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Abstract
Independent component analysis (ICA) methods have received growing attention as effective data-
mining tools for microarray gene expression data. As a technique of higher-order statistical
analysis, ICA is capable of extracting biologically relevant gene expression features from
microarray data. Herein we have reviewed the latest applications and the extended algorithms of
ICA in gene clustering, classification, and identification. The theoretical frameworks of ICA have
been described to further illustrate its feature extraction function in microarray data analysis.

INTRODUCTION
With advances in DNA microarray technology, it is now possible to quantify expression
levels of thousands of genes in parallel. In fact, in various human disease studies, the
technology has become a mature gene expression profiling tool. Implicit in the work of gene
expression analysis today is the assumption that no gene in the human genome is expressed
completely independently of other genes. Therefore, to understand the synergistic effects of
multiple genes, researchers, as part of the process, extract the underlying features from any
multivariable microarray data set to reduce dimensionality and redundancy.

To permit effective extraction of these features, however, microarray technology must
address the issue of noise in the array systems themselves. Due to the inherent noise in most
array systems, single control and experiment designs are not always reliable, making it
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difficult to understand the functionality of the complicated correlations among the large
numbers of genes present in the genome.

Overcoming all of these challenges requires mathematical and computational methods that
are versatile enough to capture the underlying biological features and simple enough to be
applied efficiently to large data sets. Two kinds of unsupervised analysis methods for
microarray data, principal component analysis (PCA) and independent component analysis
(ICA), have been developed to accomplish this task. PCA projects the data into a new space
spanned by the principal components. Each successive principal component is selected to be
orthonormal to the previous ones and to capture the maximum variance that is not already
present in the previous components. The constraint of mutual orthogonality of components
implied by classical PCA, however, may not be appropriate for biomedical data. Moreover,
since PCA features all use second-order statistics technique to achieve the correlation
learning rules and only covariances between the observed variables are used in the
estimation, these features are only sensitive to second-order statistics. The failure of
correlation-based learning algorithms is that they reflect only the amplitude spectrum of the
signal and ignore the phase spectrum. Extracting and characterizing the most informative
features of the signals, however, require higher-order statistics.

In contrast to PCA, the goal of ICA is to find a linear representation of non-Gaussian data so
that the components are statistically independent, or as independent as possible. Such a
representation can be used to capture the essential structure of the data in many applications,
including feature extraction and signal separation. ICA is already widely used for
performing blind source separation (BSS) in signal processing and is considered a very
important research topic in many areas, such as biomedical engineering, medical imaging,
speech enhancement, remote sensing, communication systems, exploration seismology,
geophysics, econometrics, data mining, etc. (1). BSS techniques principally do not use any
training data and do not assume a priori knowledge about the parameters of filtering and
mixing systems. BSS, therefore, has been successfully used in processing
electroencephalograms (EEG), magnetoencephalograms (MEG), and functional magnetic
resonance (fMRI) images (2–5).

In the first phase of ICA biomedical applications, Hori and colleagues first proposed an
ICA-based gene classification method to effectively classify yeast gene expression data into
biologically meaningful groups (6,7). Liebermeister proposed an ICA method for microarray
data analysis to extract expression modes whereby each mode represents a linear influence
of a hidden cellular variable (8). Following these developments, ICA has been widely used
in microarray data analysis for feature extraction, gene clustering, and classification. In
biomedical data mining, ICA has been shown to outperform PCA.

METHODOLOGY
Theory and Model of ICA/BSS

The technique of ICA was first used in 1982 for analyzing a problem pertaining to
neurophysiology (9). In the middle of the 1990s, after the term ICA was first coined by
Comon (10), ICA received wide attention and growing interest when many efficient
approaches were put forward, such as the infomax principle by Bell and Sejnowski (11),
natural gradient-based infomax by Amari (12), and the fixed-point (FastICA) algorithm by
Hyvärinen (13–16). Due to ICA’s computational efficiency, it was widely used in many
large-scale problems. ICA and its various extended theories, algorithms, and applications
have subsequently become a very important research topic in many areas.
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ICA, as a specific embodiment of BSS, has been further developed in the last decade. BSS
solves the problem of recovering statistically independent signals from the observations of
an unknown linear mixture. Although BSS and ICA refer to the same or similar models and
can solve problems with similar algorithms under the assumption of mutually independent
primary sources, the terms are often interchangeably used in the literature. However, BSS
and ICA have somewhat different objectives. The objective of BSS is to estimate the
original source signals even if they are not all statistically independent, while the objective
of ICA is to determine a data transformation that assures that the output signals are as
independent as possible. For this purpose, ICA methods often employ higher-order statistics
(HOS) to extract a higher-order structure of signals in feature extraction (10,11).

