure of PSDP; d) chemical structure of PSMP.
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TABLE 1

Cell type-specific counter-regulatory actions for chemical mediators of resolution

Chemical mediator Cell type/molecule Response Species Ref.

Lipoxin A4 PMN Inhibit chemotaxis Human [8]

Inhibit trans-endothelial PMN migration Human [9]

Inhibit trans-epithelial migration of PMN Human [8]

Inhibition of superoxide anion generation Human [10]

Inhibition of azurophilic granule release Human [11]

Eosinophil Inhibition of eosinophil migration Human [12,13]

T-cells Inhibition of TNF release Human [14]

NK cells NK cell cytotoxicity Human [15]

Monocytes/macrophages Adhesion to laminin Human [16]

Chemotaxis Human [17]

Augment engulfment of apoptotic PMN Human [18]

Dendritic cells Block IL-12 production Mouse [19]

Prevent toxoplasmosis morbidity Mouse [19]

Prevent tuberculosis morbity Mouse [20]

Enterocytes Inhibit TNF induced IL-8 release Human [21]

Increase BPI expression Human [22]

Killing of Salmonella Human [22]

Synovial fibroblasts Inhibits IL-1β induced IL-6, IL-8 and MMP3 release Human [23]

Endothelium Stimulates prostacyclin release Human [24]

Block CysLT-initiated Weibel–Palade body expression Human [25]

Bronchial epithelial cells Basal cell proliferation after acid injury Human [26]

Blocks IL-6 and IL-8 release Human [26]

CyPGs Macrophages Inhibits adhesion and trans-endothelial migration Human [27]

Annexin-1 PMN Inhibition of PMN migration Human [28]

Resolvin D1 Macrophages Inhibit LPS-induced TNF release Mouse [29]

Resolvin E1 Dendritic cells Inhibition of IL-12 release Mouse [30]

Inhibition of migration Mouse [31]

PMN Inhibition of superoxide generation generation Human [32]

Apoptotic T-cells, PMN Upregulation of CCR5 Human [33]

Protectin D1 Macrophages Inhibit LPS-induced TNF release Mouse [29]

PSDP PMN Inhibition of superoxide anion generation Human [34]

PMN: polymorphonuclear leukocyte; TNF: tumour necrosis factor; NK: natural killer; IL: interleukin; BPI: bactericidal/permeability increasing
protein; MMP: matrix metalloproteinase; CysLT: cysteinyl leukotriene; CyPG: cyclopentenone prostaglandins; LPS: lipopolysaccharide; CCR: CC
chemokine receptor; PSDP: presqualene diphosphate.
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TABLE 2

Counter-regulatory lipid mediator signalling mechanisms

Chemical mediator Signalling molecule Action Species Ref.

Lipoxin A4 PIPP remodelling Inhibits LTB4-stimulated PSDP conversion to PSMP Human [10]

LSP-1 Blocked phosphorylation of LSP-1 Human [51]

SOCS-2 Induces the expression of SOCS-2 Mouse [47]

Akt/PKB Induces phosphorylation of Myc9 and Cdc42 polarisation Human [52]

PPAR-γ and CINC-1 Reduced PPAR-γ and CINC-1 levels in hepatocytes Rat [53]

CyPGs PPAR-γ Ligand for PPAR-γ Mouse [54]

NF-κB Suppression of NF-κB binding Mouse [54]

AP1 and STAT activity Inhibition of AP1 binding to DNA Mouse [55]

Resolvin E1 NF-κB Inhibition of NF-κB signalling Mouse [31]

PSDP PLD Blocks PLD activation in PMN Human [10]

SH2 domains Interacts with SH2 domains Human [56]

PI3K Inhibits PI3K activity in PMN Human [57]

PIPP: polyisoprenyl phosphate; LT: leukotriene; PSDP: presqualene diphosphate; PSMP: presqualene monophosphate; LSP: leukocyte-specific
protein; SOCS: suppressor of cytokine signalling; PKB: protein kinase B; PPAR: peroxisome proliferator-activated receptor; CINC: cytokine-
induced neutrophil chemoattractant; CyPG: cyclopentenone prostaglandins; NF: nuclear factor; AP: activator protein; STAT: signal transducers
and activators of transcription; PLD: phospholipase D; PMN: polymorphonuclear leukocyte; SH2: Src homology 2 domain; PI3K:
phosphatidylinositol 3-kinase.
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