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Abstract
Hyperbolic discounting of future outcomes is widely observed to underlie choice behavior in
animals. Additionally, recent studies (Kobayashi & Schultz, 2008) have reported that hyperbolic
discounting is observed even in neural systems underlying choice. However, the most prevalent
models of temporal discounting, such as temporal difference learning, assume that future
outcomes are discounted exponentially. Exponential discounting has been preferred largely
because it is able to be expressed recursively, whereas hyperbolic discounting has heretofore been
thought not to have a recursive definition. In this paper, we define a learning algorithm,
hyperbolically discounted temporal difference (HDTD) learning which constitutes a recursive
formulation of the hyperbolic model.

1 Introduction
A frequent decision faced by animals is whether to accept a small, immediate payoff for an
action, or choose an action that will yield a better payoff in the future. Several factors may
influence such decisions: the relative size of the possible rewards, the amount of delay
between making a choice and receiving the more immediate reward, and the additional delay
required to receive the greater reward.

Two possible explanations for temporal decision-making have been suggested. One
hypothesis (Myerson & Green, 1995; Green & Myerson, 1996) is that delaying a reward
introduces additional risks that an event may occur in the intervening time that will
effectively prevent the animal from receiving the reward. A foraging animal, for instance,
may find that a food item has been consumed by competitors or gone bad before the animal
can retrieve the item. Alternatively, the appearance of a predator may preclude the animal
from retrieving the food item. An animal should, therefore, select the option that maximizes
the reward/risk ratio.

Another hypothesis (Kacelnik & Bateson, 1996) is that animals seek to maximize their
average intake of food over time. In deciding between a small reward available immediately
and a large reward that requires waiting (e.g., time for a food item to ripen) or travel (e.g.,
moving from a sparse patch of food to a richer one), the animal may be inclined to accept
the lower-valued, immediate reward unless the delayed reward is large enough to justify the
additional cost incurred in getting it. Under this hypothesis, any additional delay is
acceptable to the animal provided the reward is large enough.

Both hypotheses, average reward and temporal discounting, have been formulated as models
of real-time learning based on temporal difference (TD) learning. TD learning as originally
formulated by Sutton & Barto (1990) discounts future rewards exponentially. Interpreted in
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terms of risk, this formulation of TD learning suggests that each unit of time added to the
delay between a decision and the predicted outcome adds a fixed amount of risk that the
predicted outcome won’t occur. In contrast, an average reward variant of TD learning
(Tsitsiklis & Van Roy, 1999; Tsitsiklis & Van Roy, 2002) attempts to maximize the rate of
reward per time step. A key difference between these models is that average reward TD
learning accounts for animal data showing preference reversals, whereas exponentially
discounted TD learning does not (Green & Myerson, 1996).

A typical experiment in which animals exhibit preference reversals (e.g., Mazur, 1987) may
involve an animal choosing between a large reward available at some fixed delay after a
response, and a smaller reward available after a shorter, adjustable delay. When the animal
selects the larger reward, the delay for the smaller reward is decreased, making it a more
attractive option, and when the smaller reward is selected, its delay is increased. Eventually,
the delay to the smaller reward will oscillate around a fixed point at which the animal selects
the two options equally. At this point, if a fixed additional delay is added to the time
required to receive either reward, the animal will tend to prefer the larger of the two.
Conversely, if the time required is decreased by a fixed amount, the animal will prefer the
smaller. This pattern is captured by average reward models, but not by exponentially
discounted models of choice.

A wealth of data from humans, rats, pigeons, and monkeys suggests that animals discount
future rewards hyperbolically. In terms of risk, this suggests that animals regard additional
delays when a reward is proximal as incurring a greater risk that the reward will not occur
than additional delays when a reward is temporally distant. Like average reward models, and
unlike exponential discounting, in which each unit of time adds a fixed level of risk, models
of hyperbolic discounting predict preference reversals as described above.