The BSS model can be described as follows:

Let s(t) = [s_1(t), s_2(t), …, s_M(t)]T, where m represents mutually independent random
processes whose exact distribution functions are unknown, and t is a discrete time variable.
Suppose that we have n sensors to provide observed signals x(t) = [x_1(t), x_2(t), …,
x_N(t)]T, with xi(t), i = 1, 2, …, n, which measure a linear combination of the n signals. This
can be expressed as:

[Eq. 1]

It can also be rewritten in the matrix format as:

[Eq. 2]

where A is an unknown n × m full-column rank linear matrix that represents the mixing
system. In this system, X is the information that is available, while A and S are unknown.
The objective of BSS is, in general, to recover all source signal S by using the assumption of
mutual independence among source signals. In most cases, to simplify BSS problems, the
number of source signals are always assumed to be equal to the number of observed signals,
n = m. Then, the mixing matrix A becomes a n × n square matrix.

Without knowing the source signals and the mixing matrix, we want to recover the original
signals from the observations X by the following linear transform:

[Eq. 3]

where Y denotes the vector of [y_1(t), y_2(t), …, y_N(t)]T. Y is the estimation of the source
signal S, and W is a n × n linear matrix.

Since the mixing matrix A and the source vector S are unknown, it is impossible to obtain
the original sources in an exact order and amplitude. Nevertheless, it is possible to obtain
scaled and permutated sources. In this case, the de-mixing matrix W is written as:

[Eq. 4]

where D is a nonsingular diagonal matrix and P is a permutation matrix.
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ICA can be used to blindly separate mixtures mixed by several mutually independent
sources in BSS problems, in which we focus on the independent components in S as the
original sources. In addition, together with higher-order statistical techniques, it can also be
applied to extract features from sources, in which the basis vectors in matrix A and the
projection coefficients S are both concerned. In applying ICA on a feature extraction field,
we use the same model as BSS but with different denotations for the variables. In ICA, X is
the original signal instead of the mixture (as in BSS), the columns of A are denoted as the
basis vectors or latent vectors of the ensemble of signals, and the rows of S are the mutual
independent projection coefficients. ICA assumes the observation X to be the linear mixture
of the independent components in S. In ICA feature extraction, the number of independent
components is always assumed to be the same as the number of input signals, implying that
one can extract as many features as the number of input signals. The objective of ICA
feature extraction then is to extract the basis vectors when the projection coefficients are the
most statistically independent from one another.

ICA Modeling of Gene Expression
Recently, ICA has been used by biomedical scientists as an unsupervised approach to
explore gene expression features and discover novel underlying biological information from
large microarray data sets. Gene expression data provided by microarray technology is
considered a linear combination of independent components having specific biological
interpretations.

Let the n × k matrix X denote microarray gene expression data with k genes under n samples
or conditions. xij in X is the expression level of the jth gene in the ith sample. Generally
speaking, the number of genes k is much larger than that of the samples n, k≫n. Suppose
that the data have been preprocessed and normalized (i.e., each sample has zero mean and
standard deviation); then the ICA model for gene expression data is the same as Equation 2,
X = AS. In some publications, the k × n matrix X is used to denote k genes under n samples.
In this case, the transform, XT is used in the ICA model: XT = AST. So, XT here denotes the
same n × k matrix as used in the ICA model.

