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ABSTRACT
Objective Pharmacy clinical decision-support (CDS)
software that contains drugedrug interaction (DDI)
information may augment pharmacists’ ability to detect
clinically significant interactions. However, studies
indicate these systems may miss some important
interactions. The purpose of this study was to assess the
performance of pharmacy CDS programs to detect
clinically important DDIs.
Design Researchers made on-site visits to 64
participating Arizona pharmacies between December
2008 and November 2009 to analyze the ability of
pharmacy information systems and associated CDS to
detect DDIs. Software evaluation was conducted to
determine whether DDI alerts arose from prescription
orders entered into the pharmacy computer systems for
a standardized fictitious patient. The fictitious patient’s
orders consisted of 18 different medications including 19
drug pairsd13 of which were clinically significant DDIs,
and six were non-interacting drug pairs.
Measurements The sensitivity, specificity, positive
predictive value, negative predictive value, and
percentage of correct responses were measured for
each of the pharmacy CDS systems.
Results Only 18 (28%) of the 64 pharmacies correctly
identified eligible interactions and non-interactions. The
median percentage of correct DDI responses was 89%
(range 47e100%) for participating pharmacies. The
median sensitivity to detect well-established interactions
was 0.85 (range 0.23e1.0); median specificity was 1.0
(range 0.83e1.0); median positive predictive value was
1.0 (range 0.88e1.0); and median negative predictive
value was 0.75 (range 0.38e1.0).
Conclusions These study results indicate that many
pharmacy clinical decision-support systems perform less
than optimally with respect to identifying well-known,
clinically relevant interactions. Comprehensive system
improvements regarding the manner in which pharmacy
information systems identify potential DDIs are
warranted.

INTRODUCTION
According to the 2007 Institute of Medicine (IOM)
report entitled, Preventing Medication Errors: Quality
Chasm Series, approximately 1.5 million preventable
adverse drug events (ADEs) occur annually in
the USA.1 Many ADEs are unavoidable; however,
recognition of potentially interacting drug pairs,
and subsequent appropriate action, is essential to
protecting the public’s health and safety. Despite
this, studies show that prescribers’ ability to

recognize well-documented drug interactions is
limited.2 3 Prescribers commonly rely onpharmacists
as a key source of drug-interaction information.3 4

However, research indicates that pharmacists’
ability to identify important drug interactions is also
lacking.5

Drug-interaction alerting is one of several types
of computerized medication-related clinical deci-
sion-support (CDS) used by pharmacists to
improve patient safety. Although DDI screening
software may augment pharmacists’ ability to
detect clinically significant interactions, these
systems are far from fail-safe, oftentimes alerting
pharmacists of clinically insignificant drug interac-
tions or failing to alert them about clinically
important interactions.6 7 Too many intrusive alerts
are mentally draining and time-consuming, and
result in providers ignoring both relevant and
irrelevant warnings (‘alert fatigue’).2 8 9 Although
problems with high alert over-ride rates and alert
fatigue are frequently discussed within the context
of CPOE, pharmacists have long-experienced such
challenges associated with medication-related
CDS.10e15 For example, one study reported that
most pharmacists over-rode the majority of DDI
alerts (mean 73.8%).15

A limited number of reports focus on medication-
related CDS uses by pharmacists. The purpose of
this study was to evaluate the performance of DDI
software programs currently in use in pharmacy
practice.

METHODS
This evaluation was conducted at participating
community pharmacies throughout Arizona
between December 2008 and November 2009.
Pharmacies were eligible to participate if they were
a University of Arizona College of Pharmacy rota-
tion site.
Sixty-four pharmacies agreed to participate.

Pharmacies were categorized as community, inpa-
tient hospital or other (ie, non-hospital institu-
tional, long-term care). Initial recruitment of retail
‘chain pharmacies,’ defined by the National Asso-
ciation of Chain Drug Stores as pharmacies
belonging to a company that operates at least four
retail pharmacies,16 was limited to inclusion of two
urban and one rural site per chain to prevent
oversampling of this type of pharmacy. Recog-
nizing that many of Arizona’s retail pharmacies are
part of national or regional chain operations and
that all pharmacies under the same ownership are
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likely to use the same software systems, subsequent recruitment
of retail chain pharmacies within the same chain ensued only
when the results of the initial three sites differed; recruitment
attempts continued until the DDI results from three pharmacies
were identical. This study was deemed exempt from Human
Subject Protection by University of Arizona’s Institutional
Review Board.