In this paper, we present a real-time model of hyperbolic discounting. Previous work has
suggested that hyperbolic functions are not susceptible to computation by recursive methods
(such as TD learning; Daw & Touretzky, 2000). However, by reinterpreting temporal
discounting in terms of the level of risk per time step, we are able to define a variant of TD
learning that discounts future rewards hyperbolically. Hyperbolically Discounted TD
(HDTD) learning accounts for preference reversals, differential discounting based on reward
size, as well as animal preference data which depend on sequences of reward delivery.

2 TD Learning
The goal of TD learning models is to learn the value of future rewards based on the current
environmental state. The learned value of a state is the level of reward for that state, plus the
discounted prediction of reward for subsequent states. The value at each state is updated
proportionally to the discrepancy between the current value for that state and the combined
value of the level of reward experienced at that state and future predictions. A common way
to formalize this rule for updating is:

(2.1)

where rt+1 is the level of reward at time t+1, Vt is a reward prediction, and γ is a discounting
factor. For γ = 0, the model only learns the value for the state at which it receives a reward.
For γ = 1, the model learns the cumulative sum of future rewards.

For temporal difference models of simple conditioning experiments, a common tactic is to
define a vector of states, s, such that each component of s represents a specific period of
time following the onset of a CS. On each iteration of the model, the component of s
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corresponding with the current iteration t is set to 1, while other components are set to 0.
The dynamics of this system are essentially a tapped delay line which tracks the amount of
time since the presentation of a stimulus. On each iteration of such a model, the current
value prediction is given as:

(2.2)

where wt is a weight representing the reward prediction at time t. The learning rule for
calculating the temporal difference error associated with each state can be rewritten as:

(2.3)

While equivalent to exponentially-discounted TD learning as usually written, this
formulation suggests an interpretation of TD learning in terms of risk. In the typical
formulation of TD learning (2.1) γ is thought of as a discounting term, whereas in eq. 2.3, 1-
γ is the hazard function of an exponential function. In the exponential case, the hazard
function is constant and assumes that each unit of time involves the same level of risk as any
other unit of time, while in hyperbolic discounting the hazard function varies with time; at
times proximal to a reward, the hazard function is greater than at more distant times.

The intuition, then, is that a hyperbolically discounted variant of TD learning should include
some means by which the hazard function is adjusted according to the temporal distance to a
reward, so that the hazard function is greater at times nearest reward, when anticipated value
is highest. This requires a way of estimating time remaining before an expected reward
should occur. The time remaining until a reward is delivered can be approximated by the
current value, Vt, which increases with temporal proximity to reward. This approach, while
originally conceived of as an approximation, turns out to produce exactly hyperbolic
discounting (see Appendix). The formulation of TD learning used here maintains estimates
(via adjustable weights reflecting predictions of future reward) of both reward level and time
until reward, which is approximated by the current discounted value. These predictions can
be used to adjust the hazard function in a preliminary form of the HDTD learning rule:

(2.4)

Here the term (1-γ) in (2.3) is replaced with κVt to reflect the hyperbolically discounted form
of TD (HDTD) learning, in which the discounting rate κ is modulated by current value Vt.

The non-recursive hyperbolic model of discounting is typically written as

(2.5)

where the parameter κ determines the level of discounting, and T is the delay to some
reward, R. For a given value of κ, the HDTD model (2.4) learns the hyperbolically
discounted value function given by the standard formalization of hyperbolic discounting
(2.5), as shown in figure 1. In the Appendix, we supply a proof of this. Furthermore, the
hazard function used for updating model weights in HDTD (κVt) converges on the hazard
function for the hyperbolic model, as shown in a proof in the Appendix.

An issue of generalizability arises, however, for reward magnitudes of varying sizes, as
illustrated in figure 2a. In the preliminary formulation of the HDTD model (2.4), the

Alexander and Brown Page 3

Neural Comput. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discounting rate on each iteration is determined by a constant, κ, as well as the learned value
function, Vt. As reward magnitude increases, so too does the value of Vt, which results in a
higher discounting rate for higher magnitude rewards. The result is that the preliminary
formulation of the HDTD model is incapable of showing preference reversals.