In ICA modeling of microarray data, the columns of A = [a1, a2,…, an] are the n × n latent
vectors of the gene microarray data, S denotes the n × k gene signature matrix or expression
mode, in which the rows of S are statistically independent to each other, and the gene
profiles in X are considered to be a linear mixture of statistically independent components S
combined by an unknown mixing matrix A. Figure 1 presents the vector framework of the
ICA model. References 17 and 18 give detailed analysis for matrices S and A. The ith row
matrix A contains the weights with which the n expression modes of the k genes contribute
to the ith observed expression profile. Hence the assignment for the observed expression
profiles with different classes is valid for the rows of A, and each column of A can be
associated with one specific expression mode. For an example of two classes, suppose one
of the independent expression modes s is characteristic of a putative cellular gene regulation
process. In this case, it should contribute substantially to one of the class experiments,
whereas its contribution to another class experiment should be less, or vice versa. Since the
jth column of A contains the weights with which s contributes to all observations, this
column should show large or small entries according to the class labels. After such
characteristically latent variables have been obtained, the corresponding elementary modes
can be identified, which yields useful information for classification. Also, the distribution of
gene expression levels generally features a small number of significantly overexpressed or
under-expressed genes which form biologically coherent groups and may be interpreted in
terms of regulatory pathways (6–8,18,19).
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To obtain S and A, the demixing model can be expressed the same as Equation 3, Y = WX,
where W is an n × n demixing matrix. Figure 2 shows the processing of ICA algorithms on
microarray gene expression data.

Figure 3 gives us a small example of applying ICA, in this case to microarray gene
expression data of seven hippocampal tissue samples from individuals with severe
Alzheimer’s disease [data provided by Blalock and colleagues (20)]. In Figure 3, X denotes
the Alzheimer’s disease microarray data set of 7 samples and 101 selected genes, A is the 7
× 7 latent variables matrix, and S represents the gene signatures in a 7 × 101 matrix whose
rows are mutual statistically independent coefficients.

Typical ICA algorithms are infomax, minimum mutual information (MMI) (11), FastICA
and maximum non-Gaussianity (13–16). Due to its high speed and effectiveness, FastICA
[proposed by Hyvärinen, (13)] is frequently used in performing ICA for microarray data. In
FastICA, maximizing negentropy is used as the contrast function since negentropy is an
excellent measurement of nongaussianity (13). Using the concept of differential entropy, the
negentropy J is defined by

[Eq. 5]

where yG is a Gaussian random vector of the same covariance matrix as vector y. Mutual
information, I, is known as a natural measure of the independence of random variables; it is
widely used as the criterion in ICA algorithms. The mutual information I between the n
variables yi, i = 1,…, n, can be expressed by negentropy:

[Eq. 6]

It is known that the independent components are determined when mutual information I is
minimized. From Equation 6, it is clearly shown that minimizing the mutual information I is
equivalent to maximizing the negentropy J(y). To estimate the negentropy of yi = wTx, an
approximation to identify independent components one by one is designed as follows:

[Eq. 7]

where G can be practically any non-quadratic function, E{·} denotes the expectation, and ν
is a Gaussian variable of zero mean and unit variance. In Reference 13, Hyvärinen proved
the consistency of the vector w obtained by maximizing JG, and analyzed the asymptotic
variance for choosing the function G to be used in the contrast function. Robustness as a
very attractive property was also discussed by Hyvärinen: for a bounded function G, the
estimation of w is rather robust against outliers, or one should at least choose a function
G(yi) that does not grow very fast when |y| grows. Hyvärinen offered three nonlinear
functions of G for a different probability density distribution of output signal y. They are

[Eq. 8]
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[Eq. 9]

and

[Eq. 10]

where 1 ≤ a1 ≤ 2 and a2 ≈ 1 are constants For these nonlinear functions, G1 is a good
general-purpose contrast function, G2 is suggested to be used when the independent
components are high super-Gaussian or when robustness is very important, and G3 can be
used for sub-Gaussian independent components with no outliers. It is demonstrated by Lee
et al. (17) that the distributions of gene signatures are typically super-Gaussian, therefore,
the nonlinear function G1 and G2 are suitable in a FastICA algorithm for analyzing gene
microarray data.