Researchers made on-site visits to participating pharmacies to
analyze their respective information systems and associated
CDS software’s ability to detect DDIs. To maintain consistency
in data collection, detailed information about the computer-
generated alerts was recorded on data-collection forms and
augmented by screen prints, for all participating pharmacies.
Specifically, software evaluation was conducted by identifying
DDI alerts that arose from prescription orders entered into
respective software systems, for a standardized fictitious patient
(figure 1). The fictitious orders consisted of 18 different medi-
cations including 19 drug pairs, 13 of which were clinically
significant DDIs, and six were non-interacting drug pairs.

The interacting medications, mainly oral cardiovascular
medications, were chosen by consensus among the researchers
based on their widespread use, clinical importance, propensity to
cause adverse events, and level of documentation. A list of
clinically important DDIs developed by Malone et al served as
a starting-point for item selection,17 with a focus on relatively
frequently coprescribed interacting drug pairs.18 Following
a review of the primary literature and DDI-specific resources
(Drug Interaction Facts,19 Drug Interactions Analysis and Manage-
ment,20 The Top 100 Drug Interactions: A Guide to Patient Manage-
ment,21 and Stockley’s Drug Interactions22), an evidence-based
summary was developed for each of the 13 interacting drug
pairs. The four DDI compendia were selected on the basis that
they are commonly used by clinicians, have been used in
previous research, and were readily available to the authors.

The absence of an interaction was also verified for the
remaining six drug pairs using the primary and tertiary litera-
ture. Two of the six non-interacting drug pairs contained
ophthalmic erythromycin ointment. This medication was
chosen to determine whether pharmacy software systems could
discern interactions based on route of administration. For
example, absorption of ophthalmic erythromycin typically does
not result in an interaction with a systemic medication.

Pravastatin was included in an attempt to distinguish whether
pharmacy software classified the interaction based on a class
effect (some statins interact with warfarin, whereas pravastatin
does not) or interaction potential of the drug itself.
The presence or absence of an alert, regardless of its severity

level, was the basis for determining whether a response was
classified as correct. Sensitivity refers to the software program’s
ability to accurately recognize interacting drug pairs that are
clinically significant, and was calculated by dividing the number
of true positives by the number of clinically significant inter-
acting drug pairs. Specificity refers to the software program’s
ability to disregard any pairs of medications not defined as
clinically significant. This value was calculated by dividing the
number of true negatives by the number of non-interacting drug
pairs. Positive predictive value (PPV) is a measure of the
usefulness of the alert e the probability that a DDI alert
represents a true DDI. This was calculated by dividing the
number of true positives by the sum of the number of true
positives plus the number of false positives. Negative predictive
value is the probability that the absence of a DDI alert repre-
sents a true absence of a DDI. This was calculated by dividing
the number of true negatives by the sum of the number of true
negatives plus the number of false negatives. The number of
correct responses, sensitivity, specificity, PPV, and NPV were
calculated for individual pharmacies. In addition, the median
sensitivity, specificity, PPV, NPV, and median percentage of
correct responses were calculated for all participating pharma-
cies combined.
In addition to whether an alert was generated for a specific,

DDI, the following information was gathered at each pharmacy:
date of visit; location (urban or rural); software vendor; software
version; date of most recent software update; and whether the
pharmacist on duty believed any categories/levels of interactions
were ‘suppressed’ or ‘turned off.’
A post-hoc analysis using a KruskaleWallis test was under-

taken to determine if there were any statistically significant
differences between community, inpatient, and ‘other ’ pharma-
cies with respect to DDI sensitivity and specificity. Probability
values less than 0.05 were considered statistically significant.
Descriptive statistics were summarized using Microsoft Excel