This issue can be resolved by scaling the discounting rate by the level of reward. (Myerson
& Green, 1995) observed that rewards of unequal size are not discounted at the same rate.
Specifically, larger rewards tend to be subject to less discounting than smaller rewards. This
intuition can be implemented in the HDTD framework by dividing the hazard function from
eq 2.4 by an estimate of the total magnitude per trial of a reward r ̄, where r ̄ is learned on
successive trials by the delta rule r ̄ = r ̄ + α (R − r ̄). Furthermore, it is not necessary to
assume that the rate of discounting varies linearly with reward magnitude, so the
denominator can be raised to a power σ. So the final formalization of the HDTD learning
rule is:

(2.6)

This formulation of the HDTD learning rule, unlike eq. 2.4, is capable of showing
preference reversals (fig. 2b).

If the bias term is set to 0 and σ is set to 1, and we assume an a priori estimate of r ̄ where r ̄
is equal to the magnitude of the reward per trial, equation 2.6 results in the same effective
rate of hyperbolic discounting regardless of reward size. That is, the equivalent non-
recursive hyperbolic discounting model (2.5) is the same regardless of reward magnitude.

For environments in which reward estimates are initially unknown and subject to change,
however, the bias term is necessary in order to avoid an undefined term (i.e., dividing by
zero). An alternative approach would simply be to give the model an arbitrary initial
estimate of r ̄ and allow it to adjust this estimate as described above; however, this may still
result in an undefined term if r ̄ were to go to 0. For cases in which the bias term is non-zero,
the equivalent non-recursive hyperbolic discounting model changes depending on the
magnitude of r ̄. For relatively low magnitude rewards, the equivalent hyperbolic model has a
discount factor κ lower than for high magnitude rewards. This is because the effective
discount rate of the HDTD model is partially determined by the learned value function, Vt.
When the reward magnitude per trial is small, the value function is similarly small, so that
dividing by a constant bias term (plus r ̄) results in lower effective discounting, than when
the reward magnitude and value function are large (although the discounting rate is lowered
in both cases; it is simply lowered more for smaller magnitude rewards than larger).

This state of affairs, then, runs counter to our desire, which is that rewards with higher
magnitude be discounted at a lower rate than low-magnitude rewards. Since the idealized
situation of zero bias results in the same level of effective discounting for all reward
magnitudes, and the inclusion of a bias term results in lower discounting for low-magnitude
rewards relative to high-magnitude rewards, differential discounting based on reward size in
the appropriate direction is due to the term σ. For the idealized case (bias = 0), a value of
σ=1 would result in equivalent discounting rates for all levels of rewards, while values of
σ>1 result in lower effective discounting as reward increases, and values of σ<1 result in
higher effective discounting for larger rewards relative to smaller rewards. When a bias term
is introduced, the precise value of σ which results in an equivalent discounting rate between
two rewards of different magnitudes is shifted higher.
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Figure 2b shows the hyperbolic value functions learned from equation (2.6) for r=1 (solid
line) and r=2 (dashed line), and implies the presence of preference reversals. If a choice
between the two rewards is made when the smaller reward is immediately available (vertical
dashed line), the learned value of the immediate reward is greater. However, if the choice is
made when the temporal distance to the smaller reward is greater (solid vertical line), the
learned value for the greater reward is greater. Where the two value functions intersect is the
point of indifference where each choice is equally likely to be made. This shows that HDTD
is capable of preference reversals.

The parameter σ interacts in interesting ways with the level of reward predicted for a given
trial. Of particular interest is that low values of σ (σ < 1, for example) yield an equivalent
hyperbolic model (2.5) with a low discount factor for low levels of reward and a high
discount factor for high levels of reward. Conversely, for high values of σ (e.g., σ = 2), the
effective discount factor for low reward levels is higher than the effective discount factor for
high reward levels.