Figure 4 shows an example of the joint distributions between samples of the severe
Alzheimer’s disease gene expression data set before and after FastICA transformation.
Figure 4A shows strong correlations between the pairs of the original gene microarray data
since the distributions are concentrated along a linear line for every pair: (x1, x2), (x1, x3),
(x1, x4), (x2, x3), (x2, x4), and (x3, x4). However, Figure 4B displays no such correlations
between the pairs of gene signatures, especially the pairs (s2, s3), (s2, s4) and (s3, s4). The
gene signatures were captured using the FastICA algorithm with  as the
nonlinear function in the contrast function. The mutually independent gene signatures
obtained from FastICA combined with the joint distributions shown in Figure 4 confirmed
that ICA extracts the underlying statistically independent information from the mutually
dependent gene microarray data. The FastICA programs we ran in MATLAB 7.0 can be
downloaded freely from Hyvärinen’s homepage (www.cis.hut.fi/projects/ica/fastica).

Number Estimation of Latent Vectors
The estimation of the number of latent vectors is very challenging since it depends on how
to find an efficient measurement method to detect the functional significance of each latent
variable. To this aim, Martoglio and colleagues presented a variational Bayesian framework
of the ICA method for reducing a high-dimensional DNA array data to a smaller set of latent
variables. They reported that the number of latent variables can be assessed after the
learning process rather than having to pre-set the number of possible clusters (21).

While using the basic ICA model (Equation 1), we have taken note that the number of latent
variables in the framework described above is exactly the same as the number of samples or
conditions given in gene expression data. In many cases, the size of the latent variables n
(which are equal to the number of microarray samples or experiments) is much smaller than
the number of genes. In that case, the number of latent variables can be selected and reduced
by (i) selecting all the latent variables if their measurement contributions are all of the
similar significance (we will discuss the methods of measurement later in this section), and
(ii) selecting latent variables by setting a threshold of the cumulated contribution of the
eigenvalues when using PCA as pre-processing before performing ICA (22,23). In other
words, after PCA projection, we can select smaller principal components (eigenvectors)
corresponding to the largest eigenvalues based on cumulated contribution over a threshold
(for example, 95% is a threshold determined by the assumption that the selected principal
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components can catch most of the information of the original inputs if the cumulative
contribution of their corresponding eigenvalues is over 95%). In particular, the latent
variables obtained by the FastICA deflation approach (estimating ICs one by one) can be
reduced by simply discarding the last latent variables, since more and more noise and
useless information remain in the later ICs. Therefore, the FastICA deflation approach is
sometimes effective at eliminating counterproductive influences from the weak components
that might not capture essential information (7).

In the case of large sizes of microarray experiments, several ways of obtaining the number
of latent variables can be summarized:

To evaluate the significance of latent variables, Lee et al. (24) presented the L2-norm (||a(i)||,
where a(i) is the ith column vector of A) to calculate the contributions from the columns of
matrix A. By reordering the basis vectors using L2-norm and their coefficient variance
respectively, they showed that those two ordering methods provided almost the same order.
Then, the top significant basis vectors could be selected by removing the basis vectors with
negligible L2-norm and variance.

Hansen et al. used dynamic decor-relation to estimate probabilities of competing hypotheses
for ICA (25). They used an approximate Bayesian framework for computing relative
probabilities of the relevant hypotheses. The method showed efficiency in detecting the
content of dynamic components, selecting the number of independent components, and
testing whether a given number of components are significant relative to white noise.

Another value of the Bayesian framework that should be stated here is the work of
Teschendorff et al., who in 2005 (26) presented a variational Bayesian Gaussian mixture
model to estimate the number of clusters as an external parameter within an independent
component that had been inferred using MLICA and compared with the accuracy of the
cluster number estimation using the EM-BIC. The experiments on tumor microarray data
showed that the variational Bayesian method was more accurate in finding the true number
of clusters and avoided the shortcoming of specifying the number of clusters in advance in
k-means and self-organizing maps (SOM) methods.

In other work from Teschendorff et al. published in 2007, a method of feature selection was
presented (27) that suggested finding genes that are differentially activated by setting a
threshold. The threshold can be set typically two or three standard deviations from the mean,
and genes are selected whose absolute weights exceed this threshold.

Application of ICA to Microarray Data
ICA can decompose input microarray data into components so that each component is
statistically as independent from the other as possible and can reveal the underlying gene
expression patterns. The statistical analysis of microarray data will make the detection of
gene clustering patterns, the identification of cancer and oncogenic pathways, and the
identification of their associated gene network more effective and accurate.