2007. Statistical comparisons were made using Stata software,
version 10.0.

Figure 1 Fictitious patient profile.
Patient: John Doe

Gender: Male 

Date of Birth: 3/28/1950

Medication Profile:

Amiodarone 200 mg PO BID; #60

Amoxicillin 500 mg PO four times a day x 7 days; #28

APAP/Codeine 300/30 mg (Tylenol #3 with Codeine) PO TID; #30

Carbamazepine 200 mg PO BID; #30

Cl ith i 250 PO BID #14Clarithromycin 250 mg ;

Digoxin 0.125 mg PO Qday; #30

Erythromycin Ophthalmic Ointment 0.5%; Instill ½” (1.25 cm) in both eyes TID x 7 days; # 1 tube (3.5 grams)

Fluconazole 200 mg PO Qday; #30

Gemfibrozil 600 mg PO BID #60

Itraconazole 100 mg 2P OQ day; #60,

Metformin 1000 mg PO BID; #30

Naproxen 500 mg PO BID; #30

Nitroglycerin SL 0.4 mg; Dissolve 1 SL tablet under the tongue PRN chest pain, may repeat every 5 minutes as needed; #25

Pravastatin 40 mg PO QHS; #30

Sildenafil (Viagra) 25 mg PO PRN, 1 hour before sexual activity, not to exceed 1 dose per day; #30

Simvastatin 20 mg PO QHS; #30

Sulfamethoxazole/trimethoprim 800-160 mg PO BID; #14

Warfarin 5 mg PO Qday; #30 
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RESULTS
Sixty-four pharmacies throughout Arizona participated in the
study. Of those participating, 40 (63%) were community phar-
macies, 14 (22%) were inpatient hospital pharmacies, and 10
(16%) pharmacies were classified as ‘other.’ Of the 40 commu-
nity pharmacies, approximately two-thirds (n¼27) were classi-
fied as retail ‘chain pharmacies.’ Those classified as ‘other ’
included two infusion pharmacies, two pharmacies located in
penal institutions, one long-term care pharmacy, two pharma-
cies associated with rehabilitative-care facilities, and three
Indian Health Service facilities.

For all the participating pharmacies, the median percentage of
correct DDI responses was 89% (range 47%e100%). Table 1
shows the number of correct responses by drug combination and
pharmacy type.

Four of the surveyed pharmacies (6%) were unable to enter at
least one of the medications in the fictitious profile; either the
medication was not on the formulary, or it was unavailable in
their drug database. Consequently, the results for these phar-
macies were calculated based on the drug pairs that were
successfully entered into their respective systems. Exclusion of
a particular medication within a pharmacy software system
negatively affected detection of two to four drug pairs,
depending on the pharmacy.

Eighteen of 64 pharmacies (28%) correctly classified eligible
possible interacting and non-interacting drug pairs. The digoxin
and itraconazole drug pair was incorrectly identified more often
than any other drug-interacting pair. Only 45% (27 of 60) of
participating pharmacies correctly classified this well-docu-
mented drug pair as a clinically significant drug interaction.23e30

Five of the six non-interacting drug pairs were correctly classified
by all of the pharmacies. Carbamazepine and erythromycin
ophthalmic was the most common incorrectly identified, non-
interacting pair: seven (11%) of pharmacies misidentified this
pairdof these, six were community-based, and one was an
inpatient pharmacy.

Participating pharmacies’ DDI software programs had
a median sensitivity of 0.85 (range 0.23e1.0). These same
programs had a median specificity of 1.0 (range 0.83e1.0),
a median PPVof 1.0 (range 0.88e1.0), and a median NPVof 0.75
(range 0.38e1.0). Table 2 provides a summary of the perfor-
mance of drug-interaction computer software by pharmacy
type. The post-hoc analysis failed to detect any statistically
significant differences in sensitivity or specificity between the
community, inpatient, and ‘other ’ pharmacies. The study may
have been underpowered to detect such differences, since this
was not a main focus of the research.
Of the pharmacies surveyed, a total of 24 different software