Myerson & Green (1995) showed that, in humans, different rates of discounting based on
reward size could be accounted for using two hyperbolic models with a single parameter
each. In contrast, HDTD can reproduce the same hyperbolic curves with a single model
containing two free parameters. Table 1 shows the best-fit hyperbolic models for a selection
of individual subjects (from Green & Myerson, 1995), as well as the parameters κ and σ
which produce the same two hyperbolic models using a single HDTD model (with the bias
term equal to 1). These parameters can be determined analytically by solving the pair of
equations

(2.7)

(2.8)

for κ and σ. This holds even when subjects appear to discount low rewards less heavily than
high rewards (e.g., subject 7 in table 1). For intermediate levels of reward, the HDTD model
predicts an effective discounting parameter falling between κhigh and κlow. Whereas the
standard hyperbolic model would require an additional model to be estimated for an
intermediate reward condition, the HDTD model should be able to capture such data using
the same estimates of κ and σ, suggesting that HDTD is more parsimonious. Further
empirical tests of this are needed, however.

3 Average Reward vs. Hyperbolic Discounting
While we have shown that HDTD can exhibit preference reversals in accordance with
animal data, this is not sufficient to differentiate HDTD from other models, such as average
reward TD, which also exhibit preference reversals. To this end, we examine the behavior of
HDTD and an implementation of average reward TD (Daw & Touretzky, 2000) in a context
in which the order of reward delivery appears to influence preference. Brunner (1999)
showed that rats tend to prefer reward sequences that “worsen” over time; given the choice
between a reward sequence that delivers more food items at the beginning of the sequence
than at the end (i.e., decreasing), and a reward sequence that delivers more food items at the
end of the sequence than at the beginning (increasing), rats prefer the depleting sequence at
short delays, and trend toward indifference between the two at long delays.
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We compared the fit between average reward TD and HDTD to the approximate rat choice
preferences from Brunner (1999), experiment 1. A simple actor component, based on that
described by Daw & Touretzky (2000), was added to each model to learn choice
preferences. At each time step of a trial, preference weights for a reward sequence were
updated by the temporal difference error term δt multiplied by a learning rate parameter (in
this case 0.001). Each model experienced 2000 trials in each of 6 conditions: an increasing
or decreasing reward schedule at delays of 0, 5, and 15 trial iterations. Each iteration of the
model was interpreted as having a duration of 1 second. The reward schedules were chosen
to approximate the schedules used by Brunner (fig. 3a). For increasing reward schedules,
rewards occurred at 0, 10, 15, 17, and 18 seconds, plus the delay for that condition.
Decreasing rewards occurred at 0, 1, 3, 8, and 18 seconds, plus the condition delay. Of
interest is that both increasing and decreasing reward schedules have the same amount of
reward over the same length of time; that is, the average reward for each is the same. The
length of each trial was determined by the time of the last reward, plus an additional inter-
trial interval that lasted between 1 and 20 seconds (randomly selected from a uniform
distribution). Following training, the actor’s learned choice preferences between increasing
and decreasing reward schedules at each delay were computed by a softmax activation
function

(3.1)

where Pw is the learned preference weight for the decreasing reward schedule, Pb is the
preference for the increasing reward schedule, and φ is a scaling factor. A low value of φ
will cause the model to prefer all choices equally, while a high value of φ will cause the
model to more highly prefer even slightly better options. Free parameters for the HDTD
model were κ, σ, and φ, and the bias term was set to 1. Free parameters for the average
reward model were the learning rate of the model, a parameter θ controlling the exponential
online estimate of average reward (Daw & Touretzky, 2002), as well as φ.