Application of ICA to Gene Clustering and Classification
In 2001, ICA was first applied to a blind gene classification by Hori et al. (6,7), who defined
the columns of the mixing matrix A and matrix ST as “model profile” and “controlling
factors,” respectively. Then the ICA model was known as linear combinations of model
profiles weighted by the contributions of controlling factors. By using ICA on gene
expression data of yeast during sporulation, the method automatically identified typical gene
profiles that were similar to average profiles of biologically meaningful gene groups, and the
authors classified yeast genes based on the obtained typical profiles. By comparing the
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average profiles, they validated that the genes DIT1, SPR28, SSP1, and SPR3 were related to
spore wall formation, whereas the genes MEP2, ERG6, ACS2, and IDH1 were associated
with metabolism.

Independently, Liebermeister et al. applied ICA to gene expression data in 2002 (8). The
expression of each gene was modeled as a linear function of the expression modes based on
hidden variables termed “expression modes.” They showed that (i) cell cycle-related gene
expression in yeast was related to distinct biological functions, such as phases of the cell
cycle or the mating response; and that (ii) the gene expression in human lymphocytes
revealed modes that were related to characteristic differences between cell types. The
expression modes and their influences can be used to visualize the samples and genes in
low-dimensional space.

Lee et al. did excellent work in 2003 to analyze the performance of different kinds of ICA
algorithms (17). They applied linear and nonlinear ICA to project microarray data into
statistically independent components and to cluster genes according to over- or
underexpression in each component. They tested six linear ICA methods: natural-gradient
maximum-likelihood estimation (NMLE) (28,29), joint approximate diagonalization of
eigenmatrices (JADE) (30), FastICA with three decorrelation and nonlinearity approaches
(31), and extended infomax (32). They also tested two variations of nonlinear ICA: Gaussian
radial basis function (RBF) kernel (NICAgauss) and polynomial kernel (NICApoly).
Overall, the linear ICA algorithms consistently performed well in all data sets. The nonlinear
ICA algorithms performed best in the small data sets but were unstable in the two largest
data sets. They also showed that ICA outperforms PCA, k-means clustering, the Plaid
model, and the construction of functionally coherent clusters on microarray data sets from
Saccharomyces cerevisiae, Caenorhabditis elegans, and humans.

In the same year, Suri et al. compared the performance of ICA with PCA for detecting
coregulated gene groups in microarray data collected from different stages of the yeast cell
cycle (33). The experiments demonstrated that PCA did not find periodically regulated gene
groups. In contrast, ICA revealed two gene groups that are apparently regulated within the
cell cycle. This analysis of the same data with PCA and ICA suggested that ICA was more
successful in finding coregulated gene groups.

Najarian et al. in 2004 used FastICA to discover biological gene clusters from gene
expression data obtained by using DNA microarrays, and scored the genes based on the
protein interactions within a cluster (34). Specifically, they used the mutually independent
coefficients generated by FastICA for determining the proximity measure in gene clustering
and for establishing the biological gene clusters that are co-expressed and that interact with
the protein products.

FastICA was also used to supervise gene classification in the yeast functional genome by Lu
et al. in 2005 (35). They first preprocessed the gene expression data sets with FastICA to
reduce the noise and obtain the gene expression data with hidden patterns (GEHP), then
trained the supervised classifications using the GEHP, and labeled the tested genes with the
class of the output of the classification method. Experimental results showed that their
method can recognize the hidden patterns of the gene expression profiles and efficiently
reduce noise.

In 2006, using leukemia and colon cancer data sets, Zhu et al. (36) applied ICA in gene
dimension reduction and identified informative genes prior to the clustering.

In the same year, Huang et al. used ICA and a multivariate penalized regression model to
classify four sets of DNA microarray data involving various human normal and tumor tissue
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samples (37). For determining the number of latent variables, the sequential floating forward
selection (SFFS) technique was used to find the most discriminating ICA feature. They
showed that their method was effective and efficient in discriminating normal and tumor
tissue samples and the results can hold up under re-randomization of the samples.

