
Role of Dorsal Medial Prefrontal Cortex Dopamine D1-Family
Receptors in Relapse to High-Fat Food Seeking Induced
by the Anxiogenic Drug Yohimbine

Sunila G Nair1, Brittany M Navarre1, Carlo Cifani1, Charles L Pickens1, Jennifer M Bossert1 and
Yavin Shaham*,1

1Behavioral Neuroscience Branch, NIDA/IRP/NIH/DHHS, Baltimore, MD, USA

In humans, relapse to maladaptive eating habits during dieting is often provoked by stress. In rats, the anxiogenic drug yohimbine, which

causes stress-like responses in both humans and nonhumans, reinstates food seeking in a relapse model. In this study, we examined the

role of medial prefrontal cortex (mPFC) dopamine D1-family receptors, previously implicated in stress-induced reinstatement of drug

seeking, in yohimbine-induced reinstatement of food seeking. We trained food-restricted rats to lever press for 35% high-fat pellets every

other day (9–15 sessions, 3 h each); pellet delivery was accompanied by a discrete tone-light cue. We then extinguished operant

responding for 10–16 days by removing the pellets. Subsequently, we examined the effect of yohimbine (2 mg/kg, i.p.) on reinstatement

of food seeking and Fos (a neuronal activity marker) induction in mPFC. We then examined the effect of systemic injections of the

D1-family receptor antagonist SCH23390 (10 mg/kg, s.c.) on yohimbine-induced reinstatement and Fos induction, and that of mPFC

SCH23390 (0.5 and 1.0mg/side) injections on this reinstatement. Yohimbine-induced reinstatement was associated with strong Fos

induction in the dorsal mPFC and with weaker Fos induction in the ventral mPFC. Systemic SCH23390 injections blocked both

yohimbine-induced reinstatement and mPFC Fos induction. Dorsal, but not ventral, mPFC injections of SCH23390 decreased yohimbine-

induced reinstatement of food seeking. In addition, dorsal mPFC SCH23390 injections decreased pellet-priming-induced reinstatement,

but had no effect on ongoing high-fat pellet self-administration or discrete-cue-induced reinstatement. Results indicate a critical role of

dorsal mPFC dopamine D1-family receptors in stress-induced relapse to palatable food seeking, as well as relapse induced by acute re-

exposure to food taste, texture, and smell.
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INTRODUCTION

Although many people attempt to control their excessive
food intake, they typically relapse to old, unhealthy eating
habits within a few months (Kramer et al, 1989; Peterson
and Mitchell, 1999; Skender et al, 1996). This relapse is
often induced by stress, anxiety, or negative mood states
(Byrne et al, 2003; Grilo et al, 1989; Herman and Polivy,
1975; Polivy and Herman, 1999; Torres and Nowson, 2007).
Despite evidence in humans of stress-induced relapse to
unhealthy eating habits during dieting, until recently the
mechanisms of this relapse have not been studied in animal

models (Nair et al, 2009a). To address this issue, we adapted
a rat reinstatement model, commonly used to study relapse
to abused drugs (Shaham et al, 2003), to investigate
mechanisms of stress-induced relapse to palatable food
seeking during dieting (Ghitza et al, 2006). In these studies,
we use the pharmacological stressor yohimbine to reinstate
food seeking (Nair et al, 2009a).

We chose yohimbine (a prototypical a-2 adrenoceptor
antagonist) as the stress manipulation, because this
pharmacological stressor has been used in many studies
to induce stress- and anxiety-like states in both humans
(Bremner et al, 1996b; Holmberg and Gershon, 1961) and
nonhumans (Bremner et al, 1996a; Lang and Gershon,
1963). In addition, yohimbine reliably reinstates food
seeking in rats (Ghitza et al, 2006; Nair et al, 2009b;
Richards et al, 2008) and drug seeking in rats (Cippitelli
et al, 2010; Feltenstein and See, 2006; Kupferschmidt
et al, 2009; Shepard et al, 2004) and monkeys (Lee et al,
2004).
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The brain mechanisms of yohimbine-induced reinstate-
ment of food and drug seeking are unknown, and results
from studies on the role of central noradrenergic systems in
this reinstatement are mixed. The a-2 adrenoceptor agonist
clonidine attenuates yohimbine-induced reinstatement of
alcohol seeking in rats (Le et al, 2009) and cocaine seeking
in monkeys (Lee et al, 2004). In contrast, clonidine exerts
no effect on yohimbine-induced reinstatement of cocaine or
food seeking in rats (Brown et al, 2009; Nair et al, 2009a),
and yohimbine-induced reinstatement of cocaine condi-
tioned place preference (CPP) in mice (Mantsch et al, 2010).
In addition, in rats, 6-hydroxydopamine lesions of the
ventral or dorsal noradrenergic bundles have no effect on
yohimbine-induced reinstatement of alcohol seeking
(Le et al, 2009). Furthermore, the effect of yohimbine on
reinstatement of food or alcohol seeking is not mimicked by
RS79948, a selective a-2 adrenoceptor antagonist (Le et al,
2009; Nair et al, 2009a). In contrast, in monkeys, the effect
of yohimbine on reinstatement is mimicked by RS79948
(Lee et al, 2004), and in mice, this effect of yohimbine is
mimicked by another selective a-2 adrenoceptor antagonist,
BRL44408 (Mantsch et al, 2010). Mantsch et al (2010) also
reported that yohimbine-induced cocaine CPP in mice is
attenuated by the b-adrenoceptor antagonist, propranolol.

In this study, we studied the role of medial prefrontal
cortex (mPFC) dopamine D1-family receptor in yohimbine-
induced reinstatement of food seeking, because dorsal
mPFC injections of the D1-family receptor antagonist
SCH23390 or the mixed D1/D2 receptor antagonist fluphe-
nazine decrease footshock-stress-induced reinstatement of
cocaine seeking (Capriles et al, 2003; McFarland et al, 2004)
and immobilization stress-induced reinstatement of cocaine
CPP (Sanchez et al, 2003). In addition, stressors preferen-
tially activate mesocortical dopaminergic projections from
the ventral tegmental area to the mPFC (Deutch and Roth,
1990; Thierry et al, 1976). Finally, yohimbine increases
mPFC extracellular dopamine levels (Tanda et al, 1996) and
expression of Fos (a neuronal activity marker) (Bing et al,
1991, 1992; Funk et al, 2006; Singewald et al, 2003).