Figure 3b shows the best fit of the average reward vs. HDTD models. As expected, the
average reward TD model is indifferent to whether the reward schedule increases or
decreases. The HDTD model not only captures the pattern of choice preferences better than
does the average reward model, but it also fits the data better than does a previous variant of
hyperbolic discounting, the parallel hyperbolic discount model (Brunner, 1999), which was
found to asymptote well below the percent of choice preferences actually observed. A
potential criticism is that there were only three data points in Brunner’s experiment, while
the HDTD model had three free parameters which were adjusted by the fitting routine.
However, the average reward model also had three free parameters, and yielded a
significantly worse fit than the HDTD model. It is not the case, therefore, that the HDTD
model better accounts for the data by virtue of having more free parameters than the
competing model.

4 Discussion
A key motivation for a hyperbolic discounting model of temporal difference learning is the
ability of hyperbolic discounting, and not exponential discounting, to show preference
reversals. Nonetheless, the general form of the HDTD equation (2.6) suggests that
exponentially discounted TD learning could also, in principle, show preference reversals,
provided that the exponential discounting factor is also scaled by the level of reward. In light
of this, the mere fact of a model exhibiting such reversals is not sufficient reason to prefer
one form of discounting to another. However, it has been observed that the pattern of
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preference reversals is better characterized by a hyperbolic function rather than an
exponential for both group and individual data (Green & Myerson, 1996). Given this, there
is a clear rationale for preferring a hyperbolic discounting model to exponential discounting.

Myerson & Green (1995) suggest two potential motivations for the hyperbolic model of
temporal discounting. One motivation derives the hyperbolic form from the notion that an
animal seeks to maximize the rate of reward, while the second motivation suggests that
increases in the temporal distance to an outcome impose additional, increasing risk that the
outcome will fail to occur. Both of these motivations result in the non-recursive model of
hyperbolic discounting (2.5).

Average reward TD learning (Tsitsiklis & Van Roy, 1999; Tsitsiklis & Van Roy, 2002)
extends the first motivation, rate maximization, to a TD learning framework, while the
HDTD model does the same for the risk interpretation of discounting. Both models are able
to exhibit preference reversals similar to those observed in human and animal behavior
(Daw & Touretzky, 2000). While average reward TD learning is able to reproduce many
predictions of hyperbolic discounting models of decision making, it is unable to account for
animal data in which choice preferences are influenced by the pattern of reward delivery
(Brunner, 1999). The HDTD model, however, is capable of reproducing such choice
preferences. This suggests that the risk interpretation of temporal discounting, and not rate
maximization, is correct.

Insofar as it is the goal of models of reinforcement learning to account for animal behavior
and its possible neural corollaries, our proposed variant of TD learning is able to account for
observed behavior not captured by exponentially discounted TD learning with a minimum of
added complexity. Additionally, recent evidence has shown that not only does observed
behavior correspond to hyperbolic discounting, but that the activity of midbrain dopamine
neurons in response to a reward-predicting CS appears to decline hyperbolically (Kobayashi
& Schultz, 2008) with increases in delay to a predicted reward. TD learning has provided a
useful framework for understanding the activity of dopamine neurons, and HDTD extends
this framework to include these recent findings.

Several brain areas have been identified which seem to show anticipatory activity related to
the prediction of an imminent reward. These areas include ventral striatum (Schultz,
Apicella et al., 1992), anterior cingulate cortex (Amador, Schlag-Rey et al., 2000),
orbitofrontal cortex(Schultz, Tremblay et al., 2000), and putamen (Schultz, Apicella et al.,
1993). In the context of TD learning, this anticipatory activity appears to correspond with
the learned value function (Suri & Schultz, 2001, e.g., figure 1). An interesting property of
the hyperbolic discount function, however, is that its hazard function is simply a multiple of
the function itself (Sozou, 1998). This suggests that the activity of areas of the brain which
have previously been identified as encoding value predictions may actually signal a measure
of risk as a function of time. The hyperbolic model, however, also suggests a means by
which areas coding value can be distinguished from those whose activity simply reflects a
hyperbolic hazard function. For different levels of reward, a value-predicting area should
show differential activity, while a hazard function neuron will have the same pattern of
activity for different levels of reward. This follows from the hyperbolic hazard function

 which is the same regardless of reward size. It is not certain, however, that the brain
does in fact maintain such hazard representations, and more research is needed to answer
this question.