Application of ICA to Cancer or Oncogenic Pathway Identification
The goal of many microarray analyses is to identify genes in cell lines or tissue samples that
are differentially transcribed under different biological conditions. In 2002, Liao and
colleagues (38) used FastICA to recognize the functional identities of known genes. Based
on the ICA work with gene expression profiles of yeast cells exposed to different stimuli,
the partial least-squares (PLS) method was used as a regression model to identify the
correlation between the multi-dimensional gene expression profile and the drug activity
pattern. The result shows that a group of 15 genes are important.

In the same year, Wang et al. developed a statistically-principled neural computation
approach to the independent component imaging for disease signatures (39). The features
can identify an informative index subspace over which mixed imaginary sources can be
separated by the infomax algorithm. They discussed the theoretical roadmap of the approach
and its applications to partial volume correction in cDNA microarray expression data and to
neurotransporter binding separation data collected by positron emission tomography (PET)
imaging.

In 2004, Saidi et al. compared ICA to the established methods of PCA, Cyber-T and
significance analysis of microarrays (SAM) to identify coregulated genes associated with
endometrial cancer (40). In contrast to PCA, ICA generated patterns that clearly
characterized the malignant samples studied. The hierarchical clustering results of ICA and
PCA outputs in classifying the benign (B1–B11) and malignant (M1–M20) endometrial
samples are shown in Figure 5. To save space, only the superimposed hierarchical cluster
dendrogram is presented here; more details can be seen in Reference 40. Figure 5 shows that
ICA outperformed PCA in achieving distinct separation between benign (B1–B11) and
malignant (M1–M20) endometrial samples. Moreover, several genes involved in lipid
metabolism that were differentially expressed in endometrial carcinoma were found only
through the ICA method.

Also in 2004, Chiappetta et al. performed ICA on two data sets: breast cancer data and
Bacillus subtilis sulfur metabolism data. They found that some of the obtained gene families
correspond to well known families of coregulated genes (19). In the same year, Berger et al.
(41) used ICA on DNA microarray data of breast cancer with the goal of identifying distinct,
biologically relevant functions from gene expression data. They uncovered these functions
based on observed gene expression by selecting outlier values of gene influence from the
ICA estimates and examining their corresponding gene annotations.

FastICA was used by X.W. Zhang et al. (42) in colon and prostate cancer data sets to extract
specific diagnostic patterns of normal and tumor tissues (2005). They proposed a method of
biomarker selection by designing discriminant vectors and calculating the Euclidean
distance between test vectors and discriminant vectors, and then classified the samples into
normal or tumor samples. The genes that can achieve any user-predefined classification
accuracy can be selected as biomarkers.

To compare the results based on correlated expression and gene clusters with those
significantly enriched gene ontology categories, Frigyesi and colleagues in 2006 (43)
showed that ICA can achieve higher resolution. The component characteristics for molecular
subtypes and for tumors with specific chromosomal translocations were identified. ICA also
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identified more than one gene cluster that was significant for the same ontology categories
and that disclosed a higher level of biological heterogeneity even within coherent groups of
genes.

Journée and Teschendorff et al. gave a review of some standard ICA algorithms and the link
between the ICA approach and the theory of geometric optimization (44), discussing three
fundamental contrast functions, the matrix manifold, and the optimization process. To
validate the ICA approach on a breast cancer microarray data set, four ICA algorithms
[JADE (45), RADICAL (46), Kernel-ICA (47), and FastICA (13)] and PCA were applied on
one of the largest breast cancer microarray data sets. After evaluating the biological
significance of the results, ICA achieved a more realistic representation of the gene
expression data than PCA when comparing results with known oncogenic and cancer-
signaling pathways.

In follow-up studies, Teschendorff and Journée et al. did more detailed research (27) in
which the four ICA algorithms of JADE, RADICAL, Kernel-ICA and FastICA were also
applied to six breast cancer microarray data sets to identify cancer signaling and oncogenic
pathways and regulatory modules that play a prominent role in breast cancer. They then
related the differential activation patterns to breast cancer phenotypes. Some novel
associations linking immune response and epithelial-mesenchymal transition pathways with
estrogen receptor status and histological grade, respectively, were found in the results. In
addition, associations linking the activity levels of biological pathways and transcription
factors with clinical outcome in breast cancer were found. They showed that ICA results in a
more biologically relevant interpretation of genome-wide transcriptomic data.