vendors were represented, including both commercial and
proprietary systems; Health Business Systems, PDX, and QS/1
were the three most commonly utilized software vendors.
Performance of the DDI software systems varied both within
and between vendors. Of the software vendors utilized by five or
more pharmacies, none of the results were consistent across all
sites. Two of the three most common vendors had perfect
specificity across all sites (1.00), while the third vendor ’s speci-
ficity varied from 0.83 to 1.00. To exemplify the degree of vari-
ation observed within a single software vendor, the sensitivity of
the software of one of the most common vendors in this study
ranged from 0.54 to 1.00.
Of the pharmacists on duty that were able to respond to more

detailed questioning about their software systems, less than half
(40%) confirmed the suppression of some DDI alerts based on
severity. The majority of pharmacists on-duty at the time of
data collection were knowledgeable about the frequency with
which their software was updated; monthly was most common
(44%).

DISCUSSION
Research has demonstrated that without the use of a
computer, DDI knowledge is poor among health professionals,

Table 1 Correct drugedrug interaction alert responses by combination and pharmacy type*

Drug combinations

Correct responses all
pharmacies (n[64)

Correct responses community
pharmacies (n[40)

Correct responses inpatient
hospital pharmacies (n[14)

Correct responses ‘other’
pharmacies (n[10)

N (%) N (%) N (%) N (%)

Clinically significant drugedrug interactions

Carbamazepine+clarithromycin 57/64 (89) 37/40 (93) 13/14 (93) 7/10 (70)

Digoxin+amiodarone 55/64 (86) 32/40 (80) 13/14 (93) 10/10 (100)

Digoxin+clarithromycin 56/64 (88) 36/40 (90) 11/14 (79) 9/10 (90)

Digoxin+itraconazole 27/60 (45) 20/39 (51) 4/14 (29) 3/7 (43)

Nitroglycerine+sildenafil 51/63 (81) 32/40 (80) 12/14 (86) 7/9 (78)

Simvastatin+amiodarone 48/64 (75) 32/40 (80) 7/14 (50) 9/10 (90)

Simvastatin+gemfibrozil 54/64 (84) 35/40 (88) 12/14 (86) 7/10 (70)

Simvastatin+itraconazole 54/60 (90) 36/39 (92) 12/14 (86) 6/7 (86)

Warfarin+amiodarone 55/63 (87) 34/40 (85) 11/13 (85) 10/10 (100)

Warfarin+fluconazole 53/64 (83) 34/40 (85) 12/14 (86) 7/10 (70)

Warfarin+gemfibrozil 51/64 (80) 35/40 (88) 10/14 (71) 6/10 (60)

Warfarin+naproxen 45/64 (70) 32/40 (80) 4/14 (29) 9/10 (90)

Warfarin+sulfamethoxazole/trimethoprim 48/64 (75) 27/40 (68) 12/14 (86) 9/10 (90)

Non-interacting pairs

Acetaminophen/codeine+amoxicillin 64/64 (100) 40/40 (100) 14/14 (100) 10/10 (100)

Carbamazepine+erythromycin ophthalmic 57/64 (89) 34/40 (85) 13/14 (93) 10/10 (100)

Metformin+erythromycin ophthalmic 64/64 (100) 40/40 (100) 14/14 (100) 10/10 (100)

Digoxin+sildenafil 63/63 (100) 40/40 (100) 14/14 (100) 9/9 (100)

Warfarin+digoxin 64/64 (100) 40/40 (100) 14/14 (100) 10/10 (100)

Warfarin+pravastatin 62/62 (100) 40/40 (100) 14/14 (100) 8/8 (100)

*Four of the surveyed pharmacies (6%) were unable to enter at least one of the medications in the fictitious profile; either the medication was not on the formulary, or it was unavailable in their
drug database. Consequently, the results for these pharmacies were calculated based on the drug pairs that were successfully entered into their respective systems.
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including both physicians and pharmacists.2 3 5 Drug-interaction
screening, a CDS tool, has been a mainstay of pharmacy soft-
ware packages for many years and is now available in many
computerized prescriber order-entry systems. These provider-
and pharmacist-based DDI CDS systems share many similari-
ties, including their source of drug information: the knowledge
bases are created, maintained, and sold by a small number of
firms (eg, First DataBank, Wolters Kluwer Health, Cerner,
Thomson Reuters Healthcare). However, each firm typically
relies on their own classification system for interactions.