Additional parameters in the HDTD model may also have interpretations in terms of
neuromodulatory systems, such as serotonin, whose role in reinforcement learning and
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decision-making is an ongoing research concern (Schweighofer, Bertin et al., 2008). In the
HDTD model, a new parameter, σ, is introduced which modulates the balance of discounting
between low and high rewards. Previous work has suggested that the serotonin is involved in
reinforcement discounting; low levels of serotonin are associated with impulsive behavior,
suggestive of high discounting for high value, delayed rewards. The HDTD model makes a
novel prediction in this regard. If σ is related to the serotonergic system, it suggests that not
only should high rewards be discounted more for low levels of serotonin, but also that low
value rewards should be discounted less.

Appendix A
In the main text, we present the HDTD model in a descriptive manner and suggest that it is
equivalent to the non-recursive formulation of the hyperbolic model of discounting. Here,
we show the formal equivalence between the HDTD model and the hyperbolic model of
discounting, and justify our interpretation of the model in terms of risk. We proceed in three
steps. First, in theorem 1, we show that the hyperbolic discounting model has an exact
recursive definition. Second, using the recursive formulation of hyperbolic discounting, we
derive the HDTD learning rule presented in the main text. Finally, in theorem 2, we show

that the quantity we describe as a hazard function  in the main text is equivalent to the
hyperbolic hazard function in the simple case of Δt=1.

Recursive definition of the hyperbolic model
Consider the hyperbolic discounting model:

(A.1)

Of note, the value Vt of R after hyperbolic discounting by time is decreased by scaling with
the denominator on the right hand side, which is one plus a constant multiplied by temporal
distance.

The hyperbolic discounting model is defined recursively for any {T, t} ∈ ℚ+ ∪ {0} (where
ℚ+ is the set of rational, positive numbers), as

(A.2)

The origin of equation (A.2) can be seen in the functional similarity with equation (A.1), in
which the discounted reward Vt at time t is smaller (i.e. reward is more distant in the future).
This smaller value Vt is obtained by starting with the value Vt+Δt and decreasing it by scaling

with the denominator on the right hand side, which is one plus a constant , multiplied by
temporal distance. Here, the recursion is effected by representing temporal distance by Vt+Δt
instead of T as in equation (A.1)).

Let T = −t+C, where C is a constant, which implies that ΔT = −Δt, constrained by T ≥ 0.
This change of variables implies, from equation (A.1), that:
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(A.3)

Theorem 1. For all rational, positive numbers T, the hyperbolic function  from
equation (A.1) is a solution to the recursive equation (A.2).

Proof. The proof is by induction over T for rational, positive numbers and 0. We proceed
first by demonstrating that the base case T=0 is true:

By definition, V0f=R

Hence equation (A.1) is a solution to (A.2) in the special case of T=0. In order to
demonstrate by induction that the recursive hyperbolic model is equivalent to the non-

recursive hyperbolic model for all T, we assume that the inductive hypothesis  is
true, and show that the relationship holds for Vt−Δt in equation (A.2).

(A.4)

Then by extension of (A.4),

(A.5)

It is required to show that (A.4) and (A.5) together provide a solution to (A.2).

From (A.2),

By application of the inductive hypothesis, we substitute  for Vt
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and show that :

hence by induction ∀ {T, t} ∈ ℚ+ ∪ {0},  is a solution to the recursive equation (A.
2).

QED.

Derivation of the HDTD model
Theorem 1 says that the hyperbolic model has an exact, recursive definition. We can now
use this recursive definition to obtain the HDTD model in the form of a Bellman equation.
First, note that the recursive model in equation (A.2) can be written equivalently as

This will be important when we confirm that the hyperbolic hazard function is the same as
the HDTD hazard function in theorem 2 (below).