Extended ICA Algorithm for Microarray Data
To better understand and extract the underlying independent biological expression profiles
in microarray data, some further studies and new algorithms were introduced into the ICA
methods. In 2003, the independent feature subspace analysis (IFSA) method was proposed
by Kim et al. to achieve a linear transformation such that feature subspaces become
independent but components in a feature subspace are allowed to be dependent (48). IFSA
can extract phase- and shift-invariant features. Based on a membership scoring method, the
experiment showed the usefulness in grouping functionally related genes in the presence of
time-shift and expression phase variance. In the same year, Wang et al. (49) presented a
partial ICA technique in tissue heterogeneity correction to estimate the parameters of a
linear latent variable model that performs a blind decomposition of gene expression profiles
from mixed cell populations.

The gene signatures S and the latent variables A obtained from any ICA algorithm contain
both positive and negative entries. Miskin et al. showed that enforcing the latent variables to
be positive does not result in an increase of the evidence. On the other hand, enforcing
positivity of the gene signatures seems to result in a significant increase in the evidence for
encoding the gene signatures as a whole. However, for any individual gene signature, the
outcome could be worse (21,50). For this reason, a better approach would encode the fact
that some gene signatures can be all positive (such as the housekeeping genes) and some
should be both positive and negative.

Recently, the non-negative matrix factorization (NMF) technique was improved and
combined with ICA to enable further understanding of microarray data because non-
negative sources are meaningful in microarray profiling. Zhang et al. (2003) presented a
method of blind non-negative source separation to factorize the observation matrix into a
non-negative mixing matrix and a non-negative source matrix where the microarray sources
may be dependent (51). To solve the tissue heterogeneity problem, the method was applied
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to partial volume correction of real microarray expression profiles. Experiments showed that
the non-negative ICA method can be used to decorrelate observations and recover sources
without any limitation so that the sources must be statistically independent or distributed in a
non-Gaussian manner. This finding indicates a superior performance compared with the
normal ICA approach. In 2006, non-negative ICA as a gene clustering approach was
presented for microarray data analysis by Gong and his colleagues (52). Their method better
suits the corresponding putative biological processes due to the positive nature of gene
expression levels. In conjunction with a visual statistical data analyzer, they showed that the
significant enrichment of gene annotations within clusters can be obtained. In the simulation
experiments of the NMF method, however, an inevitable problem of not converging to a
stationary point existed in the common NMF approach (46,53). One reason is that the basis
of a space may not be unique theoretically; therefore, separate runs of NMF lead to different
results. Another reason may come from the algorithm itself, such that the cost function is
sometimes stuck in a local minimum during its iteration. Stationarity is important as it is a
necessary condition for solving local minimum and optimization problems. A popular
approach to solve NMF optimization problems is a multiplicative update algorithm by Lee
and Seung (54). Lee and Seung proved that the update causes the function value to be
nonincreasing, even though there is no proof showing that any limit point is stationary.
Some projection and gradient descend approaches have been performed to improve the
convergence and optimize uniqueness. In a 2007 publication, Lin (53) discussed the
difficulty of proving the convergence and proposed minor modifications of existing updates
that proved their convergence.

To address the problem that most ICA algorithms return the number of components
specified without any indication as to which ones are the most stable, Chiappetta et al. (55)
constructed consensus components by rerunning the FastICA algorithm with random
initializations and by only including components that passed certain stability criteria in the
final analysis. Himberg et al. (56) also introduced re-sampling of ICA components and used
estimated centrotypes as representatives of ICA components.

DISCUSSION
ICA Within Information Theory Frames

Information theory is one approach to finding a suitable code that depends on the statistical
properties of data. Here, we formulate an ICA model using information theory on coding.
From the above publications (18,27,28,33), researchers showed that ICA can extract valid
latent variables from complex and noisy measurement environments. This property of sparse
coding, a method for finding a description of data in which only a small number of the
representations are significantly nonzero, is the reason that noise and independent patterns
unrelated to the subject of investigation can be removed. ICA transfer is an adaptive process
in which representation is estimated from the data so that the independent components are as
sparse as possible. For this property, super-Gaussianity or leptokurtosis are equivalent to
sparsity. Lee et al. (17) found that the underlying biological processes (latent variables) are
more super-Gaussian than original inputs from microarray gene data, since only a few
relevant genes are significantly affected, and the majority of genes are left relatively
unaffected.