MATERIALS AND METHODS

Subjects and Apparatus

Male Long-Evans rats (total n¼ 114, Charles River, Raleigh,
NC; 300–385 g) were maintained on a reverse 12-h:12-h
light–dark cycle (lights off at 0900 or 0930 hours). In all, 16
rats were excluded from the study because of poor health,
misplaced cannulae, intracranial injection procedure pro-
blems, or failure to meet the extinction criterion. All
rats were weighed daily and food intake was restricted to
16 g/day of Purina rat chow (about 60–65% of their daily
food intake) during the training phase and to 18–22 g/day
(to maintain stable body weight) during the extinction and
reinstatement test phases. All procedures followed
the guidelines outlined in the ‘Principles of Laboratory
Animal Care’ (NIH publication no. 85–23). Experiments
were conducted in standard self-administration chambers
(Med Associates, Georgia, VT). Each chamber had two
levers 9 cm above the floor, but only one lever (‘active,’
retractable lever) activated the pellet dispenser, which
delivered 45-mg food pellets containing 35% fat and

45.2% carbohydrate (catalog no. F05989, Bioserv, French-
town, NJ). Efforts were made to minimize the number of
animals used and their suffering.

Drugs

SCH23390 hydrochloride and MK212 hydrochloride were
purchased from Tocris (Ellisville, MO), yohimbine hydro-
chloride was purchased from Sigma (St Louis, MO), and
M100907 was provided by Dr Kenner Rice (NIDA).
SCH23390 (injection volume of 1 ml/kg or 0.5 ml/side for
systemic or intracranial injections, respectively) and MK212
(0.5 ml/side) were dissolved in sterile saline; M100907
(0.5 ml/side) was dissolved in a minimal volume of 0.01 N
HCl and sterile saline and the pH of the solution was
adjusted to 6–7 with 0.1 N NaOH. Yohimbine (0.5 ml/kg)
was dissolved in sterile water. Doses of yohimbine,
SCH23390, MK212, and M100907 are based on our studies
(Bossert et al, 2007, 2009; Ghitza et al, 2007; Nair et al, 2008,
2009b) and on studies of other investigators (Alleweireldt
et al, 2006; Anderson et al, 2003; Bachtell et al, 2005; Bossert
et al, 2009; Chaudhri et al, 2009; Filip and Cunningham,
2003; McMahon et al, 2001; Pentkowski et al, 2010; Ramos
et al, 2005; See, 2009).

Intracranial Surgery

Rats were anesthetized with a mixture of sodium pento-
barbital and chloral hydrate (60 and 25 mg/kg, i.p.). For
intracranial injection studies, rats were implanted with
bilateral guide cannulae (23 G, Plastics One, Roanoke, VA)
1 mm above the dorsal mPFC (cingulate area 1 and dorsal
part of the prelimbic cortex) (AP: + 2.8 mm, ML: + 1.2 mm,
and DV: �2.4 mm, 101 angle) or the ventral mPFC (ventral
part of the prelimbic cortex and infralimbic cortex) (AP: +
2.8 mm, ML: + 1.5 mm, and DV: �4.2 mm, 101 angle)
(Paxinos and Watson, 2005). These coordinates are based
on a previous study from our laboratory (Koya et al, 2009).
The analgesic buprenorphine (0.1 mg/kg, s.c.) was adminis-
tered after surgery and rats were allowed to recover for at
least 7 days.

Intracranial Injections

Intracranial injections of SCH23390, MK212, M100907, or
their vehicles were prepared with Harvard infusion pumps,
using 10-ml Hamilton syringes connected to 30-G injectors
(Plastics One) by polyethylene-50 tubing. Injections lasted
1 min and injectors were left in place for an additional
minute before being replaced with cannula blockers. After
the last reinstatement test, rats in experiments 2–4 were
deeply anesthetized, decapitated, and their brains were
removed and stored in 10% formalin. The brains were sliced
into coronal sections (of 50-mm thickness) and stained with
cresyl violet. The sections were then examined for cannulae
placement under a microscope.

Fos Immunohistochemistry

All experiments described below were carried out at room
temperature unless specified. Ninety minutes after the start
of the test sessions (B120 min after yohimbine injections),
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rats were deeply anesthetized with isoflurane (B80 s) and
perfused transcardially with 100 ml of 0.1 M phosphate-
buffered saline (PBS), followed by 400 ml of 4% parafor-
maldehyde in 0.1 M sodium phosphate (pH 7.4). The brains
were removed, post fixed in 4% paraformaldehyde for 2 h,
and transferred to 30% sucrose in 0.1 M sodium phosphate
(pH 7.4) for 48 h at 4 1C. The brains were subsequently
frozen in powdered dry ice and stored at �80 1C until
sectioning. Coronal sections of 40-mm thickness, approxi-
mately + 2.5 to 3.5 mm from the bregma (Paxinos and
Watson, 2005), containing the dorsal and ventral mPFCs
were cut on a cryostat (Leica Microsystems, Bannockburn,
IL), collected in cryoprotectant (20% glycerol and 2%
dimethylsulfoxide in 0.1 M sodium phosphate, pH 7.4), and
stored at �80 1C until further processing.

Free-floating sections were washed (3 times for 10 min
each) in PBS, incubated for 1 h in 3% normal goat serum
(NGS) in PBS with 0.2% Triton X-100 (PBS-Tx), and
incubated overnight at 4 1C with the anti-c-Fos primary
antibody (c-Fos sc-52, Lot F2209, Santa Cruz Biotechno-
logy) diluted 1 : 4000 in 1% NGS in PBS-Tx. The sc-52
antibody was raised against amino acids 3–16 of human
c-Fos: SGFNADYEASSSRC. Sections were then washed in
PBS and incubated for 2 h with the biotinylated anti-rabbit
IgG secondary antibody (BA-1000, Vector Laboratories)
diluted 1 : 600 in 1% NGS in PBS-Tx. Sections were washed
in PBS and incubated in avidin–biotin–peroxidase complex
(ABC Elite kit, PK-6100, Vector Laboratories) in PBS
containing 0.5% Triton X-100 for 1 h, and washed in PBS.
Sections were developed in 3,30-diaminobenzidine for
B4 min, washed in PBS, mounted onto chrom-alum/gelatin-
coated slides, and air dried. The slides were dehydrated
through a graded series of alcohol (30, 60, 90, 95, 100, 100%
ethanol), cleared with Citrasolv (Fisher Scientific, Pittsburgh,
PA), and coverslipped with Permount (Sigma).

Bright field images of the dorsal and ventral mPFCs were
digitally captured using a CCD Camera (Coolsnap Photo-
metrics, Roper Scientific, Trenton, NJ) attached to a Zeiss
Axioskop 2 microscope with a � 5 objective. Labeled
Fos-immunoreactive nuclei from 1–2 sections from the left
and right hemispheres of each rat under different experi-
mental conditions were automatically counted using IPLab
software (version 3.9.4 r5; Scanalytics, Fairfax, VA)
for Macintosh. Image capture and quantification of Fos-
positive nuclei were conducted in a blind manner by CC and
independently verified in selected sections by JMB
(inter-rater reliability r¼ 0.81, po0.05).

Double Labeling with Fos and NeuN
Immunohistochemistry

Double-labeling experiments for Fos and the neuronal
marker NeuN were used to estimate the proportion of
neurons expressing Fos. Sections from 6 rats from
experiment 1 (n¼ 3 for vehicle and yohimbine conditions)
were thawed and washed (3 times for 10 min each) in Tris-
buffered saline (TBS; 0.025 M Tris-HCl, 0.5 M NaCl, pH 7.5)
and incubated for 20 min in TBS with 0.2% Triton X-100
(TBS-Tx). Sections were washed in TBS and incubated
for 48 h with antibody to Fos (1 : 500 dilution, sc-52) and
antibody to NeuN (1 : 2000 dilution of MAB377, Millipore)
in TBS-Tx. Sections were washed in TBS and incubated for

1 h with secondary antibodies Alexa 488-labeled donkey
anti-rabbit antibody and Alexa 568-labeled goat anti-mouse
antibody (1 : 200 dilution in TBS-Tx for both antibodies,
Invitrogen). Finally, sections were washed in TBS, mounted
on to chrom-alum/gelatin-coated slides, air dried, and
coverslipped using the Vectashield fluorescent mounting
medium (H-1400, Vector Laboratories). Fluorescent images
of the dorsal and ventral mPFCs were captured using the
same CCD camera and microscope using a � 20 objective.
The number of Fos-labeled, NeuN-labeled, and double-
labeled immunoreactive nuclei in these images were
manually counted in a blind manner by CC.

Behavioral Procedures

We used a reinstatement procedure that included 3 phases:
training for food self-administration (9–15 sessions),
extinction of food-reinforced behavior (10–16 sessions),
and tests for reinstatement under extinction conditions
(2–4 sessions). During all phases, the sessions started
30 min after the beginning of the dark cycle (0930 or 1000
hours). Below, we first describe the training and extinction
procedures for all experiments, and then provide specific
details for the testing phase of each experiment. During
testing, the experimental conditions were counterbalanced.

Food Self-Administration Training

All rats underwent 3-h daily sessions of ‘autoshaping’ for
2–3 days during which pellets were administered noncon-
tingently every 5 min into a receptacle located near
the active lever. Pellet delivery was accompanied by a
compound 5-s tone (2900 Hz)-light (7.5-W white light
located above the active lever) cue. Subsequently, rats were
trained to self-administer the pellets on a fixed-ratio 1, 20-s
timeout reinforcement schedule. Training sessions were
conducted for 9–15 days, every other day, 3 h/day over
18–30 days. Rats were chronically housed in operant self-
administration chambers for the entire duration of training,
with the exception of 19 rats (10 in experiment 2a and 9 in
experiment 2b). Due to scheduling issues, for 10 training
days, these rats were housed in the animal facility and
transferred to the self-administration chambers before the
training sessions, and returned to the facility at the end
of the 3-h sessions. From training day 11 onwards, these
rats were housed in operant chambers.

At the start of each 3-h session, the red houselight
was turned on and the active lever was extended. After each
pellet delivery, the tone-light cue was turned on for 5 s.
During the training days, regular food (16 g Purina rat
chow) was given immediately after the daily session (B3.5 h
into the dark cycle). During the days off, 16 g regular food
was given at the start of the dark cycle. We chose this
training schedule and these diet conditions because
previous home-cage food-consumption studies have shown
that rats placed on a restricted diet and given intermittent
access to palatable food develop binge-like eating behavior
(Avena et al, 2008; Boggiano et al, 2007; Colantuoni et al,
2002; Corwin and Buda-Levin, 2004; Figlewicz et al, 2007)
and become hypersensitive to the effect of stress
on palatable food intake (Cifani et al, 2009; Hagan et al,
2002, 2003).
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Extinction of Food-Reinforced Responding

After training, rats underwent 10–16 daily 3-h extinction
sessions until active lever responding decreased to 30
presses/3 h or less for 3 consecutive sessions (the extinction
criterion). In experiments 1, 3a, and 3b, during the
extinction phase, lever presses led to tone-light cue
presentations, but not to pellet delivery. In experiment 3c
(cue-induced reinstatement), lever presses during the
extinction phase had no programmed consequences (ie,
neither the tone-light cue nor pellets were made available).
During the extinction and reinstatement phases, regular
food (18–22 g) was given approximately at the same time as
during training phases (B3.5 h after the onset of the dark
cycle). In all experiments, the amount of food given during
the extinction phase was higher than that given during the
training phase to maintain rats on a stable body weight
during this phase and the subsequent reinstatement phase.

Experiment 1: Effect of Systemic SCH23390 Injections
on Yohimbine-Induced Reinstatement and mPFC
Fos Induction

Experiment 1a: In this initial experiment, we studied the
effect of yohimbine or vehicle injections (n¼ 7 per group)
on reinstatement of lever responding and Fos induction in
the dorsal and ventral mPFCs. Rats were injected with
yohimbine (2 mg/kg, i.p.) or distilled water 25–30 min
before the start of 90-min test sessions. The test session
duration was shorter than that of the subsequent experi-
ments (3 h), because of the time course of Fos protein
expression, which is maximal 90–120 min after neuronal
activation (Curran and Morgan, 1995). At the end of testing,
rats were anesthetized, perfused, and their brains were
removed and assayed for Fos-IR (see above).

Experiment 1b. Fos induction is dependent on activation of
D1-family receptor signaling (Graybiel et al, 1990; Robert-
son et al, 1989; Young et al, 1991), and we previously found
that systemic SCH23390 injections (5 and 10 mg/kg, s.c.)
decrease yohimbine-induced reinstatement of food seeking
(Figure 2 in Nair et al, 2009a). Therefore, we assessed
whether yohimbine-induced reinstatement and mPFC
Fos induction are reversed by systemic SCH23390 injec-
tions. We used 4 groups of rats (n¼ 6–7 per group) in a 2
(SCH23390 dose: 0, 10 mg/kg) � 2 (yohimbine dose: 0, 2 mg/
kg) experimental design. Rats were injected with SCH23390
or saline immediately before yohimbine or distilled water
injections, administered 25–30 min before the start of test
sessions. At the end of testing, rats were anesthetized,
perfused, and their brains were removed and assayed for
Fos-IR.

Experiment 2: Effect of Dorsal and Ventral mPFC
Injections of SCH23390 on Yohimbine-Induced
Reinstatement

Experiment 2a: dorsal mPFC. In experiment 1, we found
that systemic yohimbine injections preferentially increased
Fos expression in the dorsal mPFC and that this effect was
blocked by systemic SCH23390 injections. In this experi-
ment, we tested whether local SCH23390 would mimic the

systemic effect of the drug on yohimbine-induced reinstate-
ment. We tested the effect of dorsal mPFC SCH23390
injections on yohimbine-induced reinstatement in four
test sessions with two sessions run consecutively and one
extinction day between sets of tests. We used two groups
(n¼ 8–12 per group) in a mixed experimental design that
included the between-subjects factor of SCH23390 dose (0.5,
1.0 mg/site), and the within-subjects factors of pretreatment
condition (vehicle, SCH23390 (0.5 or 1.0 mg/site)), and
yohimbine dose (0, 2 mg/kg). Rats were injected intracra-
nially with SCH23390 or saline, followed immediately by i.p.
injections of yohimbine or distilled water 25–30 min before
the start of test sessions. The experimental conditions were
counterbalanced. The rationale for using the mixed experi-
mental design described above, which was also used in our
previous work (Ghitza et al, 2007; Nair et al, 2008, 2009b), is
to minimize the number of rats used while limiting the
number of repeated yohimbine reinstatement tests. At the
end of the experiment, rats were anesthetized, decapitated,
and their brains were removed for verification of cannulae
placements.

Experiment 2b: ventral mPFC. In experiment 2a, we found
that dorsal mPFC SCH23390 injections decreased yohim-
bine-induced reinstatement. In experiment 2b, we tested the
anatomical selectivity of this effect by injecting SCH23390
into the ventral mPFC. Although both SCH23390 doses were
effective in the dorsal mPFC (Figure 4), we used the higher
dose (1 mg) to assess anatomical specificity (experiment 2b)
and behavioral specificity (experiment 3), because negative
results from intracranial injections of a given receptor
antagonist (or agonist) can be interpreted with more
confidence than negative findings with half the drug dose.
This is because of the fact that for a constant injection
volume, the higher drug dose can achieve higher receptor
occupancy and can diffuse further away from the injection
site (Wise and Hoffman, 1992). We tested the effect of
ventral mPFC SCH23390 injections on yohimbine-induced
reinstatement in four test sessions with two sessions run
consecutively and one extinction day between sets of tests.
We used a within-subjects experimental design that
included the factors of pretreatment condition (vehicle,
SCH23390 (1.0 mg/site)) and yohimbine dose (0, 2 mg/kg)
(n¼ 9). Rats were injected intracranially with SCH23390 or
saline, followed immediately by i.p. injections of yohimbine
or distilled water 25–30 min before the start of test sessions.
The experimental conditions were counterbalanced. At the
end of the experiment, rats were anesthetized, decapitated,
and their brains were removed for verification of cannulae
placements.

Experiment 3: Effect of Dorsal mPFC Injections
of SCH23390 on Food Self-Administration, and
Pellet-Priming- and Cue-Induced Reinstatement

The purpose of experiment 3 was to determine the
behavioral specificity of the effect of dorsal mPFC
SCH23390 on yohimbine-induced reinstatement by asses-
sing its effect on ongoing pellet self-administration, as well
as reinstatement of food seeking induced by pellet priming
and discrete cues. These stimuli reliably reinstate lever
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presses under our experimental conditions (Nair et al,
2008, 2009b).

Experiment 3a: pellet self-administration. We tested the
effect of dorsal mPFC injections of SCH23390 (1.0 mg/side)
or saline (0.5 ml/side) on ongoing food self-administration.
A single group of rats (n¼ 10) was used in a within-subjects
design in which rats were tested, under counterbalanced
conditions, on training days 11 and 14. The mean pellet
intake and active lever responding for the two training
sessions before the test days were 249±25 and 1085±258
per 3 h, respectively. Rats were injected intracranially with
SCH23390 or saline 25–30 min before the start of test
sessions.

Experiment 3b: pellet-priming-induced reinstatement. We
tested the effect of dorsal mPFC injections of SCH23390
(1.0 mg/side) or saline on pellet-priming-induced reinstate-
ment of lever responding. It is well established that
noncontingent exposure to a food pellet after extinction of
operant responding reinstates food seeking (Baker et al,
1991; Horvitz and Ettenberg, 1988; Skinner, 1938). We used
the same rats (n¼ 10) that were used in experiment 3a.
After the second test session in experiment 3a, these rats
underwent 15 extinction sessions during which lever
responding led to tone-light cue presentations, but not
pellets. Rats were then tested under counterbalanced
conditions for pellet-priming-induced reinstatement. The
test sessions were separated by 3 days and rats underwent
regular extinction sessions on the days between testing.
During testing, saline or SCH23390 was injected into the
dorsal mPFC 25–30 min before exposure to the pellet
priming manipulation: noncontingent delivery of 3 pellets,
every 20 s, at the onset of the sessions. After the second test
session, rats were anesthetized, decapitated, and their brains
were removed for verification of cannulae placements.
In experiment 2, we found that dorsal mPFC saline or
SCH23390 injections had no effect on baseline extinction
responding. Thus, to limit the number of intracranial
injections, we did not assess this in experiment 3b (and in
experiments 3c, 4a, and 4b).

Experiment 3c: cue-induced reinstatement. We tested the
effect of dorsal mPFC injections of SCH23390 (1.0 mg/side)
or saline on cue-induced reinstatement of lever responding.
For this purpose, we used a well-established cue-induced
reinstatement procedure that has been used in studies
involving food (De Vries et al, 2005; Floresco et al, 2008;
McLaughlin and Floresco, 2007) and drug (Davis and Smith,
1976; Meil and See, 1996) rewards. In this procedure, rats
are first trained to self-administer a drug or nondrug
reward; each reward delivery is temporally paired with a
discrete cue (eg, tone, light). Lever pressing is then
extinguished in the absence of the reinforcer and the cue.
During reinstatement testing, exposure to the cue, which is
earned contingently during testing, serves as a conditioned
reinforcer and reliably reinstates operant responding
(See, 2005). A single group of rats (n¼ 10) was trained to
lever press for food pellets for nine sessions as described
above. Next, rats underwent 10 extinction sessions
during which neither pellets nor tone-light cues were
delivered after the lever press. Rats were then tested under

counterbalanced conditions for cue-induced reinstatement.
Rats were injected intracranially with SCH23390 or saline
25–30 min before the start of test sessions; during the
sessions, lever responding led to contingent presentations of
the cue under a fixed-ratio 1, 20-s timeout reinforcement
schedule. The test sessions were separated by 4 days and
rats underwent extinction sessions (without the discrete
cue) on the days between testing. Rats that did not initiate
lever responding within 10 min of the start of the session
were given a single noncontingent exposure to the tone-
light cue.

Experiment 4: Effect of Dorsal mPFC Injections of
the 5-HT2c Agonist MK212 and the 5-HT2a Antagonist
M100907 on Yohimbine-Induced Reinstatement

Experiment 4a: MK212. SCH23390 is also a 5-HT2c
(formerly 5-HT1c) receptor agonist (Briggs et al, 1991;
Millan et al, 2001), and Fletcher et al (2008) found that
systemic injections of the 5-HT2c receptor agonist Ro60–
0175 decrease yohimbine-induced reinstatement of cocaine
seeking. Thus, we determined whether dorsal mPFC
SCH23390 effects on yohimbine-induced reinstatement are
mimicked by the 5-HT2c receptor agonist MK212 (Ramos
et al, 2005). At the end of experiment 3c (cue-induced
reinstatement), rats underwent seven extinction sessions
in the presence of the tone-light cue and then tested for
yohimbine-induced reinstatement in two counterbalanced
sessions (separated by 4 days) after pretreatment with
MK212 (0.1 mg/0.5 ml per side) or vehicle (sterile saline) into
the dorsal mPFC. MK212 was injected just before yohimbine
(2 mg/kg, i.p.), which was injected 25–30 min before the test
sessions. After the second test session, rats were anesthe-
tized, decapitated, and their brains dissected for cannulae
placement verification.

Experiment 4b: M100907. SCH23390 also binds to 5-HT2a
receptors with high affinity (Neumeyer et al, 2003; Porter
et al, 1999). Results from pharmacological studies indicate
that SCH23390 is an antagonist at 5-HT2a receptors,
because it blocks behavioral and physiological effects of
5-HT2a receptor stimulation (Monti et al, 1990; Schreiber
et al, 1995). Thus, we determined whether the effects of
dorsal mPFC SCH23390 on yohimbine-induced reinstate-
ment are mimicked by the 5-HT2a receptor antagonist
M100907 (McMahon et al, 2001). Rats (n¼ 9) were trained
to self-administer high-fat food pellets as described above.
Next, lever responding was extinguished in the presence of
the tone-light cue for 10 days. Rats were then tested for
yohimbine-induced reinstatement in two counterbalanced
sessions (separated by 2 days) after pretreatment with
M100907 (0.3 mg/0.5 ml per side) or vehicle (sterile saline)
into the dorsal mPFC. M100907 was injected just before
yohimbine (2 mg/kg, i.p.), which was injected 25–30 min
before the test sessions. After the second test session, rats
were anesthetized, decapitated, and their brains were
removed for verification of cannulae placements.

Statistical Analyses

Data were analyzed using mixed ANOVAs in SPSS version
15.0 statistical software Proc GLM procedure. In experiment 1,
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the number of Fos-IR and NeuN nuclei for the dorsal
and ventral mPFCs was determined by calculating the mean
value of two hemispheres per rat. The factors used in
statistical analyses are described in the ‘Results’ section.
Significant overall effects (po0.05) in the different
ANOVAs were followed by post hoc Fisher PLSD tests.

RESULTS

Rats (total n¼ 98) were trained to self-administer food
pellets for 9–15 days (3 h/day) and demonstrated reliable
pellet self-administration and, as in our previous studies
(Ghitza et al, 2006; Nair et al, 2008, 2009b), a progressive
escalation of timeout active lever presses across sessions
(Figure 1; p-valueso0.01 for a training session effect for
both pellet intake and timeout responding). After self-
administration training, rats underwent 10–16, 3-h extinc-
tion sessions either in the presence (experiment 1, 2, 3b, 4a,
and 4b, total n¼ 88) or absence (experiment 3c, n¼ 10) of
the discrete tone-light cue, during which lever pressing
decreased over days under both extinction conditions
(Figure 1; p-valueso0.01 for an extinction session effect).

Experiment 1: Effect of systemic SCH23390 Injections
on Yohimbine-Induced Reinstatement and mPFC
Fos Induction

Experiment 1a. Yohimbine reinstated active lever respond-
ing after extinction; this effect was associated with strong
and moderate Fos induction in the dorsal and ventral
mPFCs, respectively (Figure 2). Behavioral data were
analyzed using the between-subjects factor of yohimbine
dose (0, 2 mg/kg) and the within-subjects factor of lever
(active, inactive). ANOVA revealed significant effects of
yohimbine dose (F1, 12¼ 47.6, po0.01), lever (F1, 12¼ 66.1,
po0.01), and yohimbine dose� lever (F1, 12¼ 46.3,
po0.01). Yohimbine had no effect on inactive lever presses,
a potential measure of nondirected activity and/or response
generalization (Shalev et al, 2002) (Figure 2). Post hoc
differences and the time course (30-min intervals) of
yohimbine-induced reinstatement are provided in Figure 2.
Analysis of Fos quantification (Figure 2) included the
between-subjects factor of yohimbine dose and the within-
subjects factor of the mPFC region (ventral, dorsal).
ANOVA revealed significant effects of yohimbine dose
(F1, 12¼ 17.4, po0.01), mPFC region (F1, 12¼ 32.5, po0.01),
and yohimbine dose�mPFC region (F1 ,12¼ 35.7, po0.01).
The significant interaction reflects a stronger effect of
yohimbine on Fos-IR induction in the dorsal vs the ventral
mPFC. This conclusion is qualitatively confirmed in a
small sample (n¼ 3 per group) in which we assessed
the percentage of double-labeled Fos-NeuN neurons in the
ventral and dorsal mPFCs after water or yohimbine
injections (dorsal mPFC: water: 3.8±1.1%, yohimbine:
24.6±2.1%; ventral mPFC: water: 4.0±1.0%, yohimbine:
11.5±1.3%) (Figure 2).

Experiment 1b. Systemic SCH23390 injections blocked
yohimbine-induced reinstatement of lever responding and
yohimbine-induced Fos induction in the dorsal and ventral
mPFCs. As in experiment 1a, yohimbine-induced Fos
induction was more pronounced in the dorsal than in the
ventral mPFC (Figure 3). Behavioral data (active lever
presses) were analyzed using the between-subjects factors of
yohimbine dose (0, 2 mg/kg) and SCH23390 dose (0, 10 mg/
kg). ANOVA revealed significant effects of yohimbine
dose (F1, 22¼ 17.9, po0.01), SCH23390 dose (F1, 22¼ 12.9,
po0.01), and yohimbine dose� SCH23390 dose
(F1, 22¼ 10.3, po0.01). Post hoc differences and the time
course (30-min intervals) of yohimbine-induced reinstate-
ment are provided in Figure 3. Analysis of Fos quantifica-
tion included the between-subjects factors of yohimbine
dose and SCH23390 dose, and the within-subjects factor
of the mPFC region (ventral, dorsal). ANOVA revealed
significant effects of yohimbine dose (F1, 22¼ 23.8, po0.01),
SCH23390 dose (F1, 22¼ 16.4, po0.01), mPFC region
(F1, 22¼ 27.9, po0.01), SCH23390 dose�mPFC region
(F1, 22¼ 8.3, po0.01), yohimbine dose� SCH23390 dose
(F1, 22¼ 10.8, po0.01), yohimbine dose�mPFC region
(F1, 22¼ 5.4, po0.05), and yohimbine dose� SCH23390
dose�mPFC region (F1, 22¼ 35.7, po0.01). These signifi-
cant interactions reflect (1) a stronger effect of yohimbine
on Fos induction in the dorsal vs the ventral mPFC, (2) a
stronger attenuation of yohimbine-induced Fos expression
by SCH23390 in the dorsal vs the ventral mPFC, and

1 2 3 4 5 6 7 8 9
0

400

800

1200

T
.O

. r
es

po
ns

es
 o

r 
pe

lle
ts

 (
3 

h)

Training Day

Training Extinction

T.O. responses

Pellets

1 2 3 4 5 6 7 8 9 10
0

400

800

1200

Le
ve

r 
pr

es
se

s 
(3

 h
)

Extinction Day

No cue
Cue

Body weight change

-20

-10

0

10

20

W
ei

gh
t c

ha
ng

e 
(g

)

Extinction

Training

t1

e1

e2
e3 e5

e6

e7
e8

e9

t2
t3

t9
t4 t5

t6 t7 t8

Training/extinction day
Off day

e4
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during the training sessions, which occurred on alternate days (one 3-h
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yohimbine-induced reinstatement of lever responding and Fos induction in
the dorsal and ventral mPFCs. (a, b) Mean±SEM number of active lever
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(3) a modest reduction by SCH23390 of basal Fos
expression in the ventral but not in the dorsal mPFC
(the 0 dose of the yohimbine condition). Neither yohimbine
nor SCH23390 had an effect on inactive lever responding
(data not shown). Post hoc differences are indicated
in Figure 3.

Experiment 2: Effect of Dorsal and Ventral mPFC
Injections of SCH23390 on Yohimbine-Induced
Reinstatement

Dorsal mPFC. Dorsal mPFC SCH23390 injections decreased
yohimbine-induced reinstatement of lever responding
(Figure 4). Statistical analysis included the between-subjects
factor of SCH23390 dose (0.5 or 1 mg/side) and the
within-subjects factors of pretreatment condition (vehicle,
SCH23390 (0.5 or 1 mg/side)), and yohimbine dose
(0, 2 mg). ANOVA revealed significant effects of yohimbine
dose (F1, 18¼ 58.9, po0.01), pretreatment condition (F1, 18¼
20.8, po0.01), and pretreatment condition� yohimbine
dose (F1, 18¼ 25.7, po0.01). This mixed AVOVA also
revealed that the effect of SCH23390 dose was not
significant (p40.1), because both the low (0.5 mg/side)
and the high (1.0 mg/side) dose decreased yohimbine-
induced reinstatement to a similar degree. Post hoc
differences and the time course of yohimbine-induced
reinstatement are indicated in Figure 4. Neither yohimbine
nor SCH23390 had an effect on inactive lever responding
(data not shown).

Ventral mPFC. Ventral mPFC SCH23390 injections
(1 mg/site) had no effect on yohimbine-induced reinstate-
ment of lever responding (Figure 4). ANOVA revealed
significant effects of yohimbine dose (F1, 8¼ 62.7, po0.01)
but not of SCH23390 dose or SCH23390 dose� yohimbine
dose (p40.1). Neither yohimbine nor SCH23390 had an
effect on inactive lever responding (data not shown).

Experiment 3: Effect of Dorsal mPFC Injections of
SCH23390 on Food Self-Administration, and
Pellet-Priming- and Cue-Induced Reinstatement

Experiment 3a: pellet self-administration. Injections of
SCH23390 in the dorsal mPFC had no effect on pellet intake
or timeout responses on the active lever during training
(p-values40.1; Figure 5).

Experiment 3b: pellet-priming-induced reinstatement.
Injections of SCH23390 in the dorsal mPFC decreased
pellet-priming-induced reinstatement of active lever res-
ponding (Figure 5). Statistical analysis included the within-
subjects factors of SCH23390 dose (0 or 1 mg/side) and lever
(active, inactive). ANOVA revealed significant effects of
SCH23390 dose (F1, 9¼ 11.2, po0.01), lever (F1, 9¼ 66.1,
po0.01), and SCH23390 dose� lever (F1, 9¼ 8.9, po0.01).
Post hoc differences and the time course (60-min intervals)
of the effect of SCH23390 on pellet-priming-induced
reinstatement are indicated in Figure 5.

Experiment 3c: cue-induced reinstatement. Injections of
SCH23390 in the dorsal mPFC had no effect on cue-induced
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reinstatement of lever responding (Figure 5). Statistical
analysis included the within-subjects factors of SCH23390
dose (0 or 1mg/side) and lever (active, inactive). ANOVA
revealed significant effects of lever (F1, 9¼ 48.0, po0.01),
but not of SCH23390 dose or SCH23390 dose� lever
(p40.1).

Experiment 4: Effect of dorsal mPFC Injections of the 5-
HT2c Agonist MK212 and the 5-HT2a Antagonist
M100907 on Yohimbine-Induced Reinstatement

Experiment 4a: MK212. Dorsal mPFC injections of the
5-HT2c agonist MK212 had no effect on yohimbine-induced
reinstatement of active lever responding. The mean±SEM
number of active and inactive lever presses for the last 3
extinction sessions before the first test was 15.0±1.6 and
1.8±1.4, respectively. During tests for yohimbine-induced
reinstatement, the number of active and inactive lever
presses under vehicle and MK212 pretreatment conditions
was 125.1±21.4 and 117.0±23.0 vs 27.2±9.5 and
32.1±15.0, respectively. Statistical analysis included the
within-subject factors of MK212 dose (0 or 0.1 mg/side) and
lever (active, inactive). ANOVA revealed significant effects
of lever (F1, 9¼ 22.9, po0.01), but not of MK212 dose or
MK212 dose� lever (p40.1). The reasons for increased
inactive lever responding after yohimbine injections, which
was not observed in experiments 1–2 and in our previous
work, are unknown.

Experiment 4b: M100907. Dorsal mPFC injections of the
5-HT2a antagonist M100907 had no effect on yohimbine-
induced reinstatement of active lever responding. The
mean±SEM number of active and inactive lever presses
for the last 3 extinction sessions before the first test was
16±2 and 1±1, respectively. During tests for yohimbine-
induced reinstatement, the number of active and inactive
lever presses under vehicle and M100907 pretreatment
conditions was 86±12 and 90±8 vs 18±10 and 8±3,
respectively. Statistical analysis included the within-subject
factors of M100907 dose (0 or 0.3 mg/side) and lever
(active, inactive). ANOVA revealed significant effects of
lever (F1, 8¼ 76.7, po0.01), but not of M100907 dose or
M100907 dose� lever (p40.1).

DISCUSSION

We studied the role of D1-family receptors in the
reinstatement of high-fat food seeking induced by the
anxiogenic drug yohimbine, which induces stress-like
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responses in both humans and nonhumans (Redmond and
Huang, 1979). Yohimbine-induced reinstatement was asso-
ciated with strong Fos (a neuronal activity marker)
induction in the dorsal mPFC and weaker Fos induction
in the ventral mPFC. The effect of yohimbine on reinstate-
ment of food seeking and mPFC Fos induction was blocked
by systemic SCH23390 injections, suggesting a role of mPFC
D1-family receptors in yohimbine-induced reinstatement.
This possibility was confirmed by demonstrating that dorsal
but not ventral mPFC SCH23390 injections attenuated this
reinstatement. These data established a causal role of dorsal
mPFC D1-family receptors in yohimbine-induced reinstate-
ment of food seeking.

In a follow-up experiment on the behavioral specificity of
mPFC SCH23390 injections on reinstatement of food
seeking, we found that D1-family receptor blockade
decreased pellet-priming-induced reinstatement but had
no effect on cue-induced reinstatement or on ongoing pellet
self-administration. These data suggest that mechanisms of
pellet-priming-induced reinstatement and cue-induced re-
instatement are not identical, and support the notion that
mechanisms of ongoing food intake and relapse to food
seeking are dissociable (Nair et al, 2009a). In another
follow-up experiment on the pharmacological specificity of
SCH23390, we found that MK212 or M100907 dorsal mPFC
injections had no effect on yohimbine-induced reinstate-
ment. These data suggest that SCH23390 effects on
yohimbine-induced reinstatement are not due to its actions
on 5-HT2c or 5-HT2a receptors (Millan et al, 2001;
Neumeyer et al, 2003).

Role of mPFC Dopamine D1-Family Receptors in
Reinstatement of Food Seeking

A main finding in our study is that dorsal mPFC SCH23390
injections decreased reinstatement of food seeking induced
by both yohimbine and pellet priming. It is unlikely that
these effects are due to nonspecific disruption of lever
responding, because SCH23390 injections had no effect on a
much higher response rate for the food pellets during
training (Figure 5a). Thus, our data suggest a general role
of dorsal mPFC dopamine D1-family receptors in relapse
to food seeking, as assessed in the reinstatement proce-
dure. One caveat of this conclusion is that dorsal mPFC
SCH23390 had no effect on discrete-cue-induced reinstate-
ment. However, these negative data should be inter-
preted with caution, because the magnitude of responding
in the discrete-cue-induced reinstatement tests was much
lower than in the yohimbine- or pellet-priming-induced
reinstatement tests. Thus, our cue-induced reinstatement
manipulation may not be sufficiently sensitive to reliably
detect effects of pharmacological manipulations on this
reinstatement.

It is also unknown whether dorsal mPFC D1-family
receptors have a role in other forms of relapse to food
seeking, including the time-dependent increases in cue-
induced reinstatement (incubation of food seeking) (Grimm
et al, 2002, 2005), or reinstatement induced by contextual
(Bossert et al, 2006; Hamlin et al, 2006) or discriminative
(Baptista et al, 2004) food cues. In this regard, studies using
drug rewards indicate that the mechanisms of reinstatement
induced by discrete vs contextual drug cues only partially

overlap (Crombag et al, 2008; Feltenstein and See, 2008). In
addition, we found that reversibly inactivating the ventral
but not the dorsal mPFC with a muscimol + baclofen
mixture decreases the time-dependent increases in cue-
induced cocaine seeking, as assessed in a single extinction
test (Koya et al, 2009).

Our finding on the effect of dorsal mPFC SCH23390
injections on pellet-priming-induced reinstatement of food
seeking is consistent with that of Sun and Rebec (2005).
However, these findings are different from those of McFar-
land and Kalivas (2001) who reported that dorsal mPFC
inactivation with muscimol + baclofen had no effect on
pellet-priming-induced reinstatement. In interpreting these
different findings it should be noted that there are several
other examples in drug reinstatement studies in which the
effect of pharmacological antagonism of D1-family recep-
tors does not mimic the behavioral effects of muscimol +
baclofen inactivation (Bossert et al, 2005). For example,
McFarland and Kalivas (2001) reported that muscimol +
baclofen inactivation of the nucleus accumbens core, but
not shell, attenuates cocaine-priming-induced reinstate-
ment. In contrast, Anderson et al (2003) reported that
SCH23390 injections into the nucleus accumbens shell, but
not core, attenuate this reinstatement.

Mechanisms Underlying the Role of Dorsal mPFC
Dopamine in Yohimbine-Induced Reinstatement:
A Neuropsychological Perspective

A question for future research is the identification of the
neuropsychological processes or mechanisms underlying
the role of dorsal mPFC dopamine in yohimbine-induced
reinstatement in particular and more generally in stress-
induced reinstatement. Below, we speculate on the putative
role of four potential mechanisms related to mPFC’s role in
response to satiety signals, behavioral inhibition, stress
responses, and reward seeking.

Food Satiety. In food-restricted rats, exposure to palatable
food increases mPFC dopamine release. This effect is
reduced by selective satiety (a brief previous exposure to
the same but not different palatable food before a second
exposure to the food), suggesting a role of dorsal mPFC
dopamine in food satiety mechanisms (Ahn and Phillips,
1999, 2002). However, it is unlikely that the modulation of
SCH23390 of mPFC-dependent satiety mechanisms med-
iates its effect on yohimbine-induced reinstatement, be-
cause dorsal mPFC SCH23390 injections had no effect on
ongoing pellet self-administration.

Behavioral Inhibition. We previously suggested that stress
may provoke relapse by interfering with a putative
behavioral inhibition system the function of which is to
stop ongoing activity when reinforcers are not available
(Highfield et al, 2000b), as, eg, during extinction training
(Bouton and Swartzentruber, 1991; Gray, 1987; Pavlov,
1927). Some support for this hypothesis is the finding that
repeated exposure to footshock or yohimbine during the
extinction phase increases resistance to extinction of drug
seeking (Highfield et al, 2000a; Kupferschmidt et al, 2009).
The ‘behavioral inhibition’ hypothesis might be relevant to
the present findings, because there is evidence that mPFC
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lesions interfere with behavioral responses in learning tasks
assessing behavioral inhibition (Kolb, 1984). However, this
hypothesis is not supported by the present data or previous
data mentioned above (Kalivas and McFarland, 2003),
because a main prediction of the behavioral inhibition
hypothesis would be that interference with mPFC function
in the absence of stress exposure would reinstate reward
seeking, mimicking the effect of stressors.

Stress Responses. Dorsal mPFC SCH23390 injections may
decrease yohimbine-induced reinstatement because they
decrease the manifestation of physiological and psycholo-
gical stress states induced by yohimbine. In this regard, tail-
pinch-stress-induced secretion of the stress hormone
corticosterone (Selye, 1936) is correlated with tail-pinch-
induced increases in mPFC dopamine levels (Sullivan and
Gratton, 1998). In addition, dorsal mPFC lesions decrease
stress-induced corticosterone secretion and gastric ulcer
development (Sullivan and Gratton, 1999). Yohimbine
increases corticosterone secretion in both rats (Marinelli
et al, 2007) and monkeys (Lee et al, 2004). However, it is
unlikely that this effect and its potential modulation by
dorsal mPFC dopamine are involved in yohimbine-induced
reinstatement because the effects of yohimbine on corti-
costerone secretion can be dissociated pharmacologically:
the CRF1 receptor antagonist antalarmin blocks yohimbine-
induced reinstatement of alcohol seeking but has no effect
on yohimbine-induced corticosterone secretion (Marinelli
et al, 2007). In addition, stress-induced corticosterone
secretion does not mediate stress-induced reinstatement
of drug seeking (Erb et al, 1998; Shaham et al, 1997), a
phenomenon critically dependent on dorsal mPFC dopa-
mine (Capriles et al, 2003; McFarland et al, 2004). However,
it is possible that blockade of D1-family receptors
ameliorates the impact of stress-related psychological
processes that are dependent on intact mPFC (eg, increasing
the perception of control over stress experience; Maier and
Watkins, 2005), which in turn leads to decreased stress-
induced reinstatement.

Reward Seeking. The effect of dorsal mPFC SCH23390
injections on yohimbine-induced reinstatement might be
due to interference with the normal functioning of the
putative ‘final common pathway’ glutamatergic projection
from the dorsal mPFC to the accumbens core that mediates
reinstatement of cocaine seeking induced by drug priming,
discrete cues, and footshock stress; activation of this
pathway is critically dependent on mPFC dopamine
transmission (Feltenstein and See, 2008; Kalivas and
McFarland, 2003). The ‘final common pathway’ hypothesis
can account for similar effects of SCH23390 injections on
both yohimbine- and pellet-priming-induced reinstatement.
However, a prediction of this hypothesis is that SCH23390
injections should also attenuate discrete-cue-induced re-
instatement, which we did not observe.

Concluding Remarks

Since 2004 (Lee et al, 2004; Shepard et al, 2004), yohimbine
has been used as a pharmacological stressor in
many reinstatement studies with food and drug rewards

(Feltenstein and See, 2008; Nair et al, 2009a), but the brain
sites involved in this effect have not been identified. In this
study, we demonstrate a critical role of dorsal but not
ventral mPFC dopamine D1-family receptors in yohimbine-
induced reinstatement, and also provide evidence for the
role of these receptors in pellet-priming-induced reinstate-
ment. The results of this study and our previous work on
relapse to food seeking during dieting may have implica-
tions for medication development (Nair et al, 2009a).

Historically, dietary treatments have primarily been
developed based on their effects on physiological mechan-
isms that regulate ongoing food intake or food metabolism
(Bray and Greenway, 2007). Yet, it has been known for
many years that the physiological states of hunger and
satiety are often dissociable from human feeding behaviors.
Instead, these behaviors are to a significant extent under the
control of external stimuli, such as stress and food cues
(Schachter, 1968, 1974). A common theme in our studies on
reinstatement of food seeking is that our pharmacological
manipulations have dissociable effects on reinstatement of
food seeking vs food intake during self-administration
training (Nair et al, 2009b). Thus, the use of the
reinstatement procedure allows for the identification of
pharmacological agents that can prevent relapse to food by
targeting the impact of stress or food cues on food-seeking
behaviors in humans. These putative potential medications
may not reach clinical development if the targeted
preclinical outcome is reduction of ongoing food intake in
rodents.
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