At convergence, predictions learned by the HDTD model, V̂t, should satisfy the definition
above. If, however, a prediction is off, the prediction is updated in proportion to the amount
it deviates from the ideal estimate – essentially a temporal difference error:

Note that V̂t+Δt itself is also a prediction learned by the model. These can be combined into a
single learning rule:

where rt = R if T=0, and 0 otherwise. The prediction at time T, then, is updated according to
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where α is the learning rate parameter.

Hyperbolic hazard function

In the main text, we refer to the quantity  as the HDTD hazard function, in the simple
case of Δt = 1. We now show that, at convergence, this quantity works out to the hazard
function of the hyperbolic model.

Theorem 2. The hyperbolic hazard function is identical to the hazard function of the HDTD
equation (2.4) at convergence. In a general sense, this follows from Theorem 1, in that if the
functions are identical, then their hazard functions must be identical. In mathematical terms,

∀ R, κ, the HDTD hazard function  from equation (2.4) is identical to the hyperbolic

hazard function .

Preliminaries. An alternate way of writing the hyperbolic discounting function is as the

value of an immediate reward multiplied by the hyperbolic survivor function,  (Sozou,
1998). The hazard function, defined as the negative derivative of the survivor function

divided by the survivor function, gives us the hyperbolic hazard function, , which is
itself a hyperbola.

Proof. From Theorem 1, we defined in equation (A.1) that

Substituting into the HDTD hazard function and setting it equal to the hyperbolic hazard
function (defined above) we get

Q.E.D
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Figure 1.
Learned value and hazard functions for the HDTD model compared with same from the
non-recursive hyperbolic discounting model (κ = 0.15). For a reward given at t=30 (vertical
line), both the hyperbolic discounting model and HDTD have the same value function. The
HDTD model learns the appropriate value function over the course of multiple (1000) trials.
Similarly, the HDTD hazard function corresponds exactly with the hyperbolic discounting
hazard function.
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Figure 2.
Behavior of the HDTD model (A) when the discounting factor is not scaled by estimated
reward per trial (eq. 2.4, κ = 0.2), and (B) when the discounting factor is scaled by the
estimated reward per trial(eq. 2.6, κ = 0.2, σ = 1). The HDTD model reverses preferences
(B) depending on the temporal proximity of two unequal rewards. When a small reward is
immediately available (t1), the value function for that reward (solid line) is higher than for a
larger delayed reward (dashed line). However, when the distance to both rewards is
increased (t2), the preferences reverse; the value function for the larger reward is higher than
for the smaller.
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Figure 3.
The HDTD model and average reward TD learning were fit to data from Brunner, 1999. A)
Rewards were delivered according to two schedules, increasing (top) and decreasing
(bottom). The average reward for both schedules is the same. B) The average reward TD
model is indifferent to reward schedule, while the HDTD model strongly prefers the
decreasing reward schedule at short delays, in accordance with Brunner, 1999. The best-fit
parameters for the HDTD model are κ = 0.544, σ = 0.741, and φ = 54.85. Parameters found
for the average reward TD model were θ = 0.0010, φ = 0.9841, and α (learning parameter) =
0.0986. The fit of the HDTD model yielded a mean-square error of 0.0050, while the fit of
the average reward model yielded a MSE of 0.1226. Data were approximated from Brunner,
1999, figure 1.
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Table 1

Hyperbolic Models Equivalent HDTD Model

Subject
κlow

(reward=1,000)
κhigh

(reward=10,000) κ σ

1 0.065 0.008 35.1117 1.9106

2 0.025 0.007 1.1454 1.5534

7 3.941 8.580 0.3828 0.66238

9 0.008 0.009 0.005638 0.94922

A selection of subjects from Myerson & Green (1995). Subjects’ data were fit by two hyperbolic models for a low and high potential reward
condition. A single HDTD model can be found for each subject that fits both the low and high reward hyperbolic models (see text).
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