Several methods have been presented to measure the significance and select genes from each
independent component. In the work of Lee et al. (17), genes were selected by the loads
within each independent component under the hypothesis that genes showing relatively high
or low expression levels within the component are the most important for the biological
process. Then, two clusters for each component were created: one cluster containing C% of
all genes with larger loads, and one cluster containing C% of genes with smaller loads,
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where C was an adjustable coefficient. Similarly, the selection methods of sorting significant
genes within a range of largest or smallest values of independent component were presented
in the works of Zhu (36) and Gong (52). Moreover, as described in Reference 18, new
expression modes were generated by using positive parts of rows of, S, , and the absolute
values of negative parts of rows of S, . Then, the genes whose expression level exceeds
a given threshold can be selected.

Frigyesi et al. (44) selected genes associated with specific components with the highest
absolute loading on a given component, and tested the remaining data to fit a normal
distribution using the Lilliefors’ test. This was repeated until the remaining data converged
to a normal distribution.

Kong et al. (57–59) showed another method, in this case applied to speech signals, by
selecting activities from each ICA-transformed vector by using linear or nonlinear shrinkage
functions estimated by a maximum likelihood method. They assumed that the activities with
small absolute values are noise or redundant information and set them to zero, retaining just
a few components with large activities.

Future ICA Developments and Concluding Remarks
For the application of ICA in gene microarray data analysis, future developments will need
to address two central challenges.

First, to extract valid gene signatures that can identify or classify the inherent
pathophysiological processes, nonlinear ICA algorithms should be considered in order to
represent interactions among biological processes that are not necessarily linear. Examples
of nonlinear interactions in gene regulatory networks include some complex logic units,
toggle switch or oscillatory behavior, and multiplicative effects resulting from expression
cascades (60–62). Nonlinear ICA methods like kernel ICA may be appropriate in such cases,
because nonlinear and kernel methods have been shown to extract independent components
from nonlinear correlative speech and image signals (63–66). The key to nonlinear ICA
algorithms is to construct an appropriate nonlinear feature space between gene signatures
and gene microarray data; thereby, a kernel method based on radial basis function (RBF)
and polynomial can be considered.

Second, it will be necessary to evaluate the biological significance of the independent
components (ICs) from different microarray gene data sets. The IC number selection
discussed in the previous sections is mainly based on mathematical analysis. However, it
may be necessary to take more biological and physiological information into account. With
the connection of mathematical informatics theory and bioinformatics knowledge related to
etiology and nosology, the functional significance of each gene signature can be better
understood, allowing the analysis of microarray gene expression data to be performed more
easily and effectively.

In summary, ICA-based methods can successfully identify and cluster both the known
biological signaling pathways or regulatory modules and the novel correlations involved
with gene expression levels and pathways. The ability of ICA to extract latent and
biologically relevant gene expression information from microarray data, despite the presence
of significant noise, underscores its importance as a data-mining tool for microarray and
other biomedical data analysis.
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Figure 1.
ICA vector model of microarray gene expression data.
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Figure 2.
Theoretical framework of ICA algorithms on microarray gene expression data.
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Figure 3.
ICA model of severe Alzheimer’s disease microarray gene expression data.
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Figure 4. Joint distributions between pairwise gene expression data and gene signatures
(A) The joint distributions between four original severe Alzheimer’s disease genes: x1, x2,
x3, and x4. (B) The joint distributions between four corresponding gene signatures s1, s2,
s3, and s4 captured by FastICA.
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Figure 5. The superimposed hierarchical dendrogram in clustering benign (B1–B11) and
malignant (M1–M20) endometrial samples by using ICA and PCA outputs in Saidi’s work (40)
(A) ICA output with superimposed hierarchical cluster dendrogram. The hierarchical
clustering was applied to the columns of matrix A and showed a distinct separation into
benign (green lines) and malignant (blue lines) groups. (B) PCA output with superimposed
hierarchical cluster dendrogram based on 15 principal components.
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