Recently, much attention has focused on features that
constitute a useful CDS tool, in part, due to the Office of the
National Coordinator for Health Information Technology ’s task
of advancing the adoption of health technology.31 The general
consensus, from a recent CDS workshop, is that information
presented by CDS must be pertinent and beneficial, and prevent
overburdening the user with irrelevant alerts.31 For instance,
drug-interaction screening was specifically mentioned as an area
in which the sensitivity and specificity of software settings may
have a significant impact on the quality and number of alerts
presented. In the current study, the researchers observed a high
level of variability in the performance of pharmacy software
systems and, more importantly, the failure of some systems to
detect well-documented DDIs.

This CDS software evaluation study provides insight into the
poor performance of pharmacy systems in alerting pharmacists
of clinically significant drug interactions. Additionally, the
current results may address broader public safety concerns
associated with the manner in which potential DDIs are
detected within CDS systems.

Metzger et al evaluated the performance of electronic alerts
arising from computerized prescriber order entry in hospitals
further exemplifying potential safety issues associated with the
use of CDS systems.32 They also utilized fictitious patient
profiles to examine the ability of software systems to detect
various medication safety issues. However, Metzger et al
examined a more comprehensive set of medication alerts,
including but not limited to drug-allergy, drug-diagnosis, and
therapeutic duplications. Despite differences in settings and
types of alerts examined, both studies demonstrated significant
variability in CDS system performance between and within

vendors as well as the failure of some systems to detect clinically
significant medication safety issues.
Suboptimal performance of the pharmacy DDI software

systems in this study was confirmed, in part, by the failure of
these systems to detect approximately one in seven clinically
significant DDIs. The most poorly performing software system
had a sensitivity of 0.23, meaning that approximately 77% of
the DDIs evaluated would go undetected. Community phar-
macies failed to detect approximately one in 12 clinically
significant DDIs, while hospital pharmacy systems failed to
detect approximately one in four DDIs. In addition, systems in
other settings incorrectly categorized approximately one in
seven of the DDIs evaluated. Based on the current study, it is
evident that additional efforts are needed to improve the ability
of pharmacy software systems to detect clinically significant
DDIs.
Prior research on the accuracy and reliability of pharmacy

software programs suggests that poor performance is due, in
part, to the inability of these systems to warn pharmacists of
potentially clinically significant DDIs.6 7 Cavuto et al deter-
mined the likelihood that pharmacists would fill prescriptions
for two medications whose concurrent use was contraindicated
(terfenadine and ketoconazole).33 Of the 48 pharmacies with
computerized DDI screening, approximately one-third of phar-
macies filled the two prescriptions. Hazlet et al evaluated nine
community-pharmacy software programs and found that one-
third of DDIs went undetected.7 Another study conducted by
this research group in Tucson, Arizona evaluated pharmacy
information systems in eight community pharmacies and five
hospital pharmacies.6 For community pharmacies, the median
sensitivity and specificity were 0.88 and 0.91, respectively;
hospital pharmacies had a median sensitivity and specificity of
0.38 and 0.95, respectively.
The current study confirms continued variability in system

performance across and within pharmacy organizations. This
variability in CDS software system performance may be due, in
part, to software customization by its users, at the pharmacist,
pharmacy, or corporate level. Specifically, clinicians may
‘customize’ the software by suppressing certain categories or
tiers of drug-interaction warnings in an attempt to minimize
alert fatigue, a phenomenon caused by excessive warnings
including irrelevant, non-significant, or repetitious alerts.11 34 35

Alert fatigue may compromise patient safety, especially if the
CDS program presents excessive warnings (ie, low signal-to-
noise ratios), thus causing clinician desensitization to warnings
and even over-riding clinically significant warnings.9 The litera-
ture contains many studies documenting widespread dissatis-
faction with alerts perceived as inappropriate, inconsequential,
disruptive, or redundant and high rates (up to 89%) of ‘over-
ridden’ DDI alerts.2 4 8 14 15 36e39 Despite well-documented
research on issues with CDS program alerts, including the
current study results, clinicians continue to face challenges
when using this type of software.
The drug knowledge database may also be a source of vari-

ability in software performance; the database is integrated into
the software and serves as a basis of its drug information.
Currently, no universal standard exists for classifying the
severity of drug interactions.40 Furthermore, many drug
combinations have not been thoroughly studied; case reports, in
vitro studies, and retrospective reviews are common in the drug-
interaction literature.41 Consequently, research has demon-
strated substantial variation among the major drug compendia
regarding inclusion of drug interactions and assignment of
severity levels to known interactions.40 42 In a comparison study

Table 2 Performance of drug-interaction software by pharmacy type

Sensitivity Specificity
Positive
predictive value

Negative
predictive value

Community pharmacies (n¼40)*

Median 0.92 1.00 1.00 0.86

Maximum 1.00 1.00 1.00 1.00

Minimum 0.31 0.83 0.88 0.40

Inpatient hospital pharmacies (n¼14)

Median 0.77 1.00 1.00 0.67

Maximum 1.00 1.00 1.00 1.00

Minimum 0.38 0.83 0.93 0.43

‘Other’ pharmacies (n¼10)y
Median 0.85 1.00 1.00 0.75

Maximum 1.00 1.00 1.00 1.00

Minimum 0.23 1.00 1.00 0.38

*Approximately two-thirds (n¼27) of community pharmacies were classified as retail
‘chain pharmacies.’
y‘Other’ pharmacies included: two infusion pharmacies, two prison pharmacies, a long-term
care pharmacy, two rehabilitative-care pharmacies, and three Indian Health Service
facilities.
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of four drug-interaction compendia, only 2% of the major DDIs
were included in all four compendia.40 The DDI knowledge
bases tend to be highly inclusive with respect to drug-interaction
alerts, focusing on the scope of drug-interaction alert coverage
rather than the clinical significance and estimated rate of
occurrence.8 43e45 The tendency for DDI knowledge bases to be
more inclusive may be due, in part, to perceived potential for
legal liability.

Compared with other previous relevant research, the meth-
odology employed in the current study imparted several
advantages. With the unit of analysis at the individual pharmacy
level, no central corporate locations were included in the anal-
ysis. This design feature enabled researchers to examine more
closely the variability within pharmacy chains. The relatively
large number and variety of participating sites improved the
generalizability of the results. Furthermore, researchers recorded
all data on site, thereby mitigating opportunities for participants
to misrepresent results.

There are limitations to this study that need to be considered
when interpreting the results. The fictitious patient profile
reflected a limited set of available medications; results are likely
to vary based on the set of interactions evaluated. In addition,
using a single patient profile may have caused many pharmacy
software systems to generate additional DDI alerts (eg, amio-
darone and clarithromycin) as well as alerts for therapeutic
duplication (eg, pravastatin and simvastatin). However, these
alerts for non-targeted drug combinations were not documented
or analyzed. Some variability in the systems’ performance may
be due, in part, to software updates for clinical evidence of
interaction potential that may have occurred during the data-
collection period (almost 1 year). For example, pharmacies
whose site visits occurred earlier in the data collection period
may have been using an older software version than those
pharmacies visited in the latter part of the study. Updated
software may account for some of the differences in the number
of DDIs detected by the various software systems over the study
period and, in particular, between the early and later site visits.

The generalizability of the results may be limited because
a non-random process was used to recruit pharmacies. All
participating pharmacies were affiliated with the university and
located within the state of Arizona. Computer software systems
installed in other pharmacies may not be comparable; however,
many of the pharmacies evaluated were national retail chain
pharmacies. In addition, future studies should include objective
verification of the pharmacy software vendor, ascertainment of
knowledge base vendor used by the pharmacy software, and the
date of the last update.

CONCLUSION
We found that comprehensive system improvements are essen-
tial to improve the manner in which pharmacy information
systems identify potential DDIs. To this end, issues surrounding
the reliability of pharmacy systems are likely to transcend to
other systems that utilize drug-interaction screening algorithms.
Additional research is warranted to improve pharmacists’ ability
to detect DDIs, to prevent potential adverse events, and to
protect patient health and safety